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Abstract

We propose a new version of formula size game for modal logic. The game char-
acterizes the equivalence of pointed Kripke-models up to formulas of given numbers
of modal operators and binary connectives. Our game is similar to the well-known
Adler-Immerman game. However, due to a crucial di↵erence in the definition of posi-
tions of the game, its winning condition is simpler, and the second player (duplicator)
does not have a trivial optimal strategy. Thus, unlike the Adler-Immerman game,
our game is a genuine two-person game. We illustrate the use of the game by proving
a nonelementary succinctness gap between bisimulation invariant first-order logic FO
and (basic) modal logic ML.

Keywords: Succinctness, formula size game, bisimulation invariant first-order logic,
n-bisimulation.

1 Introduction
Succinctness is an important research topic that has been quite active in modal
logic for the last couple of decades; see, e.g., [3,13,11,14,1,12,5] for earlier work
on this topic and [6,20,7,10,19,21] for recent research. If two logics L and L0

have equal expressive power, it is natural to ask, whether there are properties
that can be expressed in L by a substantially shorter formula than in L0 (or
vice versa). For example, L is exponentially more succinct than L0, if for every
integer n there is an L-formula 'n of length O(n) such that any equivalent
L0-formula  n is of length at least 2n.

Often such a gap in succinctness comes together with a similar gap in the
complexity of the logics. For example, Etessami, Vardi and Wilke [3] proved
that, over !-words, the two-variable fragment FO2 of first-order logic has the
same expressive power as unary-TL (a weak version of temporal logic), but
FO2 is exponentially more succinct than unary-TL, and furthermore, the com-
plexity of satisfiability for FO2 is NEXPTIME-complete, while the complexity
of unary-TL is in NP [17]. However, succinctness does not always lead to a
penalty in terms of complexity: an example is public announcement logic PAL
which is exponentially more succinct than epistemic logic EL, but both have
the same complexity, as proved by Lutz in [12].
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In order to prove succinctness results we need a method for proving lower
bounds for the length of formulas expressing given properties. The two most
common methods used in the recent literature are the formula size game intro-
duced by Adler and Immerman [1], and extended syntax trees due to Grohe and
Schweikardt [8]. The latter was inspired by the former, and in fact, an extended
syntax tree is essentially a witness for the existence of a winning strategy in
the Adler-Immerman game. Thus, these two methods are equivalent, and the
choice between them is often a matter of convenience.

Originally, Adler and Immerman [1] formulated their game for the
branching-time temporal logic CTL. They used it for proving an n! lower
bound on the size of CTL-formulas for expressing that there is a path on which
each of the propositions p1, . . . , pn is true. As it is straightforward to express
this property by a formula of CTL+ of size linear in n, their result established
that CTL+ is n! times more succinct than CTL, thus improving an earlier
exponential succinctness result of Wilke [22].

After its introduction in [1], the Adler-Immerman game, as well as the
method of extended syntax trees, has been adapted to a host of modal lan-
guages. These include epistemic logic [6], multimodal logics with union and
intersection operators on modalities [20] and modal logic with contingency op-
erator [21], among others.

The Adler-Immerman game can be seen as a variation of the Ehrenfeucht-
Fräıssé game, or, in the case of modal logics, the bisimulation game. In the
Adler-Immerman game, quantifier rank (or modal depth) is replaced by a pa-
rameter, usually called formula size, that is closely related to the length of the
formula. Moreover, in order to use the game for proving that a property is not
definable by a formula of a given size, it is necessary to play the game on a pair
(A,B) of sets of structures instead of just a pair of single structures.

The basic idea of the Adler-Immerman game is that one of the players, S
(spoiler), tries to show that the sets A and B can be separated by a formula
of size n, while the other player, D (duplicator), aims to show that no formula
of size at most n su�ces for this. The moves that S makes in the game reflect
directly the logical operators in a formula that is supposed to separate the sets
A and B. Any pair (�, �) of strategies for the players S and D produces a finite
game tree T�,�, and S wins this play if the size of T�,� is at most n. The strategy
� is a winning strategy for S if using it, S wins every play of the game. If this
is the case, then there is a formula of size at most n that separates the sets,
and this formula can actually be read from the strategy �.

A peculiar feature of the Adler-Immerman game is that the second player,
duplicator, can be completely eliminated from it. This is because D has an
optimal strategy �max, which is to always choose the maximal allowed answer;
this strategy guarantees that the size of the tree T�,� is as large as possible.
Thus, in this sense the Adler-Immerman game is not a genuine two-person
game, but rather a one-person game.

In the present paper, we propose another type of formula size game for
modal logic. Our game is a natural adaptation of the game introduced by
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Hella and Väänänen [9] for propositional logic and first-order logic. The basic
setting in our game is the same as in the Adler-Immerman game: there are two
players, S and D, and two sets of structures that S claims can be separated
by a formula of some given size. The crucial di↵erence is that in our game we
define positions to be tuples (m, k,A,B) instead of just pairs (A,B) of sets of
structures, where m and k are parameters referring to the number of modal
operators and binary connectives in a formula. In each move S has to decrease
at least one of the parameters m or k. The game ends when the players reach
a position (m⇤, k⇤,A⇤,B⇤) such that either there is a literal separating A⇤ and
B⇤, or S cannot make any moves, usually because m⇤ = k⇤ = 0. In the former
case, S wins the play; otherwise D wins.

Thus, in contrast to the Adler-Immerman game, to determine the winner
in our game it su�ces to consider a single “leaf-node” (m⇤, k⇤,A⇤,B⇤) of the
game tree. This also means that our game is a real two-person game: the final
position (m⇤, k⇤,A⇤,B⇤) of a play depends on the moves of D, and there is no
simple optimal strategy for D that could be used for eliminating the role of D
in the game.

We believe that our game is more intuitive and thus, in some cases it may
be easier to use than the Adler-Immerman game. On the other hand, it should
be remarked that the two games are essentially equivalent: The moves cor-
responding to connectives and modal operators are the same in both games
(when restricting to the sets A and B in a position (m, k,A,B)). Hence, in
principle, it is possible to translate a winning strategy in one of the games to
a corresponding winning strategy in the other.

We illustrate the use of our game by proving a nonelementary succinctness
gap between first-order logic FO and (basic) modal logic ML. More precisely,
we define a bisimulation invariant property of pointed Kripke-models by a first-
order formula of size O(2n), and show that this property cannot be defined
by any ML-formula of size less than the exponential tower of height n � 1.
Furthermore, we show that the same property of pointed Kripke-models is
already definable by a formula of size O(2n) in ML2, which is a version of 2-
dimensional modal logic defined by Otto in [16]. Hence the same nonelementary
succinctness result holds for ML2 over ML.

A similar gap between FO and temporal logic follows from a construction
in the PhD thesis [18] of Stockmeyer. He proved that the satisfiability problem
of FO over words is of nonelementary complexity. Etessami and Wilke [4]
observed that from Stockmeyer’s proof it is possible to extract FO-formulas of
size O(n) whose smallest models are words of length nonelementary in n. On
the other hand, it is well known that any satisfiable formula of temporal logic
has a model of size O(2n), where n is the size of the formula.

2 Preliminaries
In this section we fix notation, define the syntax and semantics of basic modal
logic and define our notions of formula size. For more on the notions used in
the paper, we refer to the textbook [2] of Blackburn, de Rijke and Venema.
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Basic modal logic and first-order logic

Let � be a set of proposition symbols, and let M = (W,R, V ), where W is a
set, R ✓ W ⇥W and V : � ! P(W ), and let w 2 W . The structure (M, w)
is called a pointed Kripke-model for �.

Let (M, w) be a pointed Kripke-model. We use the notation

⇤(M, w) := {(M, v) | v 2 W,wRMv}.

If A is a set of pointed Kripke-models, we use the notation

⇤A :=
[

(M,w)2A
⇤(M, w).

Furthermore, if f is a function f : A ! ⇤A such that f(M, w) 2 ⇤(M, w) for
every (M, w) 2 A, then we use the notation

3fA := f(A).

Now we define the syntax and semantics of basic modal logic for pointed
models.

Definition 2.1 Let � be a set of proposition symbols. The set of formulas of
ML(�) is generated by the following grammar

' := p | ¬p | (' ^ ') | (' _ ') | 3' | 2',

where p 2 �.

As is apparent from the definition of the syntax, we assume that all ML-
formulas are in negation normal form. This is useful for the formula size game
that we introduce in the next section.

Definition 2.2 The satisfaction relation (M, w) ✏ ' between pointed Kripke-
models (M, w) and ML(�)-formulas ' is defined as follows:

(1) (M, w) ✏ p , w 2 V (p),

(2) (M, w) ✏ ¬p , w /2 V (p),

(3) (M, w) ✏ (' ^  ) , (M, w) ✏ ' and (M, w) ✏  ,
(4) (M, w) ✏ (' _  ) , (M, w) ✏ ' or (M, w) ✏  ,
(5) (M, w) ✏ 3', there is (M, v) 2 ⇤(M, w) such that (M, v) ✏ ',
(6) (M, w) ✏ ⇤', for every (M, v) 2 ⇤(M, w) it holds that (M, v) ✏ '.
Furthermore, if A is a class of pointed Kripke-models, then

A ✏ ', (A, w) ✏ ' for every (A, w) 2 A.

For the sake of convenience we also use the notation

A ✏ ¬', (A, w) 2 ' for every (A, w) 2 A.
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In Section 4, we also consider the case � = ;. For this purpose, we add the
atomic constants > and ? to ML, where (M, w) ✏ > and (M, w) 2 ? for all
pointed Kripke-models (M, w).

The syntax and semantics for first-order logic are defined in the standard
way. Each ML-formula ' defines a class Mod(') of pointed Kripke-models:

Mod(') := {(M, w) | (M, w) ✏ '}.

In the same way, any FO-formula  (x) in the vocabulary consisting of the
accessibility relation symbol R and unary relation symbols Up for p 2 � defines
a class Mod( ) of pointed Kripke-models:

Mod( ) := {(M, w) | M ✏  [w/x]}.

The formulas ' 2 ML and  (x) 2 FO are equivalent if Mod(') = Mod( ).
The well-known link between ML and FO is the following theorem.

Theorem 2.3 (van Benthem Characterization Theorem) A first-order
formula  (x) is equivalent to some formula in ML if and only if Mod( ) is
bisimulation invariant.

If a property of pointed Kripke-models is n-bisimulation invariant for some
n 2 N, then it is also bisimulation invariant. Thus, FO-definability and
n-bisimulation invariance imply ML-definability for any property of pointed
Kripke-models. We will use this version of van Benthem’s characterization in
Section 4.1 for showing that certain property is ML-definable. For the sake of
easier reading, we give here the definition of n-bisimulation.

Definition 2.4 Let (M, w) and (M0, w0) be pointed �-models. We say that
(M, w) and (M0, w0) are n-bisimilar, (M, w) -n (M0, w0), if there are binary
relations Zn ✓ · · · ✓ Z0 such that for every 0  i  n� 1 we have

(1) (M, w)Zn(M0, w0),

(2) if (M, v)Z0(M0, v0), then (M, v) ✏ p , (M0, v0) ✏ p for each p 2 �,

(3) if (M, v)Zi+1(M0, v0) and (M, u) 2 ⇤(M, v) then there is (M0, u0) 2
⇤(M0, v0) such that (M, u)Zi(M0, u0),

(4) if (M, v)Zi+1(M0, v0) and (M0, u0) 2 ⇤(M0, v0) then there is (M, u) 2
⇤(M, v) such that (M, u)Zi(M0, u0).

It is well known that if � is finite, two pointed �-models are n-bisimilar if
and only if they are equivalent with respect to ML(�)-formulas of modal depth
at most n.

Formula size

We define notions of formula size for ML and FO. These notions are related to
the length of the formula as a string rather than the DAG-size 1 of it. For ML

1 The DAG-size of a formula ' is the number of edges of the syntactic structure of ' in the
form of a DAG. Thus since the fan-out in the DAG is at most two, the DAG-size is at most
two times the number of subformulas of '.
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we define separately the number of modal operators and the number of binary
connectives in the formula.

Definition 2.5 Themodal size of a formula ' 2 ML, denoted ms('), is defined
recursively as follows:

(1) If ' is a literal, then ms(') = 0.

(2) If ' =  _ # or ' =  ^ #, then ms(') = ms( ) + ms(#).

(3) If ' = 3 or ' = ⇤ , then ms(') = ms( ) + 1.

Definition 2.6 The binary connective size of a formula ' 2 ML, denoted by
cs('), is defined recursively as follows:

(1) If ' is a literal, then cs(') = 0.

(2) If ' =  _ # or ' =  ^ #, then cs(') = cs( ) + cs(#) + 1.

(3) If ' = 3 or ' = ⇤ , then cs(') = cs( ).

The size of an ML formula is defined as the sum of modal size and connective
size. We do not count literals or parentheses since their number can be derived
from the number of binary connectives.

Definition 2.7 The size of a formula ' 2 ML is s(') = ms(') + cs(').

Similarly we define formula size for FO to be the number of binary connec-
tives and quantifiers in the formula. In general this could lead to an arbitrarily
large di↵erence between formula size and actual string length. For an example
if f is a unary function symbol, then atomic formulas of the form f(x) = x,
f(f(x)) = x and so on, all have size 0. In this paper however, we only consider
formulas with one binary relation so this is not an issue.

Definition 2.8 The size of a formula ' 2 FO, denoted by s('), is defined
recursively as follows:

(1) If ' is a literal, then s(') = 0.

(2) If ' = ¬ , then s(') = s( ).

(3) If ' =  _ # or ' =  ^ #, then s(') = s( ) + s(#) + 1.

(4) If ' = 9x or ' = 8x , then s(') = s( ) + 1.

To refer to some rather large formula sizes we need the exponential tower
function.

Definition 2.9 We define the function twr : N ! N recursively as follows:

twr(0) = 1

twr(n+ 1) = 2twr(n).

We will also use in the sequel the binary logarithm function, denoted by log.

Separating classes by formulas

The definition of the formula size game in the next section is based on the
notion of separating classes of pointed Kripke-models by formulas.
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Definition 2.10 Let A and B be classes of pointed Kripke-models.
(a) We say that a formula ' 2 ML separates the classes A and B if A ✏ ' and
B ✏ ¬'.
(b) Similarly, a formula  (x) 2 FO separates the classes A and B if for all
(M, w) 2 A, M ✏  [w/x] and for all (M, w) 2 B, M ✏ ¬ [w/x].

In other words, a formula ' 2 ML separates the classes A and B if A ✓
Mod(') and B ✓ Mod('), where Mod(') is the complement of Mod(').

3 The formula size game
As in the Adler-Immerman game, the basic idea in our formula size game is
that there are two players, S (spoiler) and D (duplicator), who play on a pair
(A,B) of two sets of pointed Kripke-models. The aim of S is to show that A and
B can be separated by a formula with modal size at most m and connective size
at most k, while D tries to refute this. The moves of S reflect the connectives
and modal operators of a formula that is supposed to separate the sets. The
parameters m and k decrease with every move and act as resources indicating
how many connectives and modal operators S has left to spend.

The crucial di↵erence between our game and the Adler-Immerman game is
that we define positions in the game to be tuples (m, k,A,B) instead of just
pairs (A,B). This means that in the connective moves, D has a genuine choice
to make. Furthermore, the winning condition of the game is based on a natural
property of single positions instead of the size of the entire game tree.

We give now the precise definition of our game.

Definition 3.1 Let A0 and B0 be sets of pointed �-Kripke-models and let
m0, k0 2 N. The formula size game between the sets A0 and B0, denoted
FSm0,k0(A0,B0), has two players, S and D. The number m0 is the modal pa-
rameter and k0 is the connective parameter of the game. The starting position
of the game is (m0, k0,A0,B0). Let the position after n moves be (m, k,A,B).
To continue the game, S has the following four moves to choose from:

• Left splitting move: First, S chooses natural numbers m1, m2, k1 and k2 and
sets A1 and A2 such that m1 +m2 = m, k1 + k2 + 1 = k and A1 [ A2 = A.
Then D decides whether the game continues from the position (m1, k1,A1,B)
or the position (m2, k2,A2,B).

• Right splitting move: First, S chooses natural numbers m1, m2, k1 and k2
and sets B1 and B2 such that m1+m2 = m, k1+k2+1 = k and B1[B2 = B.
Then D decides whether the game continues from the position (m1, k1,A,B1)
or the position (m2, k2,A,B2).

• Left successor move: S chooses a function f : A ! ⇤A such that f(A, w) 2
⇤(A, w) for all (A, w) 2 A and the game continues from the position
(m� 1, k,3fA,⇤B).

• Right successor move: S chooses a function g : B ! ⇤B such that g(B, w) 2
⇤(B, w) for all (B, w) 2 B and the game continues from the position
(m� 1, k,⇤A,3gB).
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The game ends and S wins in a position (m, k,A,B) if there is a �-literal '
which separates the sets A and B. The game ends and D wins in a position
(m, k,A,B) if S cannot move and S does not win in this position.

The modal and connective parameters m and k can be thought of as re-
sources for S, since in a position (m, k,A,B) S cannot make a successor move
if m = 0 or a splitting move if k = 0. Note also that if ⇤(M, w) = ; for some
(M, w) 2 A (2 B) then S cannot make a left (right) successor move.

We prove now that the formula size game indeed characterizes the separa-
tion of two sets of pointed Kripke-models by a formula of a given size.

Theorem 3.2 Let A and B be sets of pointed �-models and let m and k be
natural numbers. Then the following conditions are equivalent:

(win)m,k S has a winning strategy in the game FSm,k(A,B).
(sep)m,k There is a formula ' 2 ML(�) such that ms(')  m, cs(')  k and

the formula ' separates the sets A and B.
Proof. The proof proceeds by induction on the number m+k. If m+k = 0, no
moves can be made. Thus if S wins, then there is a literal ' that separates the
sets A and B. In this case s(') = 0 so (win)0,0 ) (sep)0,0. On the other hand,
if there is a formula ' such that s(')  0 and ' separates the sets A and B,
then ' is a literal. Thus S wins the game, and we see that (sep)0,0 ) (win)0,0.

Suppose then that m+ k > 0 and (win)n,l , (sep)n,l for all n, l 2 Z+ such
that n+ l < m+ k. Assume first that (win)m,k holds. Consider the following
cases according to the first move in the winning strategy of S.

(a) Assume that the first move of the winning strategy of S is a left splitting
move choosing numbers m1,m2, k1, k2 2 N such that m1 + m2 = m and
k1 + k2 + 1 = k, and sets A1,A2 ✓ A such that A1 [ A2 = A. Since
this move is given by a winning strategy, S has a winning strategy for
both possible continuations of the game, (m1, k1,A1,B) and (m2, k2,A2,B).
Since mi+ki < mi+ki+1  m+k for i 2 {1, 2}, by induction hypothesis
there is a formula  such that ms( )  m1, cs( )  k1 and  separates
the sets A1 and B and a formula # such that ms(#)  m2, cs(#)  k2 and
# separates the sets A2 and B. Thus A1 ✏  and A2 ✏ # so A ✏  _ #. On
the other hand B ✏ ¬ and B ✏ ¬# so B ✏ ¬( _#). Therefore the formula
 _# separates the sets A and B. In addition ms( _#) = ms( )+ms(#) 
m1 + m2 = m and cs( _ #) = cs( ) + cs(#) + 1  k1 + k2 + 1 = k so
(sep)m,k holds.

(b) Assume that the first move of the winning strategy of S is a right splitting
move choosing numbers m1,m2, k1, k2 2 N such that m1 + m2 = m and
k1 + k2 + 1 = k, and sets B1,B2 ✓ B such that B1 [ B2 = B. Since this
move is given by a winning strategy, player I has a winning strategy for both
possible continuations of the game, (m1, k1,A,B1) and (m2, k2,A,B2). By
induction hypothesis there is a formula  such that ms( )  m1, cs( )  k1
and  separates the sets A and B1 and a formula # such that ms(#) 
m2, cs(#)  k2 and # separates the sets A and B2. Thus A ✏  and



Hella and Vilander 409

A ✏ # so A ✏  ^ #. On the other hand B1 ✏ ¬ and B2 ✏ ¬# so
B ✏ ¬( ^ #). Therefore the formula  ^ # separates the sets A and B. In
addition ms( ^ #) = ms( ) + ms(#)  m1 + m2 = m and cs( ^ #) =
cs( ) + cs(#) + 1  k1 + k2 + 1 = k so (sep)m,k holds.

(c) Assume that the first move of the winning strategy of S is a left successor
move choosing a function f : A ! ⇤A such that f(A, w) 2 ⇤(A, w) for all
(A, w) 2 A. The game continues from the position (m�1, k,3fA,⇤B) and
S has a winning strategy from this position. By induction hypothesis there
is a formula  such that ms( )  m � 1, cs( )  k and  separates the
sets 3fA and ⇤B. Now for every (A, w) 2 A we have f(A, w) 2 ⇤(A, w)
and f(A, w) ✏  . Therefore A ✏ 3 . On the other hand ⇤B ✏ ¬ 
so for every (B, w) 2 B and every (B, v) 2 ⇤(B, w) we have (B, v) 2  .
Thus B ✏ ¬3 . So the formula 3 separates the sets A and B and since
ms(3 ) = ms( ) + 1  m and cs(3 ) = cs( )  k, (sep)m,k holds.

(d) Assume that the first move of the winning strategy of player I is a right
successor move choosing a function g : B ! ⇤B such that g(B, w) 2
⇤(B, w) for every (B, w) 2 B. The game continues from the position
(m�1, k,⇤A,3gB) and player I has a winning strategy from this position.
By induction hypothesis there is a formula  such that ms( )  m � 1,
cs( )  k and  separates the sets ⇤A and 3gB. Thus ⇤A ✏  so for
every (A, w) 2 A and every (A, v) 2 ⇤(A, w) we have (A, v) ✏  so
A ✏ ⇤ . On the other hand 3gB ✏ ¬ so for every (B, w) 2 B we have
g(B, w) 2 ⇤(B, w) and g(B, w) 2  . Thus B ✏ ¬⇤ . Therefore the formula
⇤ separates the sets A and B and since ms(⇤ ) = ms( ) + 1  m and
cs(⇤ ) = cs( )  k, (sep)m,k holds.

Now assume (sep)m,k holds, and ' is the formula separating A and B. We
obtain a winning strategy of S for the game FSm,k(A,B) using ' as follows:

(a) If ' is a literal, S wins the game with no moves.

(b) Assume that ' =  _ #. Let A1 := {(A, w) 2 A | (A, w) ✏  } and
A2 := {(A, w) 2 A | (A, w) ✏ #}. Since A ✏ ' we have A1 [ A2 = A. In
addition, since B ✏ ¬', we have B ✏ ¬ and B ✏ ¬#. Thus  separates the
sets A1 and B and # separates the sets A2 and B. Since ms( ) + ms(#) =
ms(')  m, there are m1,m2 2 N such that m1 +m2 = m, ms( )  m1

and ms(#)  m2. Similarly since cs( ) + cs(#) + 1 = cs(')  k, there
are k1, k2 2 N such that k1 + k2 + 1 = k, cs( )  k1 and cs(#)  k2. By
induction hypothesis S has winning strategies for the games FSm1,k1(A1,B)
and FSm2,k2(A2,B). Since k � cs(') � 1, S can start the game FSm,k(A,B)
with a left splitting move choosing the numbers m1, m2, k1 and k2 and the
sets A1 and A2. Then S wins the game by following the winning strategy
for whichever position D chooses.

(c) Assume that ' =  ^ #. Let B1 := {(B, w) 2 B | (B, w) 2  } and
B2 := {(B, w) 2 B | (B, w) 2 #}. Since B ✏ ¬', we have B1 [ B2 = B. In
addition, since A ✏ ', we have A ✏  and A ✏ #. Thus  separates the
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sets A and B1 while # separates the sets A and B2. As in the previous
case, there are m1,m2, k1, k2 2 N such that m1 + m2 = m, ms( )  m1,
ms(#)  m2, k1 + k2 = k, cs( )  k1 and cs(#)  k2. By induction
hypothesis player I has a winning strategy for the games FSm,k(A,B1) and
FSm,k(A,B2). Player I wins the game FSm,k(A,B) by starting with a right
splitting move choosing the numbers m1, m2, k1, and k2 and the sets B1

and B2 and proceeding according to the winning strategies for the games
FSm,k(A,B1) and FSm,k(A,B2).

(d) Assume that ' = 3 . Since A ✏ ', for every (A, w) 2 A there is (A, vw) 2
⇤(A, w) such that (A, vw) ✏  . We define the function f : A ! ⇤A by
f(A, w) = (A, vw). Clearly 3fA ✏  . On the other hand B ✏ ¬' so for
each (B, w) 2 B and each (B, v) 2 ⇤(B, w) we have (B, v) 2  . Therefore
⇤B ✏ ¬ and the formula  separates the sets 3fA and ⇤B. Moreover,
ms( ) = ms(') � 1  m � 1 and cs( ) = cs(')  k so by induction
hypothesis S has a winning strategy for the game FSm�1,k(3fA,⇤B). Since
m � ms(') � 1, S can start the game FSm,k(A,B) with a left successor
move choosing the function f . Then S wins the game by following the
winning strategy for the game FSm�1,k(3fA,⇤B).

(e) Assume finally that ' = ⇤ . Since A ✏ ', as in the previous case we obtain
⇤A ✏  . On the other hand, since B ✏ ¬', for every (B, w) 2 B there is
(B, vw) 2 ⇤(B, w) such that (B, vw) 2  . We define the function g : B !
⇤B by g(B, w) = (B, vw). Clearly 3gB ✏ ¬ so the formula  separates the
sets ⇤A and 3gB. By induction hypothesis player I has a winning strategy
for the game FSm�1,k(⇤A,3gB). Player wins the game FSm,k(A,B) by
starting with a right successor move choosing the function g and proceeding
according to the winning strategy of the game FSm�1,k(⇤A,3gB).

2

Note that in Theorem 3.2 we allow the set of proposition symbols � to be
infinite. This is in contrast with other similar games, such as the bisimulation
game and the n-bisimulation game. For an example let � = {pi | i 2 N}
and W = {w} [ {wi | i 2 N}. Furthermore let (A, w) be a pointed model,
where dom(A) = W , RA = {(w,wi) | i 2 N} and V A(pi) = {wj | j � i}
for each i 2 N. Let (B, w) be the same model with the addition of a point
wN in which all propositions are true. In other words dom(B) = W [ {wN},
RB = RA [ {(b, wN)} and V B(pi) = V A(pi) [ {wN} for each i 2 N.

(A, w) (B, w)

w0 w1 w2

· · ·
w0 w1 w2 wN

· · ·

Fig. 1. The pointed models (A, w) and (B, w).



Hella and Vilander 411

We see that by moving to wN, S wins the (n-)bisimulation game between
the models (A, w) and (B, w), even though the models satisfy exactly the same
ML-formulas.

We prove next that m-bisimilarity implies that D has winning strategy in
the formula size game with modal parameterm. This simple observation is used
in the next section, when we apply the game FSm,k for proving a succinctness
result for FO over ML.

Theorem 3.3 Let A and B be sets of pointed models and let m, k 2 N. If
there are m-bisimilar pointed models (A, w) 2 A and (B, v) 2 B, then D has a
winning strategy for the game FSm,k(A,B).
Proof. The proof proceeds by induction on the numberm+k 2 N. Ifm+k = 0
and (A, w) 2 A and (B, v) 2 B are m-bisimilar, then they are 0-bisimilar and
thus satisfy the same literals. Thus there is no literal ' 2 ML that separates
the sets A and B. Since S cannot make any moves and S does not win the game
in this position, D wins the game FS0,0(A,B).

Assume that m+ k > 0 and (A, w) 2 A and (B, v) 2 B are m-bisimilar. As
in the basic step, S does not win the game in this position. We consider the
cases of the first move of S in the game FSm,k(A,B).

If S starts with a left splitting move choosing the numbers m1, m2, k1 and
k2 and the sets A1 and A2, then since A1 [ A2 = A, D can choose the next
position (mi, ki,Ai,B), i 2 {1, 2} in such a way that (A, w) 2 Ai. Then we
have mi  m and mi+ ki < m+ k so by induction hypothesis D has a winning
strategy for the game FSmi,ki

(Ai,B). The case of a right splitting move is
similar.

If S starts with a left successor move choosing a function f : A ! ⇤A,
then since (A, w) and (B, v) are m-bisimilar, there is a pointed model (B, v0) 2
⇤(B, v) that ism�1-bisimilar with the pointed model f(A, w). Sincem�1+k <
m+k, by induction hypothesis D has a winning strategy in FSm�1,k(3fA,⇤B).
The case of a right successor move is similar. 2

4 Succinctness of FO over ML
In this section, we illustrate the use of the formula size game FSm,k by proving
a nonelementary succinctness gap between bisimulation invariant first-order
logic and modal logic. We also show that this gap is already present between
the 2-dimensional modal logic ML2 introduced in [16] and basic modal logic.

4.1 A property of pointed frames

For the remainder of this paper we consider only the case where the set �
of propositional symbols is empty. This makes all points in Kripke-models
propositionally equivalent so we call pointed models in this section pointed
frames. The only formulas available for the win condition of S in the game
FSm,k are ? and >. Thus S only wins the game from the position (m, k,A,B)
if either A = ; and B 6= ;, or A 6= ; and B = ;.

We will use the following two classes in our application of the formula size
game FSm,k:
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• An is the class of all pointed frames (A, w) such that for all (A, u), (A, v) 2
⇤(A, w), the frames (A, u) and (A, v) are n-bisimilar.

• Bn is the complement of An.

Lemma 4.1 For each n 2 N there is a formula 'n(x) 2 FO that separates the
classes An and Bn such that the size of 'n(x) is exponential with respect to n,
i.e., s('n) = O(2n).

Proof. We first define formulas  n(x, y) 2 FO such that (M, u) -n (M, v) if
and only if M ✏  n[u/x, v/y]. The formulas  n(x, y) are defined recursively as
follows:

 1(x, y) :=9sR(x, s) $ 9tR(y, t)

 n+1(x, y) :=8s(R(x, s) ! 9t(R(y, t) ^  n(s, t))

^ 8t(R(y, t) ! 9s(R(x, s) ^  n(s, t)).

Clearly these formulas express n-bisimilarity as intended. When we interpret
the equivalences and implications as shorthand in the standard way, we get the
sizes s( 1) = 11 and s( n+1) = 2 · s( n) + 13. Thus s( n) = 3 · 2n+2 � 13.

Now we can define the formulas 'n:

'n(x) := 8y8z(R(x, y) ^R(x, z) !  n(y, z)).

Clearly for every (A, w) 2 An we have A ✏ 'n[w/x] and for every (B, v) 2 Bn

we have B ✏ ¬'n[w/x] so the formula 'n separates the classes An and Bn.
Furthermore, s('n) = s( n) + 6 = 3 · 2n+2 � 7 so the size of 'n is exponential
with respect to n. 2

Lemma 4.2 For each n 2 N, the formula 'n is n+ 1-bisimulation invariant.

Proof. Let (A, w) and (B, v) be n + 1-bisimilar pointed models. Assume
that A ✏ 'n[w/x]. If (B, v1), (B, v2) 2 ⇤(B, v), by n + 1-bisimilarity there
are (A, w1), (A, w2) 2 ⇤(A, w) such that (A, w1) -n (B, v1) and (A, w2) -n

(B, v2). Since A ✏ 'n[w/x], we have (B, v1) -n (A, w1) -n (A, w2) -n (B, v2)
so B ✏  n[v1/x, v2/y]. Thus, we see that B ✏ 'n[v/x]. 2

It follows now from van Benthem’s characterization theorem that each 'n

is equivalent to some ML-formula. Thus, we get the following corollary.

Corollary 4.3 For each n 2 N, there is a formula #n 2 ML that separates the
classes An and Bn.

4.2 Set theoretic construction of pointed frames

We have shown that the classes An and Bn can be separated both in ML and
in FO. Furthermore the size of the FO-formula is exponential with respect to
n. It only remains to ask: what is the size of the smallest ML-formula that
separates the classes An and Bn? To answer this we will need suitable subsets
of An and Bn to play the formula size game on.
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Definition 4.4 Let n 2 N. The finite levels of the cumulative hierarchy are
defined recursively as follows:

V0 = ;
Vn+1 = P(Vn)

For every n 2 N, Vn is a transitive set, i.e., for every a 2 Vn and every b 2 a
it holds that b 2 Vn. Thus it is reasonable to define a frame Fn = (Vn, Rn),
where for all a, b 2 Vn it holds that (a, b) 2 Rn , b 2 a.

For every point a 2 Vn we denote by (Ma, a) the pointed frame, where Ma

is the subframe of Fn generated by the point a.

F3: {;, {;}}

{;}

;

{{;}} M;:

;
M{;}:
{;}

;

M{{;}}:
{{;}}

{;}

;

M{;,{;}}:
{;, {;}}

{;}

;

Fig. 2. The frame F3 and its generated subframes

Lemma 4.5 Let n 2 N and a, b 2 Vn+1. If a 6= b, then (Ma, a) 6-n (Mb, b).

Proof. We prove the claim by induction on n. The basic step n = 0 is trivial
since V1 only has one element. For the induction step, assume that a, b 2 Vn+1

and a 6= b. Assume further for contradiction that (Ma, a) -n (Mb, b). Since
a 6= b, by symmetry we can assume that there is x 2 a such that x /2 b. By
n-bisimilarity there is y 2 b such that (Mx, x) and (My, y) are n� 1-bisimilar.
Since x 2 a 2 Vn+1 and y 2 b 2 Vn+1, we have x, y 2 Vn. By induction
hypothesis we obtain x = y. This is a contradiction, since x /2 b and y 2 b. 2

If A is a set of pointed frames we use the notation
a
A for the pointed

frame which is formed by taking all the pointed frames of A and connecting a
new root to their distinguished points as illustrated in Figure 3. To make sure
that (

a
A, v) is bisimilar with (A, v) for any (A, v) 2

a
A, we require that the

frames in A are compatible in possible intersections. The precise definition is
the following.

Let A be a set of pointed frames such that for all (A, v), (A0, v0) 2 A it
holds that RA � (dom(A) \ dom(A0)) = RA0 � (dom(A) \ dom(A0)) and let
w /2 dom(A) for all (A, v) 2 A. We use the notation

a
A := (M, w), where

dom(M) = {w} [
[

{dom(A) | (A, v) 2 A}, and

RM = {(w, v) | (A, v) 2 A} [
[

{RA | (A, v) 2 A}.

For each n 2 N we define the following sets of pointed frames:
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w

a
A

· · ·

A

Fig. 3. The pointed frame
a
A

Cn := {
a
{(Ma, a)} | a 2 Vn+1}

Dn := {
a
{(Ma, a), (Mb, b)} | a, b 2 Vn+1, a 6= b}.

In other words the pointed frames in Cn have a single successor from level
n+ 1 of the cumulative hierarchy, whereas the pointed frames in Dn have two
di↵erent successors from the same set. Therefore clearly Cn ✓ An and by
Lemma 4.5 also Dn ✓ Bn. In the next subsection we will use these sets in the
formula size game.

It is well known that the cardinality of Vn is the exponential tower of n�1.
Thus, the cardinality of Cn is twr(n).

Lemma 4.6 If n 2 N, we have |Cn| = |Vn+1| = twr(n). 2

4.3 Graph colorings and winning strategies in FSm,k

Our aim is to prove that any ML-formula #n separating the sets Cn and Dn is
of size at least twr(n� 1). To do this, we make use of a surprising connection
between the chromatic numbers of certain graphs related to pairs of the form
(V,E), where V ✓ Cn and E ✓ Dn, and existence of a winning strategy for D
in the game FSm,k(V,E).

Let n 2 N, ; 6= V ✓ Cn and E ✓ Dn. Then G(V,E) denotes the graph
(V,E), where

V = {(M, w) |
a
{(M, w)} 2 V}, and

E = {((M, w), (M0, w0)) 2 V ⇥ V |
a
{(M, w), (M0, w0)} 2 E}.

Definition 4.7 Let G = (V,E) be a graph and let C be a set. A function
� : V ! C is a coloring of the graph G if for all u, v 2 V it holds that if
(u, v) 2 E, then �(u) 6= �(v). If the set C has k elements, then � is called a
k-coloring of G.

The chromatic number of G, denoted by �(G), is the smallest number k 2 N
for which there is a k-coloring of G.

When playing the formula size game FSm,k(V,E), splitting moves corre-
spond with dividing either the vertex set or the edge set of the graph G(V,E)
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into two parts, forming two new graphs. In the next lemma we get simple
arithmetic estimates for the behaviour of chromatic numbers in such divisions.

Lemma 4.8 Let G = (V,E) be a graph.

(i) Let V1, V2 ✓ V be nonempty such that V1[V2 = V and let G1 = (V1, E � V1)
and G2 = (V2, E � V2). Then we have �(G)  �(G1) + �(G2).

(ii) Let E1, E2 ✓ E such that E1 [ E2 = E and let G1 = (V,E1) and
G2 = (V,E2). Then �(G)  �(G1)�(G2).

Proof.

(i) Let V1, V2, G1 and G2 be as in the claim and let k1 = �(G1) and k2 =
�(G2). Let �1 : V1 ! {1, . . . , k1} be a k1-coloring of the graph G1 and let
�2 : V2 ! {k1+1, . . . , k1+k2} be a k2-coloring of the graph G2. Then it is
straightforward to show that � = �1[ (�2 � (V2 \V1)) is a k1+k2-coloring
of the graph G, whence �(G)  k1 + k2 = �(G1) + �(G2).

(ii) Let �1 : V ! {1, . . . , k1} and �2 : V ! {1, . . . , k2} be colorings of the
graphs G1 and G2, respectively. Then it is easy to verify that the map � :
V ! {1, . . . , k1}⇥{1, . . . , k2} defined by �(v) = (�1(v),�2(v)) is a coloring
of G. Thus we obtain �(G)  |{1, . . . , k1}⇥ {1, . . . , k2}| = �(G1)�(G2).

2

Lemma 4.9 Assume ; 6= V ✓ Cn and E ✓ Dn for some n 2 N and let
m, k 2 N. If �(G(V,E)) � 2 and k < log(�(G(V,E))), then D has a winning
strategy in the game FSm,k(V,E).
Proof. Let n,m, k 2 N and assume that ; 6= V ✓ Cn, E ✓ Dn, �(G(V,E)) � 2
and k < log(�(G(V,E))). We prove the claim by induction on k.

If k = 0, S can only make successor moves. Since �(G(V,E)) � 2, there are
(M, w), (M0, w0) 2 V such that ((M, w), (M0, w0)) 2 E. Thus

a
{(M, w)},a

{(M0, w0)} 2 V and
a
{(M, w), (M0, w0)} 2 E. If S makes a left or right

successor move, then in the resulting position (m � 1, 0,V0,E0) it holds that
(M, w) 2 V0\E0 or (M0, w0) 2 V0\E0. Thus the same pointed model is present
on both sides of the game and by Theorem 3.3, D has a winning strategy for
the game FSm,k(V0,E0).

Assume then that k > 0. If S starts the game with a successor move, then
D wins as described above.

Assume that S begins the game with a left splitting move choosing the
numbers m1,m2, k1, k2 2 N and the sets V1,V2 ✓ V. Consider the graphs
G(V,E) = (V,E), G(V1,E) = (V1, E1) and G(V2,E) = (V2, E2). Since V1[V2 =
V, we have V1 [ V2 = V . In addition, by the definition of the graphs G(V,E),
G(V1,E) and G(V2,E) we see that E1 = E � V1 and E2 = E � V2. Thus by
Lemma 4.8, we obtain �(G(V,E))  �(G(V1,E)) + �(G(V2,E)). It must hold
that k1 < log(�(G(V1,E))) or k2 < log(�(G(V2,E))), since otherwise we would
have

k < log(�(G(V,E)))  log(�(G(V1,E)) + �(G(V2,E)))
 log(�(G(V1,E))) + log(�(G(V2,E))) + 1  k1 + k2 + 1 = k.
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Thus D can choose the next position of the game, (mi, ki,Vi,E), in such a way
that ki < log(�(G(Vi,E))). By induction hypothesis D has a winning strategy
in the game FSmi,ki

(Vi,E).
Assume then that S begins the game with a right splitting move choosing

the numbers m1,m2, k1, k2 2 N and the sets E1,E2 ✓ E. Consider now the
graphs G(V,E) = (V,E), G(V,E1) = (V1, E1) and G(V,E2) = (V2, E2). Clearly
V1 = V2 = V and since E1 [ E2 = E, we have E1 [ E2 = E. Thus by
Lemma 4.8, we obtain �(G(V,E))  �(G(V,E1))�(G(V,E2)). It must hold
that k1 < log(�(G(V,E1))) or k2 < log(�(G(V,E2))), since otherwise we would
have

k < log(�(G(V,E)))  log(�(G(V,E1))�(G(V,E2)))

= log(�(G(V,E1))) + log(�(G(V,E2)))  k1 + k2 + 1 = k.

Thus D can again choose the next position of the game, (mi, ki,V,Ei), in such
a way that ki < log(�(G(V,Ei))). By induction hypothesis D has a winning
strategy in the game FSmi,ki(V,Ei). 2

Lemma 4.10 If k < twr(n� 1) and m 2 N, then D has a winning strategy in
the game FSm,k(Cn,Dn).

Proof. By Lemma 4.6, we have |Cn| = twr(n) and the set Dn consists of
all the pointed frames

a
{(M, w), (M0, w0)}, where (M, w), (M0, w0) 2 Cn,

(M, w) 6= (M0, w0). Thus the graph G(Cn,Dn) is isomorphic with the complete
graph Ktwr(n). Therefore we obtain

�(G(Cn,Dn)) = �(Ktwr(n)) = twr(n).

By the assumption, k < twr(n � 1) = log(twr(n)) = log(�(G(Cn,Dn))), so by
Lemma 4.9, D has a winning strategy in the game FSm,k(Cn,Dn). 2

Theorem 4.11 Let n 2 N. If a formula #n 2 ML separates the classes An

and Bn, then s(#n) � twr(n� 1).

Proof. Assume that a formula #n 2 ML separates the classes An and Bn. As
observed in the end of Subsection 4.2, it holds that Cn ✓ An and Dn ✓ Bn.
Therefore #n also separates the sets Cn and Dn.

Assume for contradiction that s(#n) < twr(n�1). By Theorem 3.2, S has a
winning strategy in the game FSm,k(Cn,Dn) for m = ms(#n) and k = cs(#n).
On the other hand, k < twr(n � 1), whence by Lemma 4.10, D has a winning
strategy in the same game. 2

We now have everything we need for proving the nonelementary succinctness
of FO over ML. By Lemma 4.1, for each n 2 N there is a formula 'n(x) 2 FO
such that 'n separates the classes An and Bn with s(') = O(2n). On the
other hand by Corollary 4.3, there is an equivalent formula #n 2 ML, but by
Theorem 4.11 the size of #n must be at least twr(n � 1). So the property
of a pointed models all successors being n-bisimilar with each other can be
expressed in FO with a formula of exponential size, but in ML expressing it
requires a formula of non-elementary size.
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Corollary 4.12 Bisimulation invariant FO is nonelementarily more succinct
than ML.

Remark 4.13 It is well known that the DAG-size of any formula ' is greater
than or equal to the logarithm of the size of '. Thus if #n is a formula as in
Theorem 4.11, the DAG-size of #n must be at least twr(n� 2). Consequently
the result of Corollary 4.12 also holds for DAG-size.

4.4 Succinctness of 2-dimensional modal logic

Our proof for the nonelementary succinctness gap between bisimulation invari-
ant FO and ML is based on the fact that n-bisimilarity of two points u, v 2 W
of a Kripke-frame M = (W,R) is definable by an FO-formula  n(x, y) (see
the proof of Lemma 4.1). However, it is not di�cult to see that the property
(M, u) -n (M, v) is already expressible in 2-dimensional modal logic.

The idea in 2-dimensional modal logic is that the truth of formulas is eval-
uated on pairs (u, v) of elements of Kripke-models instead of single points.
We refer to the book [15] of Marx and Venema for a detailed exposition on
2-dimensional and multi-dimensional modal logics. For our purposes it su�ces
to consider the modal fragment ML2 of the 2-dimensional modal µ-calculus L2

µ,
introduced by Otto [16].

A Kripke-model T for ML2 consists of a set W of points, a binary ac-
cessibility relation R, and a valuation V . Note that proposition symbols are
interpreted as sets of pairs, whence V is a function � ! P(W 2). Since accessi-
bility is defined separately for the two components of pairs (u, v) 2 W 2, there
are two modal operators 31 and 32 in ML2. The semantics of these operators
and their duals are defined as follows:

• (T , (u, v)) ✏ 31', there is u0 2 W such that uRu0 and (T , (u0, v)) ✏ ',
• (T , (u, v)) ✏ 32', there is v0 2 W such that vRv0 and (T , (u, v0)) ✏ ',
• (T , (u, v)) ✏ ⇤1', for all u0 2 W , if uRu0, then (T , (u0, v)) ✏ ',
• (T , (u, v)) ✏ ⇤2', for all v0 2 W , if vRv0, then (T , (u, v0)) ✏ '.
In addition to proposition symbols, connectives and modal operators, the logic
ML2 has variable substitution operators (see [16], p. 242–43), but we will not
need them here.

Any pointed Kripke-model (M, w) = ((W,R, V ), w) can be interpreted as
the 2-dimensional pointed model (M2, (w,w)), where M2 = (W,R, V2) and
V2(p) = {(w,w) | w 2 V (p)} for each p 2 �. This gives us a meaningful
way of defining properties of pointed models (M, w) by formulas of ML2. In
particular, we say that a formula ' 2 ML2 separates two classes A and B of
pointed models if for all (M, w) 2 A, (M2, (w,w)) ✏ ' and for all (M, w) 2 B,
(M2, (w,w)) 2 '.

The size s(') of a formula ' 2 ML2 is defined in the same way as for
formulas of ML; see Definitions 2.5, 2.6 and 2.7. In other words, s(') is the
total number of modal operators and binary connectives occurring in '.

Observe now that two pointed frames (M, u) and (M, v) are 1-bisimilar
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if and only if (M2, (u, v)) ✏ ⇢1, where ⇢1 := 31> $ 32>. Furthermore if
⇢n 2 ML2 defines the class of all 2-dimensional pointed frames (M2, (u, v))
such that (M, u) -n (M, v), then ⇢n+1 := ⇤132⇢n ^⇤231⇢n defines the class
of all (M2, (u, v)) such that (M, u) -n+1 (M, v).

Lemma 4.14 For each n 2 N there is a formula ⇣n 2 ML2 that separates the
classes An and Bn such that the size of ⇣n is exponential with respect to n, i.e.,
s(⇣n) = O(2n).

Proof. Let ⇣n be the formula ⇤1⇤2⇢n. Then (M2, (w,w)) ✏ ⇣n if and only if
(M, u) and (M, v) are n-bisimilar for all (M, u), (M, v) 2 ⇤(M, w), whence
⇣n separates An from its complement Bn. An easy calculation shows that the
size of ⇣n is 3 · 2n+1 � 5. 2

By Theorem 4.3, for each n 2 N there is a formula #n 2 ML that is
equivalent with ⇣n. On the other hand, by Theorem 4.11 the size of #n is at
least twr(n� 1). Thus, we obtain the nonelementary succinctness gap already
between ML2 and ML.

Corollary 4.15 The 2-dimensional modal logic ML2 is nonelementarily more
succinct than ML.

Acknowledgement. We are grateful to an anonymous referee for pointing
out the possibility of using 2-dimensional modal logic for separating the classes
An and Bn.
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