
MetaStorage: A Federated Cloud Storage System to
Manage Consistency-Latency Tradeoffs

David Bermbach, Markus Klems and Stefan Tai
Institute of Applied Informatics and
Formal Description Methods (AIFB)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

Email: firstname.lastname@kit.edu

Michael Menzel
Forschungszentrum Informatik (FZI)

Karlsruhe, Germany
Email: menzel@fzi.de

Abstract—Cost and scalability benefits of Cloud storage ser-
vices are apparent. However, selecting a single storage service
provider limits availability and scalability to the selected provider
and may further cause a vendor lock-in effect. In this paper,
we present MetaStorage, a federated Cloud storage system that
can integrate diverse Cloud storage providers. MetaStorage is a
highly available and scalable distributed hashtable that replicates
data on top of diverse storage services. MetaStorage reuses mech-
anisms from Amazon’s Dynamo for cross-provider replication
and hence introduces a novel approach to manage consistency-
latency tradeoffs by extending the traditional quorum (N,R,W)
configurations to an (NP , R,W) scheme that includes different
providers as an additional dimension. With MetaStorage, new
means to control consistency-latency tradeoffs are introduced.

I. INTRODUCTION

Over the last few years the Cloud Computing market has
grown tremendously and frequent new service offerings are
emerging steadily. In particular, there is a large number of
Cloud storage services, each focusing on different capabilities
and guarantees. To satisfy availability and scalability needs
of most Cloud-based applications, NoSQL databases have be-
come very popular, owning the highest share of Cloud storage
offerings [1], [2]. Besides, in-memory databases or distributed
relational database clusters are common alternatives, provid-
ing high-performance and consistency guarantees respectively.
The choices are many, but vendor lock-in is still an issue
as Cloud storage offerings tie customers to one particular
offering due to immense switching costs for data migration.
Even when switching between similar NoSQL stores the effort
can be extensive due to large databases and varying service
implementations. Moreover, relying on a single Cloud storage
provider results in an avoidable single point of failure and
challenges high-availability and reliability aspirations [3]–[7].
Despite geographically distributed data centers and advanced,
robust Cloud storage technology a provider can turn into the
single point of failure and cause a business risk, e.g. due to
downtimes or even going out of business. Depending on the
technologies, business know-how as well as the decisions of a
single provider increases the vulnerability of every customer
and puts the reliability of a system at risk. Especially when
running business critical systems in the Cloud, business suc-
cess and competitive advantage heavily rely on the activities of

a single provider. The only way to overcome the dependency
on a single provider is to replicate data to multiple providers
in order to maintain the possibility for immediate provider
switches and to mitigate downtimes.

The remainder of the paper is structured as follows: First, we
introduce MetaStorage, a Cloud storage federation system, and
describe its design and implementation details as well as the
additional parameters we introduced to balance consistency-
latency tradeoffs. Afterwards, we present the results of a sys-
tem evaluation regarding consistency, availability and latency.
Finally, we discuss the system’s weaknesses and strengths and
end with a conclusion.

II. METASTORAGE

MetaStorage is a highly scalable, highly available, dis-
tributed hashtable, layered on top of different Cloud storage
providers. For this purpose, MetaStorage reuses mechanisms
from Amazon’s Dynamo [8], but elevates these for cross-
provider data replication to maximize scalability, availability,
vendor independence and fault tolerance. As MetaStorage
leverages Cloud storage services which typically offer only
eventual consistency it is obvious that it can never fully
guarantee strict consistency to the outside world. So, by
reusing Dynamo’s design principles MetaStorage introduces
an eventually consistent scheme itself.

MetaStorage replicates data across several providers instead
of using machines of a single provider only. By integrating
diverse Cloud storage providers, MetaStorage extends tradi-
tional quorum systems that use (N,R,W) configurations to
balance not only consistency-availability but also to balance
consistency-latency tradeoffs. Now, we can still use (N,R,W)
but also add the dimension of providers as an additional
knob to tweak consistency-latency tradeoffs. We suggest novel
(NP , R,W) configurations where NP ≥ 1 is the total number
of replica |NP | that are hosted with the set of n providers.
The providers host a set of replica, formally defined as
NP = N1 ∪ ...∪Nn where each provider i ∈ {1, ..., n} hosts
|Ni| replica.

In the following we will present the MetaStorage system,
its design and implementation.

A. MetaStorage Architecture

The MetaStorage architecture (figure 1) is based on nodes
which act as wrappers for Cloud storage services. A set of
nodes is aggregated within a Distributor which includes all
functionality to replicate and retrieve data as well as assert
availability of replica. To avoid the Distributor becoming
a bottleneck we attached a Coordinator component to each
Distributor which is responsible for periodically exchanging
state between Distributors. MetaStorage components inter-
nally communicate using an asynchronous messaging protocol
which can be seen as a subset of the staged event-driven
architecture (SEDA) [9]. The main advantage of SEDA is that
it degrades gracefully under heavy load as the overhead for
thread synchronization stays constant no matter how many
requests have to be processed per second. This is the reason
why it was also internally used within Dynamo and reused in
our context.

In the next section we will give an in-depth description of
all components within the MetaStorage architecture.

Fig. 1. High-level overview of the MetaStorage architecture

B. MetaStorage Nodes

Within the MetaStorage system the nodes are situated at the
lowest layer. Their most important task is to offer a generic
interface to the Distributor so that all technical details of the
underlying infrastructure are hidden. Thus, they are basically
wrappers for Cloud storage services like Amazon S3 (see
also [10] and [11]). So far, we have built nodes for Amazon
S3 (which can also connect to Walrus [12]), Google App
Engine (plus the corresponding service running there, which is
compatible to AppScale [13]), and for local harddisks. Further
nodes are planned. In theory, there are no system limitations
to extensibility.

Every node shares two message queues with its corre-
sponding Distributor. Incoming messages are checked for their
request type and then mapped to the respective methods which
returns a response message. The methods provided by the

nodes are GET, PUT, LISTFILES and DELETE of which
each node assumes that they can be invoked multiple times
simultaneously, i.e. all synchronization issues on this level are
pushed to the underlying infrastructure services.

C. Distributor

The Distributor is situated in the second layer from the
bottom and it is the component within MetaStorage which is
"doing the actual work". The Distributor alone is responsible
for replication and retrieval of files. All components on a
higher layer are usually granted fragmentation transparency.
Requests to the Distributor are also sent asynchronously for
which purpose every Distributor holds an input and output
queue. All operations offered by the Distributor are idempo-
tent, so, if an error occurs one may just resend the request.

The Distributor implementation bases its distribution mech-
anism on an approach presented by DeCandia et al. [8] as well
as Lakshman and Malik [14] which describes the concept of
a preference list based on the hash of the key. Depending on
the preferred Cloud storage services and their order within
the preference list files are stored on the first N nodes and,
thereby, distributed to multiple providers. Since MetaStorage
is a quorum-based system [15] already R successful reads (and
W for writes respectively) are sufficient to return success.
Whereas in Dynamo the preference list originally contained
physical and later on logical nodes we adopted and changed
the approach to fit into our scenario: N, R and W can still
be configured but the preference list is identical for the entire
key range, which makes sense because an entire Cloud storage
service is less likely to fail than a single machine and is also
expected to have a load balancing scheme of its own. We,
thus, have no need for partitioning algorithms like consistent
hashing [16], [17]. So, every Distributor instance contains
a preference list which is an ordered list of MetaStorage
nodes. Changes to the preference list and the (NP , R,W)
configuration are also possible at runtime. Whenever this is
done the system halts and waits until all active requests have
terminated. Upon completion the changes are applied and
all processes get restarted. Apart from removing the need of
partitioning algorithms the static preference list also gives us
the second knob to balance consistency-latency tradeoffs as
we already pointed out.

There is one difference to [15], though: Quorum-based
systems usually require a configuration where R + W > N
to avoid reading stale data as well as W > N

2 to avoid
conflicts arising from concurrent writes. Since this also affects
availability these requirements have been ignored in both
Dynamo and MetaStorage.

In the following we will present the design of the GET and
PUT operations of the Distributor. See also table I for a brief
overview of all supported operations.

1) PUT: Whenever the Distributor receives a PUT request
it rebroadcasts it to the first N nodes of the preference list.
Afterwards, the Distributor waits for responses. Whenever a
response is of type error a new PUT request is created and
sent to the next node of the preference list which has so far not

TABLE I
OPERATIONS

Operation Functionality Terminate Response Type Parameters
DELETE BRb to all nodes Instantly ACKa Key
ASSERTEDDELETE BRb to all nodes Upon receipt of responses or after timeout ACKa or list of failed nodes Key
GET BRb to all nodes storing

replica
Upon receipt of R identical responses, N
responses or after timeout

Success if more than R identical
responses, else failure. Includes all
retrieved data.

Key

PUT BRb to first N nodes, re-
broadcast until N nodes
store a replica

Upon receipt of W ACKsa or if the pref-
erence list contains not enough nodes

Success if at least W replica exist,
else failure.

Key, Value

LISTFILES-LT† BRb to all nodes Upon receipt of responses or after timeout List of keys with corresponding
number of available replica

None

LISTFILES BRb to all nodes Upon receipt of responses or after timeout List of keys per node sorted by nodes None
† LT = location transparency a ACK = acknowledgement b BR = broadcast requests

been contacted. As soon as W nodes have returned a success
message the PUT operation terminates and responds to the
requester. But while W < NP the system continues in the
background to bring up the number of replica from W to N.
In any case, if less than W nodes respond with success and
every node has already been contacted, an error message is
returned.

When the file has finally been stored on N nodes the system
checks whether those N nodes are identical to the first N nodes
of the preference list. If not so-called Hinted Handoffs [8]
are created and kept locally in memory. A Hinted Handoff
contains three pieces of information: The node of the first N
nodes of the preference list which reported an error, the node
which stored the file instead and the affected file key.

The Distributor includes several subprocesses which peri-
odically try to resolve the existing Hinted Handoffs. Details
are beyond the scope of this paper.

There is one special case for which we have not been able to
find a solution so far: If W nodes acknowledge storing the data
but all other nodes in the preference list fail, a success message
has already been returned because the algorithm could not
know in advance that it would not be possible to bring the
number of replica up to N. So far, there will not be more than
W replica until the point where more nodes are available again
and another GET or a PUT request is issued. To reduce the
chance of such a situation occurring we propose sufficiently
long preference lists combined with a few local file system
nodes to cache the data in between.

2) GET: Whenever GET is invoked the operation retrieves
the preference list and queries the list of Hinted Handoffs.
Based on the request’s key an updated temporary preference
list is created which contains all N nodes which hold a copy
of the requested file. Future versions might query the first R
healthy nodes in the absence of Hinted Handoffs. This would
allow a lazier synchronisation with other Distributor instances.
Next, messages containing GET requests for the respective
key are sent to all nodes on the temporary preference list.
Afterwards, the Distributor waits for the node’s responses.
There are several cases:

1) If the response messages contain R identical payloads
then that payload is returned. For any error amongst

the remaining (NP −R) responses a PUT request with
the majority content is issued to the respective node to
increase durability (read repair mechanism).

2) If the first R responses contain different payloads the
system waits until it has received N responses and then
responds with a success message containing all retrieved
file versions.

3) If less than R nodes return the requested file the method
responds with an error message including all retrieved
versions if any exist.

In all cases but the first one the application should preferrably
determine the correct version and write it back to resolve the
pending conflicts or durability issues.

3) Further Operations: Apart from GET and PUT Meta-
Storage also provides two operations to list all stored files
(comparable to the Linux command ls or the DOS command
dir) as well as to delete specific files. We propose to choose
one of the two versions based on the specific usecase. For
more information on all operations see table I. In section
V-A we discuss the latency-consistency tradeoffs which can
be addressed by choosing among the two delete operations
DELETE and ASSERTEDDELETE. This small knob exists
independent of the provider selection.

D. Coordinator

Fig. 2. Overview of Coordinator Bootstrapping

When we combine a Distributor instance with some nodes
we already have a running system which processes incoming
messages, evaluates and executes their requests and returns
responses. There is one issue, though: We are in a highly scal-
able environment and every underlying storage infrastructure is

presumed to be scaling as well (Elson and Howell [18] reason
why scalability is so much of importance). But if we use
only one Distributor we will create a perfect bottleneck in our
application landscape. To avoid this, we thought about adding
independent Distributor instances but quickly discovered that
some coordination between them is necessary. For example,
every Distributor should have the same preference list and
(NP , R,W) configuration. Also, with every PUT request the
set of Hinted Handoffs might change but other instances would
not know about it. So, we finally added another layer on
top of the Distributor: the Coordinator. Essentially, the task
of our Coordinator is to manage the state of the underlying
Distributors and to keep them all up-to-date in terms of
configuration or membership changes. Figure 1 shows how
MetaStorage becomes scalable by the use of Coordinators.

In order to avoid a fully centralized system but also, for
ease of implementation, a completely decentralized system
we propose a semi-decentralized solution: There is a master
Coordinator which determines all other Coordinator’s state.
Now we had to cope with failing master Coordinators instead
and solved this by giving every Coordinator a complete
ordered list of all Coordinators within a system. Whenever
the master cannot be reached for a certain period of time the
remaining Coordinators each assume the master to be offline
and remove it from their list of Coordinators (Lindsay [19]
provides arguments in favor of local action in case of failures).
Thus, the former No. 2 becomes the new No. 1 and master.
Since Coordinators know about all other Coordinators and
their specific order every one of them can decide – without
central control – who the new master is as well as when it
becomes a master.

New Coordinators are always appended to the list of Co-
ordinators so that the list is ordered by the total length of
server uptime. This guarantees that every Coordinator which
knows of more than three Coordinators (the master, some other
Coordinator and itself) always knows No. 2. So, this implies
that – when the master fails – every Coordinator which was
not only known to the master before it failed also knows about
No. 2.

This leaves only two issues:
1) What happens if a Coordinator registers with the master

but the master fails before it can respond?
2) What happens if a Coordinator registers with the master,

the master responds but fails before it can forward the
information on the novice to the other Coordinators?

Case (1) is simple: The novice cannot know about its
Distributor’s configuration and will simply shut down while
the other Coordinators do not know about the novice and are
thus not affected. We could then simply restart the novice.
(2) Status quo is that the novice knows about the system but
not the other way around. So, when the novice realizes that
it cannot reach the system’s master it will try to reach No. 2.
That way No. 2 gets to know about the novice, appends the
new Coordinator to the end of the list and responds with the
new list. The novice overwrites its own list and we again have
consistent information on all sides.

Figure 2 shows how bootstrapping of new Coordinators
works. Coordinator X, in the case of the diagram, may be
any existing Coordinator - even the master itself.

Since MetaStorage requires only a very limited amount
of coordination (we presume configuration changes to be
rare) this very simple protocol suffices for our purposes.
Other approaches, including Paxos-like algorithms [20], [21],
quorum-like systems [22] or the Google approach based on
Chubby [23] which allows master election through locking,
were considered but deemed too complicated to implement
while providing more coordination than necessary for our
purposes.

Regarding partitioning tolerance there should not be much
of a problem: All MetaStorage instances are more or less
independent so that there are only a few implications if the
system is split into two or more subsystems:

1) Hinted Handoffs are no longer forwarded to other sub-
systems and there might be several subsystems trying to
resolve them.

2) It is necessary to manually merge the subsystems again,
once the partitioning has been resolved.

3) Changes in configuration need to be issued to all subsys-
tems individually or reissued once the partitioning has
been resolved.

Apart from these three points there should not be any fur-
ther implications beyond side effects (e.g. slightly reduced
availability during GETs caused by a lack of knowledge on
Hinted Handoffs; this problem could be addressed by systems
querying more than the first N nodes during GETs as already
noted earlier).

The Coordinator class also contains some subcomponents
of which especially the UpdateManager is of importance as it
periodically creates a consistent view of the system’s state
but is only running for non-master Coordinators. For this
purpose, it creates every ten seconds (customizable) a message
containing information on the list of Hinted Handoffs held by
its Distributor as well as the timestamp of its last update to
the list of Coordinators and (NP , R,W) configuration. It then
sends this message to the master Coordinator which compares
the timestamp to its own Coordinator list’s timestamp and
creates a response message. If the timestamps differ the master
appends his own list of Coordinators and (NP , R,W) settings
to the message. Afterwards, the master creates a merged
version of the Hinted Handoffs based on the file key and
the individual Hinted Handoff timestamp. Resolved Hinted
Handoffs are thus excluded. This merged version is also
appended to the message which is then sent back to the
requester. The recipient overwrites its Hinted Handoff list as
well as the list of Coordinators and settings if necessary and
updates the respective timestamp.

Now both parties, the master and the requester, share the
same view on the situation. This mechanism guarantees that
under non-adverse conditions every Coordinator should be up-
to-date after a maximum of twice the update interval, i.e. with
current standard settings after twenty seconds.

E. MetaStorageHost

Surrounding the Coordinator there is an entire collection
of utility classes or functions. One of the most useful ones
is the MetaStorageHost. Basically, it is a local registry for
local MetaStorage instances and, hence, allows to run more
than one Coordinator-Distributor pair within the same Java
Virtual Machine. This could be useful to fully take advantage
of machines with lots of CPU cores. Since all instances
are identified by unique IDs a MetaStorageHost can forward
incoming requests to the specific instance associated with the
ID.

Apart from its function as a registry the MetaStorageHost
is also responsible for information and functionality shared
by all Coordinators running within the same Java VM. This
includes hosting the Web Service interfaces as well as handling
all incoming and outgoing requests for which it also provides
parameter transformations, syntax checks and authentication.
Furthermore, the host includes message handlers to map
from synchronous SOAP requests to asynchronous internal
messaging. Future versions might also allow asynchronous
SOAP requests with callbacks.

F. Security

Security measures in MetaStorage include a role-based user
management which allows to distinguish between different
rights as well as several security levels with the corresponding
demands on the system and (as a future extension) the option
to enable encryption before persisting data in the Cloud.

While some nodes already communicate via https every
single Web Service call is still unencrypted. This is due to
limitations of the used JAX-WS implementation which only
supports http. Of course, this critically affects security so that
we plan to include another JAX-WS server implementation in
future versions. Another aspect is file encryption: Right now,
many enterprises avoid (public) Cloud offerings as internal
guidelines forbid storing internal data off-premises. To offer
MetaStorage also in this context it could easily be achieved
that every file passing MetaStorage is encrypted before writing
it to the Cloud, i.e. before it leaves the responsibility of the
customer. The latter approach is also taken in other systems
which are “paranoid” in the sense that they consider their
storage nodes to be an, at least potentially, hostile environment.
Examples include Farsite [24], HAIL [25], Oceanstore [26] or
Antiquity [22].

III. EVALUATION OF METASTORAGE

MetaStorage is an eventually consistent, fully replicating
distributed storage system layered on top of multiple Cloud
storage services. In the following, we describe our test setup
to measure the length of inconsistency windows during PUT
requests as well as latency overheads. Temporary inconsisten-
cies are caused by update requests, such as PUT, DELETE, and
ASSERTEDDELETE, and persist for the time period between
updating the first and the Nth replica.

Our first test setup for measuring inconsistency windows is
MetaStorage with a (3,1,1) Quorum configuration using only

local file system nodes. The workload is set to 1,000 PUT
requests, each writing 100 Bytes which we repeat four times.

We choose this configuration for two reasons:

1) A (3,1,1) configuration asserts that one stale replica
is sufficient to return inconsistent (i.e. stale) results.
In this configuration, it is important to estimate the
inconsistency window. Furthermore, a number of three
replica is widely used in replicated storage systems [8].

2) We choose to store files locally since this allows us to
efficiently measure the exact moment in time when a
file is written. Also, it removes any issues arising from
clock synchronization of several machines. As the time
necessary to store such a small file on local harddisk
is negligible these results can without loss of generality
be extended to any other usecase by simply adding the
overhead of issuing a Web Service call to a remote
storage service.

We measure the time between invoking a PUT request and
receiving a response message, as well as the time between
receiving a response message from the first replica and the
time necessary to update the other two replica. As our algo-
rithm has to actively poll the file system, our results for the
inconsistency windows are pessimistic.

We observe that the MetaStorage system layer induces
fairly stationary inconsistency windows of 0.09ms which are
negligible.

Our second test setup for measuring the latency overhead
of MetaStorage is a (3,2,2) Quorum configuration with the
following preference list entries: an S3 node, a Google App
Engine node and three local file system nodes. The test setup
is installed on an Amazon EC2 large instance while our test
client runs on a small instance, both in the availability region
US-East. All latency tests were executed in mid-June, 2010
during a period when Google App Engine was experiencing
huge problems with datastore latency and timeouts [27]. Since
we do not want to run load testing, our algorithm issues only
one PUT request at a time. The test workload is set to 10,000
times at 100 Byte and 5,000 times at 1 KB, 10 KB and 100
KB each.

Due to the availability problems of Google App Engine
during the test period, out of a total of 50,000 requests to
Google App Engine 11,204 (more than 22%) returned an http
code 500 or 503. Amazon S3, in contrast, produced only
two errors (0.004%). Nevertheless, MetaStorage was able to
serve all requests with 100% availability despite the degraded
availability of the underlying Cloud storage services. With-
out MetaStorage’s Hinted Handoffs, the aggregate availability
would have been 77.6%.

We experienced high volatility of latency measures, mainly
due to availability problems combined with missing timeouts.
Therefore, we analyze the data by calculating the median
which is more robust towards outliers and skewed distributions
than other statistical figures. In our tests, the latency overhead
of MetaStorage amounts to approximately 300ms.

IV. RELATED WORK

There is preliminary work on distributed storage systems
to overcome vendor lock-in and to improve availability of
stored data. Bunch et al. [28] extended the AppScale platform
with unified access to diverse Cloud storage services using
the Google App Engine Storage API. AppScale, however, can
only connect to one data store and applications deployed on
the platform are restricted to this connection.

Broberg et al. [29], [30] leverage multiple Cloud storage
systems to increase the performance of content delivery with
a Meta Content Delivery Network (MetaCDN) and developed
a prototype to evaluate performance gains of their approach.
MetaCDN focuses on read performance needed for fast content
delivery and, therefore, replicates data to many Cloud storage
services. To improve reads MetaCDN routes each content
request to the replica available with the lowest expected
latency. MetaCDN, however, lacks support for adequate write
performance and immediate replication and, thus, cannot be
employed as a full-fledged storage system.

Similarly, Bowers et al. [25] developed a High Availability
and Integration Layer (HAIL) that stores data in encrypted
files distributed over multiple storage services and returns
decrypted data upon read requests with low compute effort.
HAIL improves data security by utilizing encryption and data
distribution over multiple Cloud storages but disregards scala-
bility and introduces a bottleneck as it excludes a component
comparable to our Coordinator.

With Redundant Array of Cloud Storage (RACS) Abu Lib-
deh et al. [31] propose a Cloud storage overlay system which
acts as a proxy that uses erasure coding [32] to distribute files
over multiple Cloud storages, simulating a Redundant Array
of Independent Disks (RAID) system. However, every write
operation terminates only when all Cloud storage services
have completed the operation, leading to high latencies for
data that is distributed world-wide. Furthermore, as RACS
is not based on full replication it requires huge numbers of
storage offerings which might not even exist in the first place.
Also, built on top of eventually consistent [33] storage services
RACS might fail in retrieving any data at all while other
systems should at least return an outdated version.

Brantner et al. [34], [35] present a database system that
builds on Amazon’s S3 Cloud storage and, thereby, is tied to
a single storage service. Future enhancements of the approach
might include support for multiple Cloud storage services, but
the effects on this database approach are not clear and not
evaluated, yet.

Unlike existing approaches MetaStorage aims at being a
versatile, distributed meta Cloud storage service that leverages
the diverse capabilities of existing Cloud storage services and
also considers consistency guarantees of its underlying stor-
age services. With an implementation of Dynamo’s quorum
protocol [8] MetaStorage further resolves consistency conflicts
during read operations and supports consistency rationing over
Cloud storages via (NP , R,W) consistency levels [15], [36].
By communicating consistency problems openly MetaStorage

allows conflict resolution mechanisms at application level (see
also [37]–[39]).

V. DISCUSSION

MetaStorage offers three major advantages over using a
single Cloud storage service. First, MetaStorage reduces ven-
dor lock-in by distributing data across the infrastructure of
different Cloud storage vendors. Second, services on top of
MetaStorage can improve availability, durability and client
latency by replicating their data across multiple Cloud storage
services. Third, MetaStorage enables storage service differen-
tiation by selecting and prioritizing Cloud storage services in
the preference list.

There are some problems which MetaStorage cannot fix:
services on top of MetaStorage inherit weak consistency
guarantees of the underlying Cloud storage services. However,
MetaStorage exposes these consistency guarantees to the upper
service layer and thereby enables application-layer conflict
resolution mechanisms.

MetaStorage also introduces drawbacks compared to using
a single Cloud storage service. First of all, MetaStorage causes
monetary overhead due to redundant data storage. Second,
MetaStorage causes a latency overhead because it adds an
additional layer to the system stack that must be traversed
for every service invocation. Third, MetaStorage relaxes con-
sistency guarantees by Dynamo-style replication protocols.

The monetary overhead depends on the pricing scheme of
the underlying Cloud storage services. The minimum latency
overhead for each service request is the time necessary to issue
a MetaStorage Web Service call plus the overhead imposed
by the replication protocol. Problems related to the weaker
consistency guarantees of MetaStorage and the underlying
Cloud storage services arise as a consequence of update
requests. However, different from other distributed storage
systems, MetaStorage offers additional configuration knobs
to tweak consistency and latency guarantees as well as other
quality of service attributes at runtime.

Two mechanisms enable MetaStorage to offer differentiated
Cloud storage services by configuring high-level consistency
guarantees at runtime. The first mechanism is the MetaStorage
preference list of Cloud storage services; the second mecha-
nism is the Sloppy Quorum replication protocol with Hinted
Handoffs, (NP , R,W). For example, the preference list allows
tuning data storage towards low latency by moving low-latency
Cloud storage services to the top of the list; it allows highly
available and durable services by moving highly redundant
Cloud storage services, such as Amazon S3, to the top of the
list. The second mechanism, Sloppy Quorum configurations
of parameters (NP , R,W) can be used to tune MetaStorage
towards write-optimized or read-optimized data access. These
two mechanisms can be used in various combinations to offer
a wide range of services qualities.

A. Latency versus Consistency Tradeoffs

Applications on top of MetaStorage can specify their op-
timal solution of tradeoff decisions between low latency and

specific consistency guarantees. MetaStorage offers a plurality
of mechanisms for this purpose.

The time period of inconsistency caused by write operations
can be estimated by this simple equation:

tinc = tmax − tmin + tms

where tinc is the size of the inconsistency window, tmax is
the longest and tmin the shortest time period that is necessary
to store a file on a Cloud storage service. Our evaluation has
shown that the inconsistency window induced by MetaStorage,
tms, is negligible.

The equation shows that the latency difference between
Cloud services in the preference list affects consistency guar-
antees. While one fast service might be good for total Meta-
Storage latency, it is bad regarding consistency guarantees as
the length of the inconsistency window only depends on the
latency difference between the fastest and the slowest storage
service. MetaStorage here trades consistency against latency
and not against availability – a different tradeoff as stated by
the CAP theorem [40].

Nevertheless, if Hinted Handoffs need to be created, tinc
increases by the time that is necessary for one of the first NP

nodes to return its error message minus tmin. Furthermore,
the participating set of storage services considered for our
calculation changes which might possibly affect tmax and/or
tmin.

The inconsistency caused by delete operations can be
tweaked, as well. Using DELETE instead of ASSERTED-
DELETE, decreases latency at the cost of consistency. For
example, in a (3,2,W) configuration, there are four possible
results:

1) All nodes report success.
2) One node reports a failure.
3) Two nodes report a failure.
4) Three nodes report a failure.
Cases 3 and 4 are very unlikely to occur. However, should

they really happen, the requester will learn about the failure
and can resolve the problem. The simplest resolution would be
to reissue the request or as an alternative just to keep a list of
"forbidden keys" so that, whenever a GET request is received
for this particular key, it is denied until a PUT request for the
specific key has returned success.

Even if an application cannot afford the performance
downsides of ASSERTEDDELETE but nevertheless requires
stronger guarantees that a file has really been removed one can
still twist the scenario by setting the (NP , R,W) configuration
which also affects consistency as well as latency.

B. Tuning Consistency Guarantees

For the purpose of maximizing MetaStorage consistency
guarantees without seriously affecting availability, one needs
to minimize the length of inconsistency windows, i.e. the
duration between R replica being written and N replica being
written. The optimal way to reach this goal is by having
equally fast storage services as the first NP preference list

entries. If that is not possible, as a second-best solution, the
first N nodes should be ordered by their write latency with
the first node being the slowest and the Nth node being the
fastest. As the necessity of one Hinted Handoff is more likely
than multiple Hinted Handoffs, the (NP + 1)th node should,
for efficiency reasons, be the fastest storage service. Again,
for efficiency reasons the positions larger than NP +1 should
increase regarding latency.

C. Tuning Latency Guarantees

Another conclusion we draw from these results is the
importance of short timeouts: Since MetaStorage follows the
Hinted Handoff approach [8] a timeout will most likely not
affect availability. Still, it would heavily improve latency for
requests in situations with lots of errors where files could be
cached, e.g. locally, and later on written to a remote site using
the HintedHandoffResolver. This also corresponds to the basic
idea that in a distributed system local proximity and/or high-
bandwidth connections are advantageous towards latency.

VI. CONCLUSION

In this paper, we presented the design and implementation of
the MetaStorage system, a federated architecture that utilizes
diverse Cloud storage providers. MetaStorage implements a
replication scheme based on Amazon’s Dynamo, but elevates
concepts to a network of (autonomous and heterogeneous)
storage providers. We have shown that MetaStorage increases
overall availability compared to any individual provider. Fur-
thermore, MetaStorage introduces provider configurations (in
preference lists) as a new means beyond existing config-
urations of traditional quorum systems and thus provides
additional control mechanisms to manage consistency-latency
tradeoffs.

There are still a number of open questions, though, which
we plan to address in our future work:

• What tradeoffs do exist beyond CAP or consistency-
latency?

• How are the different tradeoffs interrelated?
• How can we measure consistency or any other relevant

property?
• What are the scalability limitations of MetaStorage?
• Can we derive a method for the optimal selection of

parameters (NP , R,W)?
• What is the relation between parameter configurations

and the corresponding output in terms of consistency,
latency, availability etc.?

• Is it possible to extend the set of MetaStorage operations
without sacrificing compatibility?

We believe that a system like MetaStorage provides an
ideal testbed to address these questions, as both controlled
environments (using local nodes only) as well as federated
environments (using autonomous service providers) can be
tested. Our current research uses the testbed to answer the
question “How soon is eventual?” in the context of eventual
consistency.

ACKNOWLEDGMENT

The work described in this paper was fully supported by the
German Federal Ministry of Education and Research (BMBF)
under grant 01IC10S01A.

REFERENCES

[1] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s inside
the Cloud? An architectural map of the Cloud landscape,” in Software
Engineering Challenges of Cloud Computing, 2009. CLOUD’09. ICSE
Workshop on. IEEE, 2009, pp. 23–31.

[2] C. Baun, M. Kunze, J. Nimis, and S. Tai, Cloud Computing: Web-
basierte dynamische IT-Services, ser. Informatik im Fokus. Berlin:
Springer, 2010.

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
H. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “Above the Clouds:
A Berkeley View of Cloud Computing.” UCB/EECS-2009-28, UC
Berkeley Reliable Adaptive Distributed Systems Laboratory, 2009.

[4] J. Brodkin, More Outages hit Amazon’s S3 Storage Service.
Network World, Jul. 2008, (accessed on October 19, 2010).
[Online]. Available: http://www.networkworld.com/news/2008/072108-
amazon-outages .html

[5] R. Cellan-Jones, The Sidekick Cloud Disaster. BBC, Oct.
2009, (accessed on October 19, 2010). [Online]. Available:
http://www.bbc.co.uk/blogs/technology/2009/10/the_sidekick_
cloud_disaster.html

[6] D. Ionescu, Microsoft Red-Faced After Massive Sidekick Data Loss.
PC World, Oct. 2009, (accessed on October 19, 2010). [Online].
Available: http://www.pcworld.com/article/173470/microsoft_redfaced_
after _massive_sidekick_data_loss.html

[7] NetworkWorld, From Sidekick to Gmail: A Short His-
tory of Cloud Computing Outages. Network World, Oct.
2009, (accessed on October 19, 2010). [Online]. Avail-
able: http://www.networkworld.com/news/2009/101209-sidekick-cloud-
computing-outages-short-history.html

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in Proc. SOSP, 2007.

[9] M. Welsh, D. Culler, and E. Brewer, “SEDA: An architecture for
well-conditioned, scalable Internet services,” ACM SIGOPS Operating
Systems Review, vol. 35, no. 5, pp. 230–243, 2001.

[10] S. Garfinkel, “An Evaluation of Amazon’s Grid Computing Services:
EC2, S3, and SQS,” in Center for. Citeseer, 2007.

[11] A. T. Velte, T. J. Velte, and R. Elsenpeter, Cloud Computing: A Practical
Approach. Upper Saddle River, NJ: McGraw-Hill, 2010.

[12] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid. IEEE, 2009, pp.
124–131.

[13] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman,
and R. Wolski, “Appscale: Scalable and open appengine application
development and deployment,” First International Conference on Cloud
Computing, 2009.

[14] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[15] R. Thomas, “A majority consensus approach to concurrency control
for multiple copy databases,” ACM Transactions on Database Systems
(TODS), vol. 4, no. 2, pp. 180–209, 1979.

[16] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web,” in Pro-
ceedings of the twenty-ninth annual ACM symposium on Theory of
computing. ACM, 1997, pp. 654–663.

[17] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications. ACM, 2001,
pp. 149–160.

[18] J. Elson and J. Howell, “Handling flash crowds from your garage,”
in USENIX 2008 Annual Technical Conference on Annual Technical
Conference. USENIX Association, 2008, pp. 171–184.

[19] S. Bourne, “A conversation with Bruce Lindsay,” Queue, vol. 2, no. 8,
pp. 22–33, 2004.

[20] T. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an
engineering perspective,” in Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing. ACM, 2007, pp.
398–407.

[21] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[22] H. Weatherspoon, P. Eaton, B. Chun, and J. Kubiatowicz, “Antiquity:
exploiting a secure log for wide-area distributed storage,” ACM SIGOPS
Operating Systems Review, vol. 41, no. 3, pp. 371–384, 2007.

[23] M. Burrows, “The Chubby lock service for loosely-coupled distributed
systems,” in Proceedings of the 7th symposium on Operating systems
design and implementation. USENIX Association, 2006, pp. 335–350.

[24] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur,
J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer, “FARSITE:
Federated, available, and reliable storage for an incompletely trusted
environment,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI,
pp. 1–14, 2002.

[25] K. Bowers, A. Juels, and A. Oprea, “HAIL: A high-availability and
integrity layer for cloud storage,” in Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 2009,
pp. 187–198.

[26] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells et al., “Oceanstore:
An architecture for global-scale persistent storage,” ACM SIGARCH
Computer Architecture News, vol. 28, no. 5, pp. 190–201, 2000.

[27] Google, Datastore Performance Growing Pains. Google, Jun.
2010, (accessed on December 4, 2010). [Online]. Available:
http://googleappengine.blogspot.com/2010/06/datastore-perfor mance-
growing-pains.html

[28] C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupferman, P. Lakhina,
Y. Li, and Y. Nomura, “An evaluation of distributed datastores using the
appscale cloud platform,” in Cloud Computing (CLOUD), 2010 IEEE
3rd International Conference on, 2010, pp. 305 –312.

[29] Broberg, Buyya, and Tari, “Creating a Cloud Storage Mashup for
High Performance, Low Cost Content Delivery,” in Service-Oriented
Computing–ICSOC 2008 Workshops. Springer, 2009, pp. 178–183.

[30] J. Broberg, R. Buyya, and Z. Tari, “MetaCDN: Harnessing ’Storage
Clouds’ for high performance content delivery,” Journal of Network and
Computer Applications, vol. 32, no. 5, pp. 1012–1022, 2009.

[31] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: a case
for cloud storage diversity,” in Proceedings of the 1st ACM symposium
on Cloud computing. ACM, 2010, pp. 229–240.

[32] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication:
A quantitative comparison,” Peer-to-Peer Systems, pp. 328–337, 2002.

[33] W. Vogels, Eventually Consistent - Revisited, Dec. 2008,
(accessed on October 19, 2010). [Online]. Available:
http://www.allthingsdistributed.com/2008/12/eventually _consistent.html

[34] Brantner, Florescu, Graf, Kossmann, and Kraska, “Building a database
on S3,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. ACM, 2008, pp. 251–264.

[35] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska,
“Building a Database in the Cloud.” ETH Zürich, 2009.

[36] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency
Rationing in the Cloud: Pay only when it matters,” Proceedings of the
VLDB Endowment, vol. 2, no. 1, pp. 253–264, 2009.

[37] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek, “Re-
solving file conflicts in the Ficus file system,” in Proceedings of the
USENIX Summer 1994 Technical Conference on USENIX Summer 1994
Technical Conference-Volume 1. USENIX Association, 1994, p. 12.

[38] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and
D. Steere, “Coda: A highly available file system for a distributed
workstation environment,” IEEE Transactions on computers, pp. 447–
459, 1990.

[39] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and
C. Hauser, “Managing update conflicts in Bayou, a weakly connected
replicated storage system,” ACM SIGOPS Operating Systems Review,
vol. 29, no. 5, pp. 172–182, 1995.

[40] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT
News, vol. 33, no. 2, p. 59, 2002.

