
A Parametrized Propositional Dynamic Logic
with Application to Service Synthesis

Walid Belkhir

INRIA Nancy–Grand Est & LORIA, France

Gisela Rossi

National University of Córdoba, Argentina

Michael Rusinowitch

INRIA Nancy–Grand Est & LORIA, France

Abstract

We extend propositional dynamic logic (PDL) with variables ranging over an infinite
domain. This extension, called parametrized PDL or PPDL for short, is interpreted
over parametrized transitions systems whose edges are labeled with letters or variables
and whose states are labeled with non-parametrized propositions. We show that the
satisfiability problem for PPDL is decidable.
We apply these results to the composition problem of web services in presence of con-
straints on the global ordering of the message-exchange events between the agents.
We express the client specification and the available services as parametrized tran-
sitions systems and we express the behavioral constraints as a PPDL formula that
the generated orchestrator must fulfill. It turns out that the model of such a formula
represents the desired orchestrator.

Keywords: parametrised propositional dynamic logic, infinite domain, satisfiability,
service synthesis, games.

1 Introduction

The synthesis problem has initially been introduced by Church [8] in the con-
text of digital circuits and amounts to construct from a given specification an
automaton satisfying this specification whenever it exists and return a negative
answer otherwise. Wolper [23] has considered the synthesis problems for com-
municating processes. Controller synthesis in Ramadge and Wonham theory
of discrete event processes [22] aims to generate supervisors that restrict the
behavior of a plant so that a given specification is fulfilled. Synthesis in the
context of Service Oriented Computing can be defined as the automated deriva-
tion of a specification of how to coordinate some available component services

Belkhir, Rossi and Rusinowitch 35

to fulfill the client requests [7]. In several interesting cases this composition
specification can be derived automatically and can be turned into a program
that monitors the flow among the component services and the client.

PDL is a logic that was introduced in [12] to reason about programs and was
successfully applied in several areas in computer science: program verification,
agent-based system specification (e.g. [14]), planning, knowledge representa-
tion. It also admits strong connections with Description Logics [3], making it
even more interesting. PDL combines two entities: formulas to be interpreted
in the nodes of a Kripke structure, and programs to be interpreted by binary
relations over the set of nodes of a Kripke structure. PDL is well-adapted to
describe transition systems, and the model checking problem for PDL remains
PTIME-complete even when the logic is extended by looping and repeat oper-
ators [15].

The satisfiability problem for PDL asks whether a given formula has a model
and to construct it whenever it exists. One of the applications of the satisfi-
ability problem is the automatic program synthesis that, roughly speaking,
consists in the automatic generation of programs out of their specification.
When service behaviors can be represented with finite-state transition systems
then the composition synthesis problem for Web services can be reduced to
PDL satisfiability [10]. In this approach the existence of an orchestrator, that
is a transition system that delegates any requested action from the client to
one of the available community of services, is expressed with a PDL formula.
If this one is satisfiable then from any of its finite models (known to exist) we
can extract a transition system that solves the synthesis problem.

However computational models based on finite-state transition systems over
finite alphabets (i.e. over finite set of actions) are inefficient and even insuffi-
cient to accurately describe systems that need to deal with an arbitrary large
amount of data. This observation has motivated many works to introduce and
study models over infinite alphabets e.g. [20,19,11,6] since large datasets can be
abstracted as infinite domains. On the other hand, these models have not been
applied to service composition except in [6] where the composition problem for
Web services is proved to be decidable and is reduced to compute a simulation
preorder. Such simulation preorder can be turned into an orchestrator that
suitably schedules the actions of the available community of services to fulfill
the client requests.

Besides, we would like also to specify different interaction modes between
the client and the available services, as well as additional constraints on the
global ordering of the message-exchange events between the composite services
and the client. Among the possible interaction modes between the agents we
can mention orchestration, choreography [1,21], and distributed orchestration
[2]. An advantage of PDL-based synthesis over the simulation-based synthesis is
that, on the one hand, PDL provides a systematic approach for the description
of interactions modes between the agents. And, on the other hand, it is possible
in this framework to express behavioral constraints (as PDL formulas) that the
synthesized composition must fulfill. Such constraints can not be expressed

36 A Parametrized Propositional Dynamic Logic with Application to Service Synthesis

and taken into account, at least in a straightforward way, in the simulation-
based framework. Here are examples of such constraints: preventing data
exchange between competing agents (Chinese wall security policies), preventing
data update conflicts from different services (critical section paradigm), saving
agents’ data at the end of a session, closing every open file after usage.

An interesting potential application of PPDL is parametrized system ver-
ification by model-checking. Moreover, in some cases PPDL might be more
advantageous than PDL even for specifying finite (non-parametrized) systems
since PPDL formulas can be exponentially more succinct than their equiva-
lent PDL formulas, leading to better readable formulas. The complexity of
PPDL model-checking on parametrized systems is worth studying and requires
a separate work.

Contributions. We introduce parametrized transition systems (PTS) and
parametrized PDL (PPDL). The transitions of PTS are labeled by variables
that can be assigned the read letter. A variable binding can be released at
some states: in that case we say that the variable is refreshed. This mechanism
is natural to express iteration processes, for instance when a service has to
scan a list of item identifiers, or sessions. It is useful for real-world applications
where service actions are parameterized by terms built with data taken from
infinite alphabets (identifiers, codes, addresses . . .). Besides, the states are
labeled with (non-parametrized) propositional constants, i.e. the propositional
constants being true at these states. On the other hand, standard PDL incor-
porates two entities: formulas and programs, where the programs are regular
expressions built over a finite set of atomic actions using concatenation, union
and Kleene star. For PPDL we consider parametrized regular expressions. In
this setting we allow variables in the regular expressions. Such variables range
over the infinite set of actions Σ. Besides, in order to free a variable after being
bound to an action we shall introduce the reset operator res(.). For instance,
the expression (x; res(x))?, where res(x) denotes the resetting of the variable
x, stands for all possible finite traces in Σ? i.e. traces of the form a1a2 . . . an,
where ai ∈ Σ and n ∈ N. The PPDL formula φ1 = ∀x.[(x; res(x))?]p, where [−]
stands for the necessity modal operator, p is a propositional constant and x is
a variable, states that p holds globally, i.e. p holds in every state of the model.
Then, we introduce satisfiability games for PPDL and prove its completeness,
then we show the decidability of the satisfiability problem of PPDL. As an
application, we show how to use these results to the synthesis of parametrized
services.

Related works. Many extensions of PDL were developed e.g. with propo-
sitional assignments [4] with intersection operator [5], with converse opera-
tors [18], with context-free programs [16]. Model checking algorithms as well
as their complexity for PDL with looping, repeat, test intersection, converse
operators and context-free programs were developed in [15]. Model checking
problems of PDL, and its extension with intersection, over various classes of
infinite state systems (basic parallel processes, basic process algebra, pushdown
systems, prefix-recognizable systems and Petri nets) were studied in [13]. The

Belkhir, Rossi and Rusinowitch 37

nominal automata that are used for resource usage control in [11] subsumes
our parametrized transition systems with refreshing. However model checking
technique, rather than satisfiability and synthesis in our case, were considered
in this work. Web Services Choreography Description Language (WS-CDL)
[1] provides another approach in describing the global ordering of the message-
exchange events between the communicating agents. Our proofs are inspired
by [17]: they rely on a game-theoretic formulation of satisfiability together with
the focus mechanism, rather than automata-theoretic techniques. It is shown
in [17] how the focus technique solved satisability for the temporal logics LTL

and CTL, and at the same time led to simple completeness proofs.
When service behaviors are represented with finite-state transition systems

i.e. they are not data-aware, the composition synthesis problem was reduced
to PDL satisfiability in [10]. The composition problem can also be reduced to
computing a simulation preorder as in [7]. This approach cannot be extended
to the data-centric Colombo model for services since simulation is undecidable
in this case. Known decidable cases of the composition synthesis problem in
Colombo framework need restrictions such as determinism or finite domain for
values or empty database. A theory of contracts that formalizes the compati-
bility of a client to a service, and the safe replacement of a service with another
service has been developed in [9]. Contracts ensures that every possible inter-
action between compatible clients and services can be completed successfully.
Access control policies can be expressed by graphs. We believe that it is pos-
sible to translate such graphs into PDL and PPDL and to integrate them in
synthesis problems.

Paper organization. The paper is organized as follows. Section 2 introduces
parametrized transition systems (PTS) and parametrized PDL (PPDL). Section
3 introduces satisfiability games for PPDL. Section 4 proves the decidability
of the satisfiability problem of PPDL. Section 5 applies these results to the
synthesis of parametrized services.

Preliminaries. Let X be a finite set of variables, Σ an infinite set of atomic
actions. A substitution is an idempotent mapping {x1 7→ α1, . . . , xn 7→
αn} ∪

⋃
a∈Σ{a 7→ a} with variables x1, . . . , xn in X and α1, . . . , αn in X ∪ Σ.

We call {x1, . . . , xn} its proper domain, and denote it by dom(σ). We de-
note by Dom(σ) the set dom(σ) ∪ Σ. We denote by codom(σ) the set
{a ∈ Σ | ∃x ∈ dom(σ) s.t. σ(x) = a}. The empty substitution (i.e., with an
empty proper domain) is denoted by ∅. The set of substitutions from X ∪Σ to a
set A is denoted by ζX ,A, or by ζX , or simply by ζ if there is no ambiguity. If σ1

and σ2 are substitutions that coincide on the domain dom(σ1)∩dom(σ2), then
σ1 ∪ σ2 denotes their union in the usual sense. If dom(σ1) ∩ dom(σ2) = ∅
then we denote by σ1] σ2 their disjoint union. We define the function
V : Σ ∪ X −→ P(X) by V(α) = {α} if α ∈ X , and V(α) = ∅, otherwise.
For a function F : A → B, and A′ ⊆ A, the restriction of F on A′ is denoted
by F|A′ .

38 A Parametrized Propositional Dynamic Logic with Application to Service Synthesis

2 Parametrized PDL
In this section we define parametrized propositional dynamic logic (PPDL).
Formulas of PPDL are interpreted over parametrized transitions systems whose
edges are labeled with variables or atomic actions and whose states are labeled
with atomic (non-parametrized) propositions. Firstly we introduce the syntax
of PPDL and the main ideas behind it, then we introduce parametrized tran-
sitions systems and define their traces. Finally, the semantics of PPDL over
parametrized transition systems is defined. But first let us illustrate our ideas
through a practical example.

A motivating example. Figure 1 represents an e-commerce Web site allow-
ing clients to search and to buy plane tickets with prior authentication. For
each action the client performs, the services save the data in a file. The agents
in this example are: CLIENT, AUTHENTICATION, FLIGHT, PAYMENT and
FILE, they communicate with messages ranging over a possibly infinite set
of terms. The problem is to check whether the services AUTHENTICATION,
FLIGHT, PAYMENT and FILE can collaborate to satisfy the CLIENT requests
in presence of certain global constraints expressed by PPDL formulas to be in-
troduced in the following. Services collaborate by exchanging messages before
answering a client request. This notion will be formalized by a so-called ?-
simulation relation, which is a variant of the classical simulation preorder. For
saving space, a transition labeled by a term, say write(m,n), abbreviates suc-
cessive transitions labeled by the root symbol and its arguments, here write,
m and n, respectively. Besides, while composing these agents, there are some
requirements that must be fulfilled. We impose that every open file has to be
closed and that the flight data of the client have to be stored in an appropriate
file. These requirements can be turned into a PPDL formula, Appendix B.2.

Syntax of PPDL. In standard PDL the programs are regular expressions
built over a finite set of atomic actions using concatenation, union and Kleene
star. For PPDL we consider parametrized regular expressions. In this setting
we allow variables in the regular expressions. These variables range over the
infinite set of actions. Besides, in order to free a variable after being bound
to an action we shall introduce the reset operator res(.). For example the
expression x?, where x is a variable, stands for all traces a∗ in Σ?, where a is
an atomic action in Σ. While the expression (x; res(x))? stands for all possible
finite traces in Σ?, where res(x) denotes the resetting of the variable x, i.e.
traces of the form a1a2 . . . an, where ai ∈ Σ and n ∈ N.

Let P be a finite set of propositional constants containing tt and ff, and Σ
an infinite set of atomic actions (or atomic programs), and X a finite set of
variables ranging over Σ. The syntax of PPDL formula is given by the following
grammar:

φ ::= [α]φ | φ ∧ φ | φ ∨ φ | p | ∀x. φ | ¬φ
α ::= a | x | α;α | α ∪ α | α∗ | res(x) | φ?

where a ∈ Σ, x ∈ X and p ∈ P.

Belkhir, Rossi and Rusinowitch 39

p0

p1

p2

p3

p4

p5

!m(Id,Pwd,Login)

?m(Id,Ok auth)

?m(Id,Err auth)

!m(Id,From,To,Dpt,Ret) ?m(Id,Err Rv)

!m(Id,Owner,Nr,CSC) ?m(Id,Err Pay)

?m(Id,Tck Nr)

!m(Id,Logout)

CLIENT

q0!Open(z) !Close(z)

!Write(z,w)

!Err fail open
FILE

t0

t1

?m(Id,Owner,Nr,CSC)?write(Id,Owner,Nr,CSC,x)

PAYMENT

r0

r1

r3

?m(Id,From,To,Dpt,Ret)

!m(Id,Tck nr)

?write(Id,Tck nr,x)

FLIGHT

q0

q1

q2

q3

q4

q5

?m(Id,Pwd,Login)

?open(x)

?write(Id,Pwd,Login)

!m(Id,Ok auth)

?m(Id,Logout)

!m(Id,Err auth)

?Err fail open

?close(x)

AUTHENTICATION

Fig. 1. Flight reservation example where ”!” (resp. ”?”) stands for sending (resp.
receiving) a message.

The diamond operator 〈·〉 (resp. existential quantifier ∃) can be defined in
terms of the box operator [·] (resp. universal quantifier ∀) in the standard way

as follows: 〈α〉φ def
= ¬(¬[α]¬φ) and ∃x.φ def

= ¬(∀x.¬φ).
For a formula φ, we define the finite set of atomic actions appearing in

φ, denoted by Σ(φ), inductively as follows: Σ([α]ψ) = Σ(α) ∪ Σ(ψ), Σ(ψ1 ∨
ψ2) = Σ(ψ1 ∧ ψ2) = Σ(ψ1) ∪ Σ(ψ2), Σ(∃x.ψ) = Σ(ψ?) = Σ(¬ψ) = Σ(ψ),
Σ(α?) = Σ(α), Σ(α1;α2) = Σ(α1 ∪ α2) = Σ(α1) ∪ Σ(α2), Σ(a) = {a} where

40 A Parametrized Propositional Dynamic Logic with Application to Service Synthesis

a ∈ Σ, and Σ(x) = Σ(res(x)) = Σ(p) = ∅ where x ∈ X and p ∈ P. For an
occurrence x of a variable in a formula, we let τ(x) = ∃ (resp. τ(x) = ∀) if x is
existentially (resp. universally) quantified. If λ is a formula or a program, we
shall denote by Res(λ) the set of variables being reset in λ. Throughout this
paper, formulas are presented in positive form (i.e. the negation only operates
on propositional constants in P). This is possible since De Morgan laws can be
proved.

Parametrized transition systems. PPDL formulas are interpreted over
parametrized transition systems (PTS). Before introducing them formally, let
us first explain the main ideas behind them. The transitions of a parametrized
transition system are labeled with actions or variables. We have a finite number
of variables ranging over an infinite set of actions. On a transition labeled with
a variable x and an input action l, if x is not bound then taking the transition
amounts to binding x to l. On the other hand if x is already bound then the
transition can be taken only if x is already bound to l. Since we would like to
reuse variables, we add an additional mechanism which will free the variables
depending on the states of the automaton. That is, some variables are refreshed
in some states, i.e. variables can be freed in these states so that new actions
can be assigned to them. The formal definition follows.

Definition 2.1 A parametrized transition system (PTS for short) is a tuple
M = 〈Σ,X , Q, q0, δ, π, κ〉 where:

• Σ is a infinite set of actions, X is a finite set of variables,

• Q is a finite set of states, q0 ∈ Q is a the initial state,

• δ : Q × (ΣA ∪ X) → 2Q is a transition function where ΣA is a finite subset
of Σ,

• π : Q→ 2P assigns truth values to each propositional constant in P for each
state, and

• κ : X → 2Q is the refreshing function that associates to every variable the
(possibly empty) set of states where it is refreshed.

We shall denote by ΣA the finite subset of actions from Σ appearing in the PTS
A. For a refreshing function κ : X → 2Q, we define the function κ−1 : Q→ 2X

by κ−1(q) = {x | q ∈ κ(x)}. A LTS is a tuple (Σ, S, s0,∆,Π) where S is a
(possibly infinite) set of states, s0 ∈ S, ∆ : S × Σ→ 2S and Π : S → 2P.
The formal definition of configurations and trace for PTSs.

Definition 2.2 Let A = 〈Σ,X , Q, q0, δ, π, κ〉 be a PTS. A configuration is a
pair (q, γ) where q ∈ Q and γ is a substitution. We define a transition relation

over the configurations as follows: (q1, γ1)
a→ (q2, γ2), where a ∈ Σ, iff there

exists a substitution σ such that dom(σ)∩dom(γ1) = ∅ and there exists a label
α ∈ Σ ∪ X such that q2 ∈ δ(q1, α, g), (γ1] σ)(α) = a and γ2 = (γ1] σ)|D,
with D = Dom(γ1] σ) \ κ−1(q2). A trace of a PTS is a sequence a1a2 . . . an
such that there exist states qi and substitutions σi, i = 1, . . . , n such that
(q0, ∅)

a1→ (q1, σ1) . . .
an→ (qn, σn).

Belkhir, Rossi and Rusinowitch 41

Example 2.3 LetA andA′ be the PTS depicted in Figure 2 where the variable
x is refreshed in q0 and the variable z is refreshed in q′0, q

′
1 and q′2.

q0 q1

x

x

A

q′0 q′1 q′2

z

y

z

y

z

A′

Fig. 2: Two PTS A and A′ where
the variable x is refreshed in q0

and the variable z is refreshed in
q′0, q

′
1 and q′2.

The behavior of A is as follows. Being
in the initial state q0:

• Makes the transition q0 → q1 by mak-
ing an action and bounding the vari-
able x to it, then enters the state q1,

• Makes the transition q1 → q0 by mak-
ing an action that equals to the value
of x, then enters the state q0,

• From the state q0, refresh the variable
x, that is, it is no longer bound to the
input symbol. Then, start again.

We illustrate the run of A on the trace
w = aabb, starting from the initial con-
figuration (∅, q0) as follows:

(∅, q0)
a→ ({x 7→ a}, q1)

a→ (∅, q0)
b→ ({x 7→ b}, q1)

b→ (∅, q0)
c→ ({x1 7→ c}, p′).

We next define the instantiation of a PTS, it consists in instantiating its vari-
ables with all possible actions in Σ, yielding a system with possibly infinite
number of states and transitions.

Definition 2.4 [Instantiation of a PTS] Let M = 〈Σ,X , Q, q0, δ, π, κ〉 be a
PTS. The instantiation of M, denoted by C(M), is the LTS (Σ, S, s0,∆,Π),
where:

S = Q× ξX ,Σ,
s0 = (q0, ∅),

(q′, σ′) ∈ ∆(a, (q, σ)) iff (q, σ)
a→ (q′, σ′), and

Π((q, σ)) = π(q), for all σ ∈ ξX ,Σ and q ∈ Q.

Semantics of PPDL over parametrized transition systems. PPDL for-
mulas are interpreted over configurations of parametrized transition systems,
or equivalently over the states of the instantiation of PTSs. That is, given a
structureM = 〈Σ,X , Q, q0, δ, π, κ〉. The interpretation of a formula φ over the
LTS which is the instantiation of M: C(M) = (Σ, S, s0,∆,Π), will be denoted
by [[φ]]M, or simply [[φ]], such that [[φ]] ⊆ S, if φ is a formula; and [[α]] ⊆ S × S,

42 A Parametrized Propositional Dynamic Logic with Application to Service Synthesis

if α is a program, is defined as follows:

[[ff]] = ∅
[[p]] = Π−1(p), where p ∈ P

[[ψ1 ∧ ψ2]] = [[ψ1]] ∩ [[ψ2]]

[[ψ1 ∨ ψ2]] = [[ψ1]] ∪ [[ψ2]]

[[[α]ψ]] = {s | ∀s′ if (s, s′) ∈ [[α]] then

s′ ∈ [[ψ]]}, if α /∈ X
[[[x]ψ]] = [[∀x.[x]ψ]], if x ∈ X

[[∀x.ψ]] =
⋃
a∈Σ

[[ψ[x := a]]],

[[¬ψ]] = S \ [[ψ]]

[[α;β]] = [[α]] ◦ [[β]]

[[α ∪ β]] = [[α]] ∪ [[β]]

[[α?]] = [[α]]? =
⋃
n≥0

[[α]]n

[[res(x)]] = Id

[[a]] = {(s, s′)|s′ ∈ ∆(a, s)},
if a ∈ Σ,

where φ[x := a] stands for the application of the substitution {x 7→ a} to φ. It
is inductively defined as follows:

p[x := a] = p, if p ∈ P
(ψ1 ∧ ψ2)[x := a] = ψ1[x := a] ∧ ψ2[x := a]

([α]ψ)[x := a] = ([α[x := a]]ψ[x := a])

(∀y.ψ)[x := a] = (∀y.ψ[x := a]), if x 6= y

(¬ψ)[x := a] = ¬(ψ[x := a])

(α ∪ β)[x := a] = (α[x := a] ∪ β[x := a]),

α?[x := a] = (α[x := a])?

(res(y))[x := a] = res(y),

(α;β)[x := a] ={
(α[x := a];β), if x ∈ Res(α)

(α[x := a];β[x := a]), other.

β[x := a] ={
a if β = x

β if β ∈ Σ ∪ X and β 6= x

A formula φ is satisfiable if there is a PTS M together with its instantiation
C(M) = (Σ, S, s0,∆,Π) and a state s ∈ S, s.t. s ∈ [[φ]]M . The formula φ is
said to be valid, denoted |= φ, if it is true in every state of every parametrized
transition system. Notice that 6|= φ iff ¬φ is satisfiable.

Example 2.5 Firstly, we give some PPDL formula to illustrate the combina-
tion of the quantifiers with the modalities. Let φ1 = ∀x.[x]φ′1, φ2 = ∃x.[x]φ′2,
φ3 = ∀x.〈x〉φ′3, and φ4 = ∃x.〈x〉φ′4. where φ′i are PPDL formula. The formula
φ1 holds in a state q iff for every instantiation of the variable x, say with an
action a ∈ Σ, each transition outgoing from q and labeled with a yields a state
where φ′1[x := a] holds. The formula φ2 holds in a state q iff there exists an
instantiation of the variable x, say with an action a ∈ Σ, such that each transi-
tion outgoing from q and labeled with a yields a state where φ′2[x := a] holds.
The formula φ3 holds in an state q iff for every instantiation of the variable x,
say with an action a ∈ Σ, there exists a transition outgoing from q and labeled
with a that yields a state where φ′3[x := a] holds. The formula φ4 holds in a
state q iff there exists an instantiation of the variable x, say with an action
a ∈ Σ, such that there exists a transition outgoing from q and labeled with a
that yields a state where φ′4[x := a] holds.

Secondly, we give some examples of useful properties. The property “there
is a transition that is labeled with the action a and that can be reached from

Belkhir, Rossi and Rusinowitch 43

the current state” can be expressed by the PPDL formula ∃x.〈(x; res(x))?〉〈a〉tt.
The formula 〈((∃x.〈x〉tt)?)?〉p states that either p holds in the current state, or
there exist transitions for which p holds in the outgoing states.

2

It is worth mentioning that if the alphabet is finite, the three properties
above can be expressed by PDL formulas whose size depends on the size of the
(finite) set of actions. However this is not the case if they are expressed by
PPDL formulas (in which the variables range over a finite set of actions).

3 Satisfiability games

A satisfiability game GS(φ) on a PPDL formula φ where the variables are in-
stantiated from the set of actions S ⊆ Σ, is an infinite duration game played
between two players: player I (or Abelard) and player II (or Eloise). Player II
is looking to prove that φ is satisfiable and player I is trying to prove that it
is not satisfiable. Besides, the game positions are configurations (i.e. a pair
composed of a state and a substitution). The name of the rules is indicated on
the left of the inference rule; and the name of the player is indicated on the
right. [

(φ0 ∧ φ1, σ)
]
,Γ

R∧: I[
(φi, σ)

]
, (φ1−i, σ),Γ

[
(φ0 ∨ φ1, σ)

]
,Γ

R∨: II[
(φi, σ)

]
,Γ

The rules of the formulas starting with modalities follow:[
(〈α0 ∪ α1〉φ, σ)

]
,Γ

R1: II[
(〈αi〉φ, σ)

]
,Γ

[
([α0 ∪ α1]φ, σ)

]
,Γ

R2: I[
([αi]φ, σ)

]
, ([α1−i]φ, σ),Γ

[
(〈α0;α1〉φ, σ)

]
,Γ

R3: [
(〈α0〉〈α1〉φ, σ)

]
,Γ

[
([α0;α1]φ, σ)

]
,Γ

R4: [
([α0][α1]φ, σ)

]
,Γ

[
(〈α?〉φ, σ)

]
,Γ

R5: [
(φ, σ) ∨ (〈α〉〈α?〉φ, σ)

]
,Γ

[
([α?]φ, σ)

]
,Γ

R6: [
(φ, σ) ∧ ([α][α?]φ, σ)

]
,Γ

The rules for the reset operator and the test operator follow:

[
([res(x);α]φ, σ)

]
,Γ

R1
r: [

([α]φ, σ|Dom(σ)\{x}

]
,Γ

[
(〈res(x);α〉φ, σ)

]
,Γ

R2
r: [

(〈α〉φ, σ|Dom(σ)\{x}

]
,Γ

44 A Parametrized Propositional Dynamic Logic with Application to Service Synthesis

The rules for free variables appearing in a modality:

[
([x]φ, σ)

]
,Γ if τ(x) = ∀

R1
x: I[

([x]φ, σ] {x 7→ a}
]
,Γ

[
([x]φ, σ)

]
,Γ if τ(x) = ∃

R2
x: II[

([x]φ, σ] {x 7→ a}
]
,Γ

[
〈ψ?〉φ, σ)

]
,Γ

R1
?:

(ψ, σ),
[
(φ, σ)

]
,Γ

[
[ψ?]φ, σ)

]
,Γ

R2
?: [

(¬ψ, σ) ∨ (φ, σ)
]
,Γ

The rules for the universally and existentially quantified formula follow:

[
(∀xφ, σ)

]
,Γ

R∀: I[
(φ, σ|Dom(σ)\{x}] [x 7→ a])

]
,Γ

[
(∃xφ, σ)

]
,Γ

R∃: II[
(φ, σ|Dom(σ)\{x}] [x 7→ a])

]
,Γ

The successive applications of the above rules might yield a configuration
in which all formulas are either propositional constants or of the form (〈α〉φ, σ)
or ([α]φ, σ) where α ∈ Σ ∪ X and σ(α) ∈ Σ.

[
(〈α1〉φ1, σ1)

]
, . . . , (〈αn〉φn, σn), ([β1]ψ1, γ1), . . . , ([βm]ψm, γm), . . . , p1, . . . , pl

X1: [
(φ1, σ1)

]
, (ψj1 , γj1), . . . , (ψjq , γjq)

where αi, βi ∈ Σ ∪ X and ∀i = 1, . . . , q : σ1(α1) = γji(βji), ji ∈ {1, . . . ,m}
and σl(αl), γl′(βl′) ∈ Σ for all l, l′.

(〈α1〉φ1, σ1), . . . , (〈αn〉φn, σn),
[
([β1]ψ1, γ1)

]
, . . . , ([βm]ψm, γm), . . . , p1, . . . , pl

X2: I
(φk, σk),

[
(ψj1 , γj1)

]
, . . . , (ψjq , γjq)

where αi, βi ∈ Σ ∪ X and ∀i = 1, . . . , q : σk(αk) = γji(βji), ji ∈ {1, . . . ,m},
and σl(αl), γl′(βl′) ∈ Σ for all l, l′.

Moreover, there is a rule allowing player I to change his mind w.r.t. to the
focus: [

(φ, σ)
]
, (ψ, γ),Γ

FC: I
(φ, σ),

[
(ψ, γ)

]
,Γ

We notice that the main difference with the satisfiability games for standard
PDL is that our games have (possibly) an infinite number of positions and

Belkhir, Rossi and Rusinowitch 45

infinite branching. This is due to the fact that the size of our configurations
is unbounded. Thus we modify accordingly the winning conditions of to deal
with this new setting as follows.

Firstly, the winning conditions have to deal with the fact that a least fixed-
point construct is fulfilled and there is no contradiction in the propositional
constants. Player I wins the (possibly infinite) play π = C0, . . . , Cn, . . . iff

(i) Cm =
[
(q, σ)

]
,Γ and (q = ff or q̄ ∈ Γ), for some m, or

(ii) The formula 〈α?〉φ appears infinitely often under the focus in π and player
I has applied the focus rule (FC) only a finite number of times. That
is, there exists an infinite sequence i1, i2, . . . of integers such that Cij =[
(〈α?〉φ, σij)

]
,Γij for all j = 1, 2, . . . and there exists some ik such that

no focus rule is applied from the configurations Cm for all m ≥ ik.

Player II wins the (possibly infinite) play π = C0, . . . , Cn, . . . if

(iii) Cn =
[
(q1, σ1)

]
, . . . , (qk, σk) and {q1, . . . , qk} is satisfiable, where qi are

propositional constants, or

(iv) The formula [α?]φ appears infinitely often in π under the focus, that
is, there exists an infinite sequence i1, i2, . . . of integers such that Cij =[
([α?]φ, σij)

]
,Γij appears in π, or

(v) The formula φ appears infinitely often in π under the focus and Player I
has applied the focus rule (FC) infinitely often.

One can argue that these winning conditions are mutually exclusive, hence:

Lemma 3.1 The game GS(φ) has a unique winner, where S ⊆ Σ.

Now we will prove that the game theoretic characterization of PPDL is
sound and complete.

Theorem 3.2 The following hold:

(Soundness). If player II wins the game G(Φ0) then Φ0 is satisfiable.

(Completeness). If Φ0 is satisfiable then player II wins the game G(Φ0).

The proof of the completeness relies on the following Lemma:

Lemma 3.3 We have that φ∧ 〈α〉ψ is satisfiable iff φ∧ (ψ ∨ 〈α〉(〈α?〉ψ ∨¬φ))
is satisfiable.

4 Decidability of PPDL

The idea of the proof of the decidability of PPDL relies on reducing the satis-
fiability problem of a PPDL formula into the satisfiability problem of the same
formula in which the actions range over a finite set of actions. It turns out that
solving the resulting game is decidable since it is a finite 2-players game with
Büchi winning conditions. The construction of this finite set of actions follows.

46 A Parametrized Propositional Dynamic Logic with Application to Service Synthesis

Definition 4.1 Let φ be a PPDL formula and let Σ(φ) = {a1, . . . , an} and
X = {x1, . . . , xk}. Define GC(φ) to be the satisfiability game in which the
variables are instantiated from the finite set of constants C:

C = {a1, . . . , an, c1, . . . , ck} (1)

The idea is that the game GC(φ) is used to simulate the game GΣ(φ). Before
showing that, we need to introduce a variant of satisfiability games in which
Player II can duplicate a formula under the focus a finite number of times.

Definition 4.2 Define GDS to be satisfiability game in which we add the du-
plication rule for player II: [

(φ, σ)
]
,Γ

DP: II[
(φ, σ)

]
, (φ, σ),Γ

that has to be applied a finite number of times.

The main result of this section follows, as well as the structure of the proof:

Theorem 4.3 Satisfiability for PPDL is decidable.

On the one hand, Corollary 4.8 shows that GΣ and GDΣ are equivalent. On
the other hand, Lemma 4.4 shows that GΣ and GDC are equivalent, and hence
GC and GDC are equivalent as well. It follows that GC and GΣ are equivalent.
The equivalence must be understood as player II wins in one game iff she wins
in the other game.

Lemma 4.4 The games GΣ and GDΣ are equivalent. That is, Player II wins in
GΣ(φ) iff she wins in GDΣ (φ).

In order to relate the configurations of GC(φ) to the ones of GΣ(φ), we
define a relation � between the configurations of GC(φ) and the configurations
of GΣ(φ). We shall denote by Ψ the (finite) set of formulas appearing in a
configuration, i.e. Ψ((ψ, σ)) = {ψ} and Ψ([C1], . . . , Cn) =

⋃
i Ψ(Ci). Firstly,

we define the coherence relation between substitutions.

Definition 4.5 Let C be a finite subset of Σ. The coherence relation 1C⊆ ζ×ζ
between substitutions is defined by σ̄ 1

C
σ iff the three following conditions

hold:

(i) dom(σ̄) = dom(σ),

(ii) If σ̄(x) ∈ C then σ̄(x) = σ(x), and if σ(x) ∈ C, then σ̄(x) = σ(x), for any
variable x ∈ dom(σ), and

(iii) for any variables x, y ∈ dom(σ), σ̄(x) = σ̄(y) iff σ(x) = σ(y).

In order to relate the configurations of GΣ and GC , where C is the set
of letters defined in Eq (1), we define next a binary relation, denoted by �,
between configurations.

Belkhir, Rossi and Rusinowitch 47

Definition 4.6 Let φ be a PPDL formula with Σ(φ) = {a1, . . . , an}. Let Γ

(resp. Γ̂) be a list of configurations in GΣ(φ) (resp. GC(φ)) of the form: Γ =

(ψ1, σ1), . . . , (ψm, σm), · · · , and Γ̂ = (ψ̂1, σ̂1), . . . , (ψ̂m, σ̂m), where ψi and ψ̂i
are PPDL formulas, and σi and σ̂i are substitutions. Let f be a total surjective
function from the set of configurations of GΣ(φ) to the set of configurations of

GDC (φ). We define Γ�Σ,C
f Γ̂ iff the following hold:

(i) Ψ(Γ) = Ψ(Γ̂).

(ii) If f((ψi, σi)) = (ψ̂j , σ̂j) then ψi = ψ̂j and σi 1C σ̂j .

(iii) If (ψ̂, σ̂) is under the focus in Γ̂ and (ψ, σ) is under the focus in Γ, then

f((ψ, σ)) = (ψ̂, σ̂).

Besides, we write GΣ(φ) � GC(φ) iff there exists a surjective function f such

that
[
φ
]
, ∅ �Σ,C

f

[
φ
]
, ∅.

In what follows we shall write �f instead of �Σ,C
f if there is no ambiguity.

The following Lemma shows that the inference rules of section 3 preserve the
relation �:

Lemma 4.7 Let φ be a PPDL formula with the finite set of actions C =
{a1, . . . , an, c1, . . . , ck} as defined in Eq. (1). Let Γ (resp. Γ̂) be a list of

configurations in GΣ(φ) (resp. GDC (φ)). If Γ�f Γ̂ then

(i) for every Γ′ such that Γ
I−→ Γ′ is a move in GΣ(φ), there exists a total

surjective function f ′ and a list of configurations Γ̂′ such that Γ̂
I−→ Γ̂′ is

a possible move in GDC (φ) and Γ′ �f ′ Γ̂′, and

(ii) for every Γ̂′ such that Γ̂
II−→ Γ̂′ is a move in GDC (φ), there exists a total

surjective function f ′ and a list of configurations Γ′ such that Γ
II−→ Γ′ is

a possible move in GΣ(φ) and Γ′ �f ′ Γ̂′,

Corollary 4.8 Let φ be a PPDL formula. If GΣ(φ) � GC(φ) then Player II
wins in GΣ(φ) iff she wins in GC(φ).

5 Application to service composition

We can formulate service composition problem under policy constraints as a
PPDL satisfiability problem as in [10]. The client and services are firstly spec-
ified by parametrized systems which can be translated into PPDL formulas.

Modeling services collaboration with ?-simulation. In previous works
[7,6] a simulation relation is used to express that a combination of services
jointly satisfies a client. In this setting a client request is met by an elementary
action of a single service. A ?-simulation relation is a variant of the previous
simulation relation that allows the services to communicate with each others
before answering the client request. Its formal definition is in Annex B.

Composition synthesis as a PPDL satisfiability problem. Web-service
composition via ?-simulation in presence of policy constraints can be expressed

48 A Parametrized Propositional Dynamic Logic with Application to Service Synthesis

as a satisfiability problem of a PPDL formula by following the same construction
as [10] for PDL. Let S = (S1 , ...,Sn) be a community of available services over
the shared actions Σ. Each available service Si is represented by a parametrized
transition system TSi. Let TS0 be the client specification. The detailed con-
struction of the formula is given in Annex B.

Extraction of a mediator. It is possible to extract a model, as a PTS,
for a satisfiable PPDL formula out of a winning strategy ρ for player II in the
game GC(φ). We firstly take the sub-game (GC(φ))|ρ induced by the strategy ρ.
Then, we turn the game (GC(φ))|ρ into a symbolic game in which the moves are
labeled with variables, i.e. the transitions labeled with variables correspond to
the moves in which the rules X1 and X2 are applied; the remaining transitions
are ε-transitions and correspond to the other rules (i.e. R∨, R∧, R1, R2, etc).

6 Conclusion

We have introduced an extension of PDL, called PPDL, in which the actions
can be letters or variables ranging over an infinite domain. We have proved
that the satisfiability problem of PPDL is decidable when it is interpreted
over the subclass of parametrized transition systems in which the variables
can be refreshed. As an application, we have shown how to formulate services
composition problem of parametrized services as a synthesis problem of PPDL.

References

[1] Web service choreography description language (WS-CDL), www.w3.org/TR/ws-cdl-10.
[2] Avanesov, T., Y. Chevalier, M. A. Mekki, M. Rusinowitch and M. Turuani, Distributed

orchestration of Web services under security constraints, in: DPM’11, pp. 235–252.
[3] Baader, F., D. Calvanese, D. McGuinness, D. Nardi and P. Patel-Schneider, “The

Description Logic Handbook: Theory, Implementation and Applications,” CUP, 2003.
[4] Balbiani, P., A. Herzig and N. Troquard, Dynamic logic of propositional assignments:

A well-behaved variant of PDL, in: LICS (2013), pp. 143–152.
[5] Balbiani, P. and D. Vakarelov, PDL with intersection of programs: A complete

axiomatization, Journal of Applied Non-Classical Logics 13 (2003), pp. 231–276.
[6] Belkhir, W., Y. Chevalier and M. Rusinowitch, Fresh-variable automata: Application

to service composition, in: 15th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC (2013), pp. 153–160.

[7] Berardi, D., F. Cheikh, G. D. Giacomo and F. Patrizi, Automatic service composition
via simulation, Int. J. Found. Comput. Sci. 19 (2008), pp. 429–451.

[8] Büchi, J. R. and L. H. Landweber, Solving sequential conditions by finite-state strategies,
Transactions of the American Mathematical Society 138 (1969), pp. 295–311.

[9] Castagna, G., N. Gesbert and L. Padovani, A theory of contracts for web services, ACM
Trans. Program. Lang. Syst. 31 (2009), pp. 19:1–19:61.

[10] Cheikh, F., G. D. Giacomo and M. Mecella, Automatic web services composition in
trustaware communities, in: SWS, 2006, pp. 43–52.

[11] Degano, P., G. L. Ferrari and G. Mezzetti, Nominal automata for resource usage control,
in: CIAA, 2012, pp. 125–137.

[12] Fischer, M. J. and R. E. Ladner, Propositional dynamic logic of regular programs, J.
Comput. Syst. Sci. 18 (1979), pp. 194–211.

[13] Göller, S. and M. Lohrey, Infinite state model-checking of propositional dynamic logics,

in: Z. Ésik, editor, CSL, Lecture Notes in Computer Science 4207 (2006), pp. 349–364.

Belkhir, Rossi and Rusinowitch 49

[14] Herzig, A., E. Lorini, F. Moisan and N. Troquard, A dynamic logic of normative systems,
in: IJCAI 2011, 2011, pp. 228–233.

[15] Lange, M., Model checking propositional dynamic logic with all extras, Journal of Applied
Logic 4 (2006), pp. 39 – 49.

[16] Lange, M. and R. Somla, Propositional dynamic logic of context-free programs and
fixpoint logic with chop, Inf. Process. Lett. 100 (2006), pp. 72–75.

[17] Lange, M. and C. Stirling, Focus games for satisfiability and completeness of temporal
logic, in: LICS, 2001, pp. 357–365.

[18] Lutz, C., PDL with intersection and converse is decidable., in: C.-H. L. Ong, editor,
CSL, Lecture Notes in Computer Science 3634 (2005), pp. 413–427.

[19] Manuel, A. and R. Ramanujam, Automata over infinite alphabets, World Scientific
Review 9 (2011), pp. 329–363.

[20] Neven, F., T. Schwentick and V. Vianu, Finite state machines for strings over infinite
alphabets, ACM Trans. Comput. Log. 5 (2004), pp. 403–435.

[21] Peltz, C., Web services orchestration and choreography, Computer 36 (2003), pp. 46–52.
[22] Ramadge, P. J. and W. M. Wonham, Supervisory control of a class of discrete event

processes, SIAM J. Control Optim. 25 (1987), pp. 206–230.
[23] Wolper, P., Specification and synthesis of communicating processes using an Extended

Temporal Logic, in: POPL (1982), pp. 20–33.

50 A Parametrized Propositional Dynamic Logic with Application to Service Synthesis

Appendix

A Proofs for Section 4

The claims in the following remark are not hard to prove.

Remark A.1 Let C ⊆ Σ be a finite set of letters, σ̄ and σ two substitutions,
x a variable, and a a letter in C. The following hold.

(i) If σ̄ 1C σ then |codom(σ̄)| = |codom(σ)| and σ̄|D 1C σ|D, where D ⊆
Dom(σ).

(ii) Consequently, if (σ̄1] σ̄2) 1 (σ1] σ2) with dom(σ̄i) = dom(σi), then
σ̄i 1 σi, for i = 1, 2.

Lemma A.2 [6] Let C1 ⊆ Σ and C2 ⊆ Σ be two sets of actions. Let C =
C1 ∩ C2 be s.t. |C| > |X |. Let a1 be an action in C1 and x ∈ X and let
σi : X → Ci, i = 1, 2 be two substitutions where σ1 1C σ2. Then, there exists
a function ΘC1,C2 satisfying σ1] {x 7→ a1} 1C Θ(σ1, x, a1, σ).

Lemma A.3 (i.e. Lemma 4.7) Let φ be a PPDL formula with the finite set

of actions C = {a1, . . . , an, c1, . . . , ck} as defined in Eq. (1). Let Γ (resp. Γ̂)

be a list of configurations in GΣ(φ) (resp. GDC (φ)). If Γ�f Γ̂ then

(i) for every Γ′ such that Γ
I−→ Γ′ is a move in GΣ(φ), there exists a total

surjective function f ′ and a list of configurations Γ̂′ such that Γ̂
I−→ Γ̂′ is

a possible move in GDC (φ) and Γ′ �f ′ Γ̂′, and

(ii) for every Γ̂′ such that Γ̂
II−→ Γ̂′ is a move in GDC (φ), there exists a total

surjective function f ′ and a list of configurations Γ′ such that Γ
II−→ Γ′ is

a possible move in GΣ(φ) and Γ′ �f ′ Γ̂′,

Proof. Assume X = {x1, . . . , xk}. We discuss many cases depending on the
applied rule.

(i) The applied rules here for player I can be R∧, R2, R3, R4, R5, R6, R1
r, R2

r, R1
x,

R1
?, R2

?, R∀, X1, X2 and FC. For the rule R∧, Let:
Γ =

[
(φ0 ∧ φ1, σ)

]
,Υ and

Γ′ =
[
(φi, σ)

]
, (φ1−i, σ),Υ and

Γ̂ =
[
(φ0 ∧ φ1, σ̂)

]
, Υ̂

where σ 1Σ(φ) σ̂. In this case we let
Γ̂′

def
=
[
(φi, σ̂)

]
, (φ1−i, σ̂), Υ̂

σ
def
= σ̂, and

f ′
def
= f|Γ ∪ {

(
(φi, σ), (φi, σ̂)

)
} ∪ {

(
(φ1−i, σ), (φ1−i, σ̂)

)
}

Thus, Γ�f ′ Γ̂′.

Belkhir, Rossi and Rusinowitch 51

The rules R2, R3, R4, R5, R6, R1
? and R2

? can be handled similarly.
For the rules Rir, i = 1, 2 the claim follows from the fact that if σ 1Σ(φ) σ̂

then σ|Dom(σ)\{x} 1Σ(φ) σ̂|Dom(σ̂)\{x}, see Item 1 of remark A.1.
For the rule R∀, assume that

Γ =
[
(∀xφ, σ)

]
,Λ and

Γ′ =
[
(φ, σx 7→a)

]
,Λ and

Γ̂ =
[
(∀xφ, σ̂)

]
, Λ̂

We distinguish two cases

Case 1. If @C ∈ Λ s.t. f(C) = (∀xφ, σ̂), then in this case the related move

in ĜD is [
(∀xφ, σ̂)

]
, Λ̂︸ ︷︷ ︸

Γ̂

(R∀)−→
[
(φ, σ̂′)

]
, Λ̂︸ ︷︷ ︸

Γ̂′

where the substitution σ̂′ is defined by σ̂′
def
= ΘΣ,Σf (σ, x, a, σ̂).

Case 2. If ∃C ∈ Λ s.t. f(C) = (∀xφ, σ̂), then in this case the related

moves in ĜD are[
(∀xφ, σ̂)

]
, Λ̂︸ ︷︷ ︸

Γ̂

(DP)−→
[
(∀xφ, σ̂)

]
, (∀xφ, σ̂), Λ̂

(R∀)−→
[
(φ, σ̂′)

]
, (∀xφ, σ̂), Λ̂︸ ︷︷ ︸
Γ̂′

where σ̂′ is defined by σ̂′
def
= ΘΣ,Σf (σ, x, a, σ̂).

Notice that in both cases we have that σ̂′ 1Σ(φ) σ, Lemma A.2. Besides,
in both cases the function f ′ is defined by f ′ = f|Dom(f)\{(∀xφ,σ)}, and

f ′((φ, σx 7→a)
)

= (φ, σ̂′). Thus Γ�f ′ Γ̂′.
For the rule X1, assume that

Γ =
[
(〈α1〉φ1, σ1)

]
, . . . , (〈αn〉φn, σn), ([β1]ψ1, γ1), . . . ,

([βm]ψm, γm), . . . , p1, . . . , pl

and

Γ̂ =
[
(〈α̂1〉φ̂1, σ̂1)

]
, . . . , (〈α̂k〉φ̂k, σ̂k), ([β̂1]ψ̂1, γ̂1), . . . ,

([β̂r]ψ̂r, γ̂r), . . . , p1, . . . , pl′

Hence, Γ′ =
[
(φ1, σ1)

]
, (ψj1 , γj1), . . . , (ψjq , γjq) and

Γ̂′ =
[
(φ̂1, σ̂1)

]
, (ψ̂j′1 , γ̂j′1), . . . , (ψ̂j′p , γ̂j′p)

52 A Parametrized Propositional Dynamic Logic with Application to Service Synthesis

where, on the one hand, αi, βi ∈ Σ ∪ X and ∀i = 1, . . . , q : σ1(a1) =

γji(bji), ji ∈ {1, . . . ,m} and, on the other hand, α̂i, β̂i ∈ Σ ∪ X and ∀i =

1, . . . , p : σ̂1(α̂1) = γ̂j′i(β̂j′i), j
′
i ∈ {1, . . . , r}. Finally, we let f ′

def
= f|Γ′ .

Therefore, Γ′ �f ′ Γ̂′.
For the rule FC, assume that

Γ =
[
(φ, σ)

]
, (ψ, γ),Υ and

Γ′ =
[
(ψ, γ)

]
, (φ, σ),Υ and

Γ̂ =
[
(φ̂, σ̂)

]
, Υ̂

The idea is to choose a formula (ψ̂, γ̂) from Υ such that Γ̂′ =
[
(ψ̂, γ̂)

]
, Υ̂.

We define (ψ̂, γ̂) := f((ψ, γ)). Thus we have Γ′ �f Γ̂′ since ψ̂ = ψ and
γ̂ 1 γ.

(ii) The possible rules for player II are R∃, X1 and R2
x. The rule R∃ (resp. R2

x) is
exactly like the rule R∀ (resp. R1

x) apart that player II who moves instead
of Player I.

2

B Proofs and definitions for Section 5

B.1 Modeling services collaboration with ?-simulation

Definition B.1 Let Ai = M = 〈Σ,Xi, Qi, qi0, δi, πi, κi〉, i = 1, 2 be two
parametrized labeled transition systems. A ?-simulation is a relation � ⊆
(Q1 × ζX1,Σ)× (Q2 × ζX2,Σ) such that:

• (q1
0 , ∅)� (q2

0 , ∅).
• If (q1, σ1) � (q2, σ2) and if (q1, σ1)

a→ (q′1, σ
′
1) for some action a ∈

Σ, then there exist states q0
2 , . . . , q

n, p0
2, . . . , p

m
2 ∈ Q2 and substitutions

σ0
2 , . . . , σ

n, γ0
2 , . . . , γ

m
2 and actions a0, . . . , an−1, b0, . . . , bm−1 ∈ Σ such that

(q2, σ2)
a0→ (q02 , σ

0
2)

a0→ (q12 , σ
1
2)

?→ . . .
an−1→ (qn2 , σ

n
2)

an−1→ (qn2 , σ
n
2)

a→ (q′2, σ
′
2)

b0→ (p02, γ
0
2)

b0→ (p12, γ
1
2)

?→ . . .
bm−1→ (pm2 , γ

m
2)

bm−1→ (pm2 , γ
m
2)

and (σ′1, q
′
1)� (pm2 , γ

m
2).

B.2 Composition synthesis as a PPDL satisfiability problem

Let S = (S1 , ...,Sn) be a community of available services over the shared
actions Σ. Each variable services Si is represented by a parametrized tran-
sition system TSi = 〈Σ,Xi, Si, si0, δi, πi, κi〉 defined as above. Let TS0 =
〈Σ,X0, S0, s00, δ0, π0, κ0〉 be the client specification.

Then we build a PPDL formula Φ to be checked for satisfiability as follows.
As propositional constants, we have:

Belkhir, Rossi and Rusinowitch 53

- One propositional constant s for each i ∈ {0, 1, ..., n} and each state s of TSi,
which intuitively denotes that TSi is in a final state.

- Propositional constants execix , for i ∈ {0, 1, ..., n} and x ∈ A, denoting that x
will be executed next by the available service Si .

- One propositional constant undef denoting that we are in an ”illegal” situa-
tion, where the orchestrator program can be left undefined.

For representing the transitions of each available service Si , we construct a
formula Φi as the conjunction of:

- ∀x (s →
∧

(s′,x)∈ε(〈x 〉s ′) ∧ [x](
∨

(s′,x)∈ε s
′)). Where ε = {(s′, x)|(s, x, s′) ∈ δi},

for each s of Si and x ∈ A.

- ∀x (s ∧ execix → [x]false), for each s of Si such that for no g and s ′ we have
that (s, g, x, s′) ∈ δi.

- ∀x (s ∧ execix → [x]s) for each s of Si and x ∈ A.

In addition, we have the formula Φadd obtained as the conjunction of:

- s → ¬s′ for all pairs of states s, s ′ of Si , and for i ∈ {0, 1, ..., n}.

- Fi ↔
∨

s∈Fi
s, for i ∈ {0, 1, ..., n}.

- ∀x (undef → [x]undef), for x ∈ A.

- ∀x (¬undef → 〈x 〉true→
∨

i∈{1,...,n} execix), for x ∈ A.

- ∀x (execix → ¬execjx), for each i , j ∈ {1, ..., n}, i 6= j and each a ∈ A

- F0 →
∨

i∈{1,...,n} Fi.

The requirements that every open file has to be closed and that the flight
data of the client have to be stored in an appropriate file can be respectively
expressed by the two PPDL formula ψ1 and ψ1 as follows:
ψ1 = ∀x∀y[(res(x);x)?; Open(x)]

(
∃z〈(res(z); z)?〉〈Close(x)〉tt

)
, and

ψ2 = ∀x∀y[(res(x);x)?; !m(Id,Owner,Nbr,CSC](
∃f ∃z〈(res(z); z)?〉〈Write(m(Id,Owner,Nbr,CSC, f)〉tt

)
Finally, we describe Φ as

Init ∧ ∀z. [u](Φ0 ∧
∧

i∈{1,...,n}

Φi ∧ Φadd) ∧ ψ1 ∧ ψ2,

where Init stands for s00 ∧ s10 ∧ ... ∧ sn0 and represents the initial state of all
services Si (including the target) and (u = (z; res(z))∗), which is used to force
(Φ0 ∧

∧
i∈{1,...,n}Φi ∧ Φadd) to be true in every point of the model.

	Introduction
	Parametrized PDL
	Satisfiability games
	Decidability of PPDL
	Application to service composition
	Conclusion
	References
	Proofs for Section 4
	Proofs and definitions for Section 5
	Modeling services collaboration with -simulation
	Composition synthesis as a PPDL satisfiability problem

