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Abstract

We introduce the algorithm MASSA which takes classical modal formulas in input,
and, when successful, effectively generates: (a) (analytic) geometric rules of the la-
belled calculus G3K, and (b) cut-free derivations (of a certain ‘canonical’ shape) of
each given input formula in the geometric labelled calculus obtained by adding the
rule in output to G3K. We show that MASSA successfully terminates whenever its
input formula is a (definite) analytic inductive formula, in which case, the geometric
axiom corresponding to the output rule is, modulo logical equivalence, the first-order
correspondent of the input formula.

Keywords: Structural proof theory of modal logic, labelled calculi, analytic
extensions of labelled calculi, automatic rule-generation, algorithmic correspondence
theory.

1 Introduction

The labelled calculus G3K was presented by Sara Negri in [17] as a basic G3-
style sequent calculus for the normal modal logicK (see [19, Chapter 3] and [20,
Chapter 11] for the genesis of this calculus). The calculus G3K shares many
of the characteristic properties of Gentzen’s original sequent calculus G3 for
classical logic; for instance, all its rules are invertible, and the basic structural
rules (weakening, contraction and cut) are admissible. Moreover, in [17], Negri
introduces a general method for extending G3K so as to capture a large class
of axiomatic extensions of K; namely, all those axiomatic extensions of K
which define elementary (i.e. first-order definable) classes of Kripke frames, and
such that their defining first-order conditions are, modulo logical equivalence,
geometric implications. The rules generated by Negri’s method for capturing
these axiomatic extensions of K are defined on the basis of their corresponding
geometric implications, and are referred to as geometric rules. Negri uniformly

1 This research is supported by the NWO grant KIVI.2019.001.
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shows that the structural rules (and cut in particular) are admissible in the
calculi obtained by extending G3K with geometric rules.

One important subclass of geometric implications is given, modulo logical
equivalence, by the first-order correspondents of the class of analytic inductive
formulas in classical modal logic. General (i.e. not necessarily analytic) induc-
tive formulas have been introduced by Goranko and Vakarelov in [11], and have
been shown to have (local) first-order correspondents, which can be effectively
computed via an algorithmic correspondence procedure introduced in [5].

In the present paper, we refine Negri’s method for extending G3K, and in-
troduce the algorithm MASSA for generating analytic labelled rules uniformly
and equivalently capturing the analytic inductive axiomatic extensions of K.
An important difference between the algorithmic rule-generation method intro-
duced in this paper and Negri’s method is that the present method takes modal
formulas in input, and, if the input formula is analytic inductive (cf. Section
2.2), it computes its equivalent analytic rule directly from the input formula,
via a computation which incorporates the effective generation of its first-order
correspondent, whereas Negri’s method starts from geometric implications in
the first-order frame correspondence language, and generates rules which are
equivalent to those modal formulas which are assumed to have a first-order
correspondent which is (logically equivalent to) a geometric implication.

This paper is structured as follows. In Section 2, we collect basic definitions
and results on G3K and analytic inductive formulas in classical modal logic; in
Section 3, we introduce the algorithm MASSA and provide intuitive motivation
for some of its key steps. In Section 4, we illustrate how MASSA works, by
running it on some well known modal axioms; in Section 5, we discuss how the
present results embed in a wider research context in structural proof theory,
which provides motivations for further research directions.

2 Preliminaries

2.1 The labelled calculus G3K

In what follows, we adopt the usual conventions: p, q, . . . denote proposition
variables, x, y, z, . . . are labels (corresponding to world-variables in the intended
interpretation on Kripke frames), given a label x and a modal formula A,
well-formed formulas are of the type x : A, while φ,ψ, . . . are meta-variables
for well-formed formulas. Γ,∆, . . . are meta-variables for sets of wffs, and a
sequent is an expression of the form Γ ⊢ ∆. Given a well formed sequent
S = Γ ⊢ ∆, if the formula φ ∈ Γ (resp. φ ∈ ∆), we say that φ occurs in
precedent (resp. succedent) position in S.

Below, we list the rules of the labelled relational sequent calculus G3K
for the basic normal modal logic K, where cut, weakening, contraction, and
necessitation are admissible rules (see for instance [17]). In the list below, we
explicitly mention the cut rule and we do not include the rules for negation.
The propositional and modal rules are all invertible.
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Initial rules and cut rule

⊥L Γ, x : ⊥ ⊢ ∆
Idx:p

Γ, x : p ⊢ x : p,∆
Γ ⊢ x : p,∆ Γ′, x : p ⊢ ∆′

Cut
Γ,Γ′ ⊢ ∆,∆′

Invertible propositional rules
Γ, x : A, x : B ⊢ ∆∧L
Γ, x : A ∧B ⊢ ∆

Γ ⊢ x : A,∆ Γ ⊢ x : B,∆ ∧R
Γ ⊢ x : A ∧B,∆

Γ, x : A ⊢ ∆ Γ, x : B ⊢ ∆∨L
Γ, x : A ∨B ⊢ ∆

Γ ⊢ x : A, x : B,∆ ∨R
Γ ⊢ x : A ∨B,∆

Γ ⊢ x : A,∆ Γ, x : B ⊢ ∆→L
Γ, x : A→ B ⊢ ∆

Γ, x : A ⊢ x : B,∆ →R
Γ ⊢ x : A→ B,∆

Invertible modal rules∗

xRy,Γ, x : 2A, y : A ⊢ ∆
2L

xRy,Γ, x : 2A ⊢ ∆

xRy,Γ ⊢ y : A,∆
2R

Γ ⊢ x : 2A,∆

xRy,Γ, y : A ⊢ ∆
3L

Γ, x : 3A ⊢ ∆

xRy,Γ ⊢ y : A, x : 3A,∆
3R

xRy,Γ ⊢ x : 3A,∆

Equality rules
x = x,Γ ⊢ ∆

Eq-Ref
Γ ⊢ ∆

y = z, x = y, x = z,Γ ⊢ ∆
Eq-Trans

x = y, x = z,Γ ⊢ ∆

yRz, x = y, xRz,Γ ⊢ ∆
ReplR1 x = y, xRz,Γ ⊢ ∆

xRz, y = z, xRy,Γ ⊢ ∆
ReplR2 y = z, xRy,Γ ⊢ ∆

x = y, y : A, x : A,Γ ⊢ ∆
Repl

x = y, x : A,Γ ⊢ ∆

∗Side condition: the label y must not occur in the conclusion of 2R and 3L.

Remark 2.1 The logical rules above (namely Propositional and Modal rules)
reflect the semantic clauses of each connective in the intended Kripke semantics.
Logical rules can be grouped together as tonicity rules (∧R,∨L,→L,2L,3R)
versus translation rules (∧L,∨R,→R,2R,3L). Tonicity rules specify the arity
of a connective (i.e. a connective of arity n is introduced by a tonicity rule with
n premises) and its tonicity (i.e. if the connective is positive or negative in each
coordinate). The translation rules convert a proxy occurring in the premise
(either the comma or a relational atom) into a logical connective (namely, the
main connective of the principal formula occurring in the conclusion).

Below we list the non-invertible versions of the tonicity logical rules. We
sometimes refer to them as multiplicative rules.
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Non-invertible tonicity propositional rules

Γ, x : A ⊢ ∆ Γ′, x : B ⊢ ∆′
∨L

Γ,Γ′, x : A ∨B ⊢ ∆,∆′
Γ ⊢ x : A,∆ Γ′ ⊢ x : B,∆′

∧R
Γ,Γ′, ⊢ x : A ∧B,∆,∆′

Γ ⊢ x : A,∆ Γ′, x : B ⊢ ∆′
→L

Γ,Γ′, x : A→ B ⊢ ∆,∆′

Non-invertible tonicity modal rules∗

xRy,Γ, y : A ⊢ ∆
2L

xRy,Γ, x : 2A ⊢ ∆

xRy,Γ ⊢ y : A,∆
3R

xRy,Γ ⊢ x : 3A,∆

Lemma 2.2 For any modal formula A, the sequent Γ, x : A ⊢ x : A,∆ is
derivable in G3K.

Proof. By induction on A. The cases of A := ⊥ and A := p ∈ Prop are
immediate. If A := ∗(A′) where ∗ ∈ {2,→,∨}, then the required proof is ob-
tained by applying, from bottom to top, ∗R to the occurrence of A in succedent
position, followed by a bottom-up application of ∗L to the occurrence of A in
precedent position, and then using the induction hypothesis on each A′ in A′.
Similarly, the required proof if A := ∗(A′) where ∗ ∈ {3,∧}, is obtained by
applying, from bottom to top, ∗L followed by ∗R. 2

Notice that the derivation generated in the proof of the lemma above intro-
duces every subformula of each occurrence of φ via a logical rule, and, modulo
renaming variables, we can assume w.l.o.g. that every new label introduced
proceeding bottom-up be fresh in the entire derivation (and not just in every
branch, as already required by the side conditions of the rule 2R and 3L).
Below we recall the definition of a geometric implication.

Definition 2.3 (cf. [16, Section 3]) A geometric implication is a first-order
sentence of the form

∀x(s→ t),

where both s and t are geometric formulas, i.e. first-order formulas not contain-
ing → or ∀. Geometric implications can be equivalently rewritten as geometric
axioms, namely, sentences of the type

∀x(P1 ∧ ... ∧ Pm → ∃y1M1 ∨ ... ∨ ∃ynMn)

where each Pi is an atomic formula with no free occurrences of any variable
y in y, and Mj is a conjunction of atomic formulas Qj1 ∧ ... ∧ Qjkj

. The rule

scheme corresponding to geometric axioms takes the form

Q1[y1/z1], P ,Γ ⊢ ∆ ... Qn[yn/zn], P ,Γ ⊢ ∆
GR

P,Γ ⊢ ∆

where Qi[yi/zi] denotes the simultaneous replacement of each z in zi with the
corresponding y in yi, in every Q in Qi. In this scheme, the eigenvariables in yi
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are not free in P ,∆,Γ. Rules corresponding to geometric axioms are referred
to as geometric (labelled) rules.

A geometric labelled calculus is any extension of G3K with geometric la-
belled rules.

Theorem 2.4 (cf. [17, Theorem 4.13]) Any geometric labelled calculus pre-
serves cut admissibility.

2.2 Analytic inductive formulas

In this section, we specialize and adapt the definition of analytic inductive
inequality (cf. [12, Definition 55], [9, Definition 2.14], [1, Section 2.3]) to the
language and properties of classical modal logic.

The language of the basic normal modal logic K is recursively defined from
a set Prop of proposition variables as follows:

φ ::= p | ⊥ | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | 3φ | 2φ,
where p ranges over Prop. In what follows, we will need to keep track of
the multiplicity of occurrences of proposition variables in formulas, as well as
the order-theoretic properties of the various coordinates of the term-functions
associated with formulas. Therefore, we will write e.g. ψ(!x) to signify that
each variable in the vector x of placeholder variables occurs exactly once in ψ.
Moreover, we will write e.g. ψ(!x, !y) to mean that ψ (resp. the term-function
ψA in a modal algebra A) is positive (resp. monotone) in each x-coordinate
and negative (resp. antitone) in each y-coordinate. In other contexts, we will
sometimes need to group coordinates according to different criteria. In each
context in which this is the case, we will specifically indicate these criteria.
Negative (resp. positive) Skeleton formulas ψ(!x, !y) (resp. φ(!x, !y)) are defined
by simultaneous recursion as follows:

ψ(!x, !y) ::= x | ¬φ | ψ ∧ ψ | ψ ∨ ψ | φ→ ψ | 2ψ,
φ(!x, !y) ::= x | ¬ψ | φ ∧ φ | φ ∨ φ | 3φ.

Positive Skeleton formulas will sometimes be referred to as negative PIA formu-
las. Definite negative Skeleton (resp. PIA) formulas are defined by simultaneous
recursion as follows:

ψ(!x, !y) ::= x | ¬φ | ψ ∨ ψ | φ→ ψ | 2ψ,
φ(!x, !y) ::= x | ¬ψ | φ ∧ φ | 3φ.

Modulo exhaustively distributing all the other connectives over ∨ and ∧, any
negative Skeleton (resp. PIA) formula can be equivalently rewritten as a con-
junction (resp. disjunction) of definite negative Skeleton (resp. PIA) formulas
(cf. [1, Lemma 2.9]).

Definition 2.5 A modal formula ψ′(p) is (negative) analytic inductive if its
negative normal form (NNF) is ψ(β/!x, δ/!y) such that:

(i) ψ(!x, !y) (which we refer to as the Skeleton of ψ′) is a negative Skeleton
formula, and is monotone both in its x-coordinates and in its y-coordinates;

(ii) each β in β and δ in δ is a negative PIA formula;
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(iii) the term-function δA(!x) associated with each δ(p/!x) in δ is monotone in
each coordinate;

(iv) the term-function βA(!x, !y) associated with each β in β is monotone in
each x-coordinate and antitone in each y-coordinate;

(v) the transitive closure <Ω of the relation Ω (defined below) is a well-founded
strict order on p, where for all p, p′ in p, (p, p′) ∈ Ω iff some β ∈ β exists
s.t. β = β(p1/!x, p2/!y) and p′ occurs in p1 and p occurs in p2, and the
lowest common node in the branches ending in p′ and p in the generation
tree of β is a ∧-node.

In an analytic inductive formula ψ′ as above, the variable occurrences in the
y-coordinates of each β in β are referred to as the critical occurrences 2 in
ψ′. All the other variable occurrences are non-critical. An analytic inductive
formula is Sahlqvist if the relation Ω is empty, and is definite if its Skeleton is
definite.

As discussed above, for any analytic inductive formula ψ′ := ψ(β/!x, δ/!y),
any negative PIA subformula β and δ of ψ′ can be equivalently rewritten as
a disjunction of definite negative PIA formulas (cf. [1, Lemma 2.9]). Hence,
once these ∨-nodes have reached the root of β by distributing all the other
connectives over them, they can all be considered part of the Skeleton of ψ′.
Hence, when representing an analytic inductive formula ψ′ as ψ(β/!x, δ/!y), we
can assume w.l.o.g. that each β and δ is a definite negative PIA formula, and
that there is exactly one critical occurrence of a proposition variable in each β
in β. To emphasise this, we sometimes write β as βp.

Example 2.6 (i) The formula ψ′(p) := 3p → 2p can be rewritten in NNF
as ψ(β/x, δ/y) where ψ(x, y) := 2x ∨ 2y, and β(p) := ¬p, and δ(p) := p,
and is hence (negative) analytic Sahlqvist.

(ii) The formula ψ′(p) := 2p → 3p can be rewritten in NNF as ψ(β/x, δ/y)
where ψ(x, y) := x ∨ y, and β(p) := 3¬p and δ(p) := 3p, and is hence
(negative) analytic Sahlqvist.

(iii) The formula ψ′(p) := 32p → 23p can be rewritten in NNF as
ψ(β/x, δ/y) where ψ(x, y) := 2x ∨ 2y, and β(p) := 3¬p and δ(p) := 3p,
and is hence (negative) analytic Sahlqvist.

(iv) The formula ψ′(p1, p2) := 2(p1 → p2) → (2p1 → 2p2) can be rewritten
in NNF as ψ(β1/x1, β2/x2, δ/y) where ψ(x1, x2, y) := x1 ∨ (x2 ∨2ty), and
β1(p1, p2) := 3y(p1 ∧ ¬p2) and β2(p1) := 3¬p1 and δ(p2) := p2, and is
hence (negative) analytic inductive with p1 <Ω p2.

(v) The formula ψ′(p1, p2) := 2(2p1 → p2) ∨ 2(2p2 → p1) can be rewritten

2 In the more general setting of (D)LE-logics (see e.g. [7][6]), inductive and Sahlqvist formu-
las/inequalities are defined parametrically in every order-type ε on the proposition variables
occurring in the given formula/inequality. However, in the Boolean setting this is not needed,
and the definition given here corresponds to the general definition relative to the order-type
ε(p) = 1 for each p ∈ Prop.
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in NNF as ψ(β1/x1, β2/x2, δ1/y1, δ2/y2) where ψ(x1, x2, y1, y2) := 2(x1 ∨
y2)∨2(x2∨y1), and β1(p1) := 3¬p1 and β2(p2) := 3¬p2, and δ1(p1) := p1
and δ(p2) := p2, and is hence (negative) analytic Sahlqvist.

Theorem 2.7 (cf. [11, Theorem 37]) Every (analytic) inductive formula has
a first-order correspondent.

3 The algorithm MASSA

In this section, we describe the algorithm MASSA. The steps (i)-(iv) generate
the analytic labelled rule r associated with the input modal formula φ. Step
(v) describes how to read off the geometric implication from the rule r.

(i) Logical rules. For any modal formula φ, consider the identity end-
sequent x : φ ⊢ x : φ where the formula in precedent position is coloured
red and the formula in succedent position is coloured blue. Let π′

φ be a
derivation of x : φ ⊢ x : φ obtained by applying the procedure described
in the proof of Lemma 2.2, where, as discussed early on, each subformula
of φ and φ has been introduced in the proof via a logical rule, and every
new label introduced proceeding bottom-up must be fresh in the entire
proof (and not just in every branch). 3 At each rule application in π′

φ,
propagate the colour of the principal formula to the auxiliary formulas.
Prune the proof-tree π′

φ, thereby generating a new proof-tree πφ with
the same structure as π′

φ, but such that each tonicity rule is applied in
multiplicative form (cf. Section 2.1).

(ii) Atomic cuts + PIA parts. Consider the leaves of πφ and perform all
possible cuts on atomic red-coloured formulas x : p occurring in πφ. These
cuts generate new axioms of the form Γ, y = z, y : p ⊢ z : p,∆ in which
the new relational atom y = z appears in the conclusion of each cut with
cut formulas y : p and z : p. If a proposition variable x : p occurs only
positively or only negatively in φ, then cut either with an atomic initial
rule of the form x : ⊥ ⊢ x : p or with x : p ⊢ ⊤. Collect all the conclusions
of these cut-applications, and use them as leaves in a (cut-free) forward-
chaining proof-search with goal ⊢ x : φ, where only tonicity rules are
used. 4 Collect all the attempts π iφ generated in this way.

(iii) Skeleton parts. Perform a backward-chaining proof search on ⊢ x : φ
in which only translation rules are used. 5

(iv) Skeleton-PIA merging. A merging point is a tuple of sequents

3 The latter requirement guarantees that all the relevant information contained in the end-
sequent is maintained (and exploited in rule form) in π′

φ.
4 Notice that we are compositionally constructing all the maximal PIA subformulas, that
here coincide with those subformulas that can be constructed using only tonicity rule. Notice
that whenever an atomic subformula of φ is uniform, it is substituted with ⊥ (resp. ⊤) if in
succedent (resp. precedent) position, so it is not strictly speaking a subformula of φ.
5 Here we are compositionally destroying all the Skeleton connectives namely 3 and ∧ if
occurring in precedent position, and 2,∨ and → if occurring in succedent position.
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(S1, ..., Sn, S), of which S1, ..., Sn are the premises and S the conclusion,
and such that the set of labelled formulae of S is the union of the sets of
labelled formulae of S1, ..., Sn. Verify whether (S1, ..., Sn, S) is a merging
point, where the Si are the endsequents of all the proof-trees π

i
φ generated

in item (ii), and S is the uppermost sequent of the proof-section generated
in item (iii). If (S1, ..., Sn, S) is a merging point, then it is an application of
the rule r in output, which provides the missing step in proof of ⊢ x : φ.
Let Ri and R be the relational parts of Si and S respectively. The rule

r associated with the merging point is:

R1,Γ1 ⊢ ∆1 ... Rn,Γn ⊢ ∆nr
R,Γ1, . . . ,Γn ⊢ ∆1, . . . ,∆n

(v) Reading off the geometric axiom from the rule. Let Fi be defined
as the conjunction of the relational atoms in Ri in case in Si there are no
occurrences of y : ⊥ in precedent position or of y : ⊤ in succedent position
(an empty conjunction will be regarded as ⊤). Otherwise, let Fi be ⊥.
If in S there are formulas y : ⊥ (resp. y : ⊤) in precedent (resp. succe-
dent) position, then the required geometric formula is ⊤. Otherwise, the
geometric axiom which we can read off from the rule r is:

∀x[
∧
R(x) →

∨
i ∃yiFi(x, yi))].

Steps (i) and (ii) can be intuitively justified as follows. Whenever φ is a
theorem of K, the calculus G3K derives ⊢ x : φ without any additional rule.
Otherwise, we need to identify some assumptions Γ which allow us to derive
Γ ⊢ x : φ. Clearly, theminimal set of assumptions Γ under which φ is derivable
is Γ = {x : φ}. Then, at step (i), we equivalently transform the additional
assumption x : φ into pure relational information and also information stored
in the atomic propositions of the form x : p. The cuts performed in step (ii)
extract additional pure relational information from these atomic propositions.

Theorem 3.1 The algorithm MASSA successfully terminates whenever it re-
ceives a definite analytic inductive formula of classical modal logic in input, in
which case, the geometric axiom read off from the output rule is, modulo logical
equivalence, the first-order correspondent of the input formula.

Proof. see Appendix A. 2

4 Examples

In the present section, we illustrate the algorithm MASSA by running it on
some definite analytic inductive formulas. Let us start with the Church-Rosser
axiom (cf. Example 2.6 (iii)).

Step (i). We build the proof π′
φ using (invertible) additive rules. Below

we split the derivation tree into three proof sections: the numbers assigned to
each sequent allow to uniquely reconstruct the original tree.
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Idt:A
(7.1) xRy, yRt, y : 2A1, t : A1 ⊢ t : A3, x : 32A3, x : 23A2

2L
(6.1) xRy, yRt, y : 2A1 ⊢ t : A3, x : 32A3, x : 23A2

2R
(5.1) xRy, y : 2A1 ⊢ y : 2A3, x : 32A3, x : 23A2

3R
(4.1) xRy, y : 2A1 ⊢ x : 32A3, x : 23A2

3L
x : 32A1 ⊢ x : 32A3, x : 23A2

(3.1)
Idw:A

(7.2) xRz, zRw, x : 32A1, x : 23A4, w : A4 ⊢ w : A2, z : 3
3R

(6.2) xRz, zRw, x : 32A1, x : 23A4, w : A4 ⊢ z : 3A2
3L

(5.2) xRz, x : 32A1, x : 23A4, z : 3A4 ⊢ z : 3A2
2L

(4.2) xRz, x : 32A1, x : 23A4 ⊢ z : 3A2
2R

x : 32A1, x : 23A4 ⊢ x : 23A2

(3.2)
(3.1)

x : 32A1 ⊢ x : 32A3, x : 23A2

(3.2)

x : 32A1, x : 23A4 ⊢ x : 23A2→L
(2) x : 32A1, x : 32A3 → 23A4 ⊢ x : 23A2 →R
(1) x : 32A3 → 23A4 ⊢ x : 32A1 → 23A2

We prune the proof tree π′
φ obtaining the “multiplicative” proof tree πφ.

Idt:A
(7.1) xRy, yRt, t : A1 ⊢ t : A3

2L
(6.1) xRy, yRt, y : 2A1 ⊢ t : A3

2R
(5.1) xRy, y : 2A1 ⊢ y : 2A3

3R
(4.1) xRy, y : 2A1 ⊢ x : 32A3

3L
(3.1) x : 32A1 ⊢ x : 32A3

Idw:A
(7.2) xRz, zRw,w : A4 ⊢ w : A2

3R
(6.2) xRz, zRw,w : A4 ⊢ z : 3A2

3L
(5.2) xRz, z : 3A4 ⊢ z : 3A2

2L
(4.2) xRz, x : 23A4 ⊢ z : 3A2

2R
(3.2) x : 23A4 ⊢ x : 23A2→L

(2) x : 32A1, x : 32A3 → 23A4 ⊢ x : 23A2 →R
(1) x : 32A3 → 23A4 ⊢ x : 32A1 → 23A2

Step (ii). We consider the leaves (7.1) and (7.2) and perform all the atomic
cuts on red coloured formulas.

Idt:A
(7.1) xRy, yRt, t : A1 ⊢ t : A3

Idw:A
(7.2) xRz, zRw,w : A4 ⊢ w : A2

Cut(A3, A4)
xRy, yRt, xRz, zRw, t = w; t : A1 ⊢ w : A2

We now construct the upper portion of the proof π1
φ.

6 In this step, we
build up the PIA sub-formulas of φ.

π1
φ

xRy, yRt, xRz, zRw, t = w, t : A ⊢ w : A
3R

xRy, yRt, xRz, zRw, t = w, t : A ⊢ z : 3A
2L

xRy, yRt, xRz, zRw, t = w, y : 2A ⊢ z : 3A

6 Notice that we could also construct a proof with a different order of rule applications (e.g. in
this case, proceeding top down, first we apply 2L and then 3R). Such trivial permutations
of rules generate, strictly speaking, different syntactic proofs but do not change the merging
point. So, it is enough to pick one of those proofs.
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Step (iii). In this step, we work on the Skeleton of φ.

xRz, xRy , y : 2A ⊢ z : 3A
3L

xRz , x : 32A ⊢ z : 3A
2R

x : 32A ⊢ x : 23A →R⊢ x : 32A→ 23A

Step (iv). We now reach a merging point, and hence generate the rule Dir:

xRy, yRt, xRz, zRw, t = w, t : A ⊢ w : A
3R

xRy, yRt, xRz, zRw, t = w, t : A ⊢ z : 3A
2L

xRy, yRt, xRz, zRw, t = w, y : 2A ⊢ z : 3A
Dir

xRy, xRz , y : 2A ⊢ z : 3A
3L

xRz , x : 32A ⊢ z : 3A
2R

x : 32A ⊢ x : 23A →R⊢ x : 32A→ 23A

Step (v). Finally, the FO-correspondent reads

∀x∀y∀z[xRy ∧ xRz → ∃t∃w(yRt ∧ zRw ∧ t = w)],

which is equivalent to directedness.
Let us execute MASSA on the ‘functionality’ axiom (cf. Example 2.6 (i)).

The pruned proof-tree generated in the first step is the following:
Idy:A

xRy, y : A ⊢ y : A
3R

xRy, y : A ⊢ x : 3A
3L

x : 3A ⊢ x : 3A

Idz:AxRz, z : A ⊢ z : A
2L

xRz, x : 2A ⊢ z : A
2R

x : 2A ⊢ x : 2A →L
x : 3A→ 2A, x : 3A ⊢ x : 2A →R
x : 3A→ 2A ⊢ x : 3A→ 2A

The leaves on which we perform the only possible cut are written below:

xRy, y : A ⊢ y : A xRz, z : A ⊢ z : A.

After performing step (ii) and (iii), the merging point is reached, which gener-
ates the following derivation and rule (step (iv)):

y = z, xRy, xRz, y : A ⊢ z : A
Fun

xRy, xRz, y : A ⊢ z : A
3L

xRz, x : 3A ⊢ z : A
2R

x : 3A ⊢ x : 2A →R⊢ x : 3A→ 2A

from which the first-order correspondent (step (v)) below can be read off:

∀x∀y∀z(xRy ∧ xRz → y = z).

Merging points do not need to be unary. To see this, let us consider the
formula 2(2A → B) ∨ 2(2B → A) (cf. Example 2.6 (v)). After performing
step (i), the leaves of π are as follows:

xRy, yRz, z : A ⊢ z : A xRt, t : A ⊢ t : A xRt, tRw,w : B ⊢ w : B xRy, y :
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B ⊢ y : B

After performing steps (ii) and (iii), we generate a binary merging point
and we provide the following derivation (step (iv)):

xRy, yRz, xRt, z = t, z : A ⊢ t : A

xRy, yRz, xRt, z = t, y : 2A ⊢ t : A

xRt, tRw, xRy, y = w,w : B ⊢ y : B

xRt, tRw, xRy, y = w, t : 2B ⊢ y : B

xRy, xRt, y : 2A, t : 2B ⊢ y : B, t : A

xRy, xRt, y : 2A ⊢ y : B, t : 2B → A

xRy, xRt ⊢ y : 2A→ B, t : 2B → A

xRy ⊢ y : 2A→ B, x : 2(2B → A)

⊢ x : 2(2A→ B), x : 2(2B → A)

⊢ x : 2(2A→ B) ∨ 2(2B → A)

The first order correspondent (step (v)) reads

∀x∀y∀t(xRy ∧ xRt→ ∃z(yRz ∧ z = t) ∨ ∃w(tRw ∧ y = w))

which is equivalent to

∀x∀y∀t(xRy ∧ xRt→ yRt ∨ tRy).
The examples discussed so far are all Sahlqvist. However, MASSA is suc-

cessful on (definite analytic) formulas which are properly inductive, such as the
axiom K := 2(A → B) → (2A → 2B). After performing step (i), the leaves
of πK are as follows:

xRz, z : A ⊢ z : A xRy, y : A ⊢ y : A xRy, y : B ⊢ y : B xRt, t : B ⊢ t :
B

After performing steps (ii) and (iii), we reach a merging point and hence
the rule deriving K as follows (step (iv)):

xRz, zRy, y = z, z : A ⊢ y : A

xRz, zRy, y = z, x : 2A ⊢ y : A xRy, xRt, t = y, y : B ⊢ t : B

xRt, xRy, xRz, t = y, t = z, y : A→ B, x : 2A ⊢ t : B

xRt, xRy, xRz, t = y, t = z, x : 2(A→ B), x : 2A ⊢ t : B
K

xRt, x : 2(A→ B), x : 2A ⊢ t : B

x : 2(A→ B), x : 2A ⊢ x : 2B

x : 2(A→ B) ⊢ x : 2A→ 2B

⊢ x : 2(A→ B) → (2A→ 2B)

The first-order correspondent (step (v)) reads

∀x∀t(xRt→ ∃y∃z(xRy ∧ xRz ∧ t = y ∧ t = z))

which is equivalent to ⊤ as expected, since the input formula K is derivable in
G3K, i.e. is valid in every Kripke frame.

Let us finish this section by discussing a couple of unsuccessful MASSA runs;
let us try and run MASSA on the (non inductive and famously non elementary,
see [22]) McKinsey formula 23A→ 32A. The first step produces the leaves

xRy, yRz, z : A ⊢ z : A xRw,wRt; t : A ⊢ t : A,
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but after performing the cut, at step (ii) and (iii) we get stuck:

xRy, yRz, xRw,wRt, z = t, z : A ⊢ t : A

???
x : 23A ⊢ x : 32A
⊢ x : 23A→ 32A

We cannot proceed bottom-up since we do not have the necessary relational
information, and we cannot proceed top-down without violating the side con-
ditions of G3K.

When we take as input the (Sahlqvist but not analytic) formula A→ 32A,
the first step produces the leaves

x : A ⊢ x : A xRw,wRt; t : A ⊢ t : A.

Again, after performing the cut, we cannot proceed further:

xRw,wRt, x = t, x : A ⊢ t : A

???
x : A ⊢ x : 32A
⊢ x : A→ 32A

5 Conclusions

Related work. The results in the present paper pertain to a larger line of
research in structural proof theory focusing on the uniform generation of ana-
lytic rules for classes of axiomatic extensions in different (nonclassical) logics,
which includes e.g., [21,23,18,16,17] in the context of sequent and labelled cal-
culi, [2,14,15] in the context of sequent and hypersequent calculi, and [13,3,12]
in the context of (proper) display calculi. We refer to [1] for an overview of
this literature.

Range of applicability. We conjecture that the present approach extends to
the analytic inductive axiomatic extensions of the basic normal and regular LE-
logics (cf. [8]), so, in particular, to the case of intermediate logics [10], and also
to a large class of (substructural) non-normal modal logics. In future work, we
plan to explore this direction. Moreover, we plan to define (invertible) transla-
tions between proofs of different calculi modulo intermediate translations into
a suitable calculus in the language of ALBA (as we have done in Appendix A).
We also intend to extend the present approach to capture inductive formulas
[12, Definition 16], a class of formulas strictly larger than analytic inductive
formulas. 7
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A Proof of Theorem 3.1

Main goal. In the present section, we show that, if the algorithm MASSA
receives a definite analytic inductive formula ψ′ in input, it successfully reaches
a merging point in step (iv), and hence it outputs a geometric rule r which
derives ψ′ when added to G3K , and from which the first-order correspondent
of ψ′ (which exists, cf. [11]) can be read off. In fact, we will prove even more;
namely, that a cut-free derivation of ψ′ can be effectively generated in G3K+r,
and this derivation has a specific shape.

Our proof will make use of the fact that the first-order correspondent of a
generic analytic inductive formula can be represented in the language of the
algorithm ALBA [4]. To prove the required statement, it is enough to show
that the merging point is reached, and the geometric axiom that we read off
from r is effectively recognizable as the first-order correspondent of ψ′. To
guarantee this effective recognizability, we also translate G3K in a format set
in the language of ALBA (cf. [9, Section 2.5]).

Following the conventions and notation of Section 2.2, we represent ψ′ as
ψ(β, δ). The algorithm ALBA is guaranteed to succeed in computing the first-
order correspondent of ψ′ (cf. [7, Theorem 8.8]), e.g. via the following run,
which, for the sake of simplicity, we execute under the assumption that ψ′(p)
is Sahlqvist, and each p ∈ p occurs both positively and negatively. In what
follows, (vectors of) variables i, j, h, and k, referred to as nominal variables,
are interpreted in Kripke frames as possible worlds, or equivalently as atoms
(i.e. completely join-irreducible elements) of the complex algebra of any Kripke
frame, while (vectors of) variables l, m, n and o, referred to as conominal
variables, are interpreted in Kripke frames as complements of possible worlds,
or equivalently as co-atoms (i.e. completely meet-irreducible elements) of the
complex algebra of any Kripke frame. Moreover, for every definite negative
PIA formula βp (where the subscript indicates the single critical occurrence of
a proposition variable p), the term RA(βp)(!u) is a formula in the language of
ALBA the associated term function of which on perfect algebras A (i.e. on com-
plex algebras of Kripke frames) is characterized by the following equivalence:
βA(b/!p) ≤ a iff (RA(β))A(a) ≤ b for every a, b ∈ A (cf. [1, Definition 2.15]).

∀p[⊤ ≤ ψ(β, δ)]

iff ∀p∀n∀o[(βp ≤ n & δ(p) ≤ o) ⇒ ⊤ ≤ ψ(n,o)]

iff ∀p∀n∀o[(RA(βp)(n) ≤ p & δ(p) ≤ o) ⇒ ⊤ ≤ ψ(n,o)]

iff ∀n∀o[δ(
∨
RA(βp)(n)/p) ≤ o ⇒ ⊤ ≤ ψ(n,o)]

iff ∀n∀o[
∨
δ(RA(βp)(n)/p) ≤ o ⇒ ⊤ ≤ ψ(n,o)]

iff ∀n∀o[
˘

(δ(RA(βp)(n)/p) ≤ o) ⇒ ⊤ ≤ ψ(n,o)]

iff ∀j∀n∀o[
˘

(δ(RA(βp)(n)/p) ≤ o) ⇒ j ≤ ψ(n,o)]

iff ∀j∀n∀o[ψ(n,o) ≤ ¬j ⇒
˙

(¬o ≤ δ(RA(βp)(n)/p))]

Once the proposition variables have been eliminated, any of the conditions
above can be translated in the first-order frame correspondence language of
Kripke frames (see [6] for details). A moment’s reflection will convince the
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reader that the ensuing implication is geometric. Our strategy will hinge on
representing the run generating r so as to read off the last line in the compu-
tation above.

Labelled calculus in the language of ALBA. In the present section, we
introduce rules for a labelled calculus in which the relational information is
captured via pure inequalities (i.e. inequalities in which the only variables oc-
curring in formulas are nominal and conominals) in the language of ALBA. In
order to match the level of generality used to describe ALBA runs on generic
definite analytic inductive (Salhqvist) formulas, we find it convenient to define
this calculus via left- and right-introduction rules for definite Skeleton and PIA
formulas.

In what follows, ψ(!x, !y) (resp. φ(!x, !y)) is a definite negative (resp. pos-
itive) Skeleton formula which is monotone in its x-coordinates and antitone
in its y-coordinates. To make notation lighter, we will write e.g. ψ(n,h) for
ψ(n/!x,h/!y).

Γ,h ≤ A,B ≤ n ⊢ j ≤ ψ(n,h),∆
ψR

Γ ⊢ j ≤ ψ(B,A),∆

Γ,h ≤ A,B ≤ n ⊢ φ(h,n) ≤ m,∆
φL

Γ ⊢ φ(A,B) ≤ m,∆(
Γ, j ≤ ψ(B,A) ⊢ hj ≤ Aj , j ≤ ψ(n,h),∆

)
j

(
Γ, j ≤ ψ(B,A) ⊢ Bi ≤ ni, j ≤ ψ(n,h),∆

)
i
ψL

Γ, j ≤ ψ(B,A) ⊢ j ≤ ψ(n,h),∆(
Γ, φ(A,B) ≤ m ⊢ hi ≤ Ai, φ(h,n) ≤ m,∆

)
i

(
Γ, φ(A,B) ≤ m ⊢ Bj ≤ nj , φ(h,n) ≤ m,∆

)
j φR

Γ, φ(A,B) ≤ m ⊢ φ(h,n) ≤ m,∆

where the index i (resp. j) ranges over the length of the vector x (resp. y),
and no variable in n or in h occurs in the conclusion of ψR or φl. The
soundness of ψR hinges on the fact that, on perfect (complex) modal alge-
bras A, the term-function ψA(!x, !y) associated with ψ(!x, !y) is completely
meet-preserving (resp. join-reversing), hence monotone (resp. antitone), in
each x-coordinate (resp. y-coordinate), and moreover, perfect algebras are
completely join-generated (resp. meet-generated) by their completely join-
irreducible (resp. meet-irreducible) elements. Thus,

ψA(BA, AA) =
∧

{ψA(n, h) | h ∈ J∞(A), n ∈M∞(A), h ≤ AA, BA ≤ n},

and hence, for any j ∈ J∞(A), the inequality j ≤ ψA(BA, AA) holds iff
j ≤ ψA(n, h) for all h ∈ J∞(A) and n ∈M∞(A) such that h ≤ AA and BA ≤ n.
Similarly, the soundness of φL hinges on the fact that the term-function
φA(!x, !y) associated with φ(!x, !y) is completely join-preserving (resp. meet-
reversing), hence monotone (resp. antitone), in each x-coordinate (resp. y-
coordinate). The soundness of ψL (resp. φR) follows from the coordinate-wise
monotonicity/antitonicity of the term-functions ψA and φA.

The rule ψR can be regarded as a right-introduction rule, which, in par-
ticular, can be instantiated to the counterparts of the rules 2R, ∨R, →R of
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G3K when ψ(B,A) := 2B, ψ(B,A) := B1 ∨ B2, ψ(B,A) := A → B, respec-
tively. In this context, the pure inequality j ≤ ψA(n,h) captures the relational
information. For instance, if ψ(B,A) := 2B, then j ≤ ψA(n,h) is j ≤ 2n,
which translates on Kripke frames as {x} ⊆ (R−1[{y}cc])c, i.e. x /∈ R−1[y],
i.e. ¬(xRy). If ψ(B,A) := A → B, then j ≤ ψA(n,h) is j ≤ h → n, which is
equivalent to j∧h ≤ n, which translates on Kripke frames as {x}∩{y} ⊆ {z}c,
i.e. x ̸= y or x ̸= z. Similarly, φL can be regarded as a left-introduction rule
and can be instantiated to the counterparts of the rules 3L, ∧L of G3K.

Step (i) + cuts. In the present section, we execute the first phase of MASSA
as indicated in Section 3, and derive the axiom j ≤ ψ′ ⊢ j ≤ ψ′ for an arbitrary
definite negative analytic Sahlqvist formula. For simplicity, we assume that
ψ′ := ψ(β, δ) is in NNF with ψ(!x, !y) positive in each x in x and each y in y,
and for any q, q1 ∈ Prop, we let p := ¬q, p1 := ¬q1, etc.(
β ≤ n, δ ≤ o, j ≤ ψ(β, δ) ⊢ j ≤ ψ(n,o), βn ≤ nn

)
n

(
β ≤ n, δ ≤ o, j ≤ ψ(β, δ) ⊢ j ≤ ψ(n,o), δo ≤ oo

)
o ψL

β ≤ n, δ ≤ o, j ≤ ψ(β, δ) ⊢ j ≤ ψ(n,o)
ψR

j ≤ ψ(β, δ) ⊢ j ≤ ψ(β, δ)

where n (resp. o) ranges over the length of x (resp. y). Before proceeding on
each branch, we prune the proof-tree as follows:(

βn ≤ nn ⊢ j ≤ ψ(n,o), βn ≤ nn

)
n

(
δo ≤ oo ⊢ j ≤ ψ(n,o), δo ≤ oo

)
o ψL

β ≤ n, δ ≤ o, j ≤ ψ(β, δ) ⊢ j ≤ ψ(n,o)
ψR

j ≤ ψ(β, δ) ⊢ j ≤ ψ(β, δ)

Now we proceed on each branch separately. The assumption that the input
formula ψ′ is Sahlqvist entails that there are no non-critical occurrences of
proposition variables in each β in β (which, as discussed in Section 2.2, can
be assumed w.l.o.g. to be a definite negative PIA formula containing exactly
one critical occurrence of a proposition variable). Likewise, each δ in δ can be
assumed w.l.o.g. to be a definite negative PIA formula which only contains non-
critical occurrences. Thus, the branches of the proof-tree continue as follows
for each βn and δo up to the leaves:

p ≤ l ⊢ p ≤ l, j ≤ ψ(n,o), βn(∅, l) ≤ nn
βnR

βn(∅, p) ≤ nn, p ≤ l ⊢ βn(∅, l) ≤ nn, j ≤ ψ(n,o)
βnL

βn(∅, p) ≤ nn ⊢ βn(∅, p) ≤ nn, j ≤ ψ(n,o)(
kk ≤ qk ⊢ kk ≤ qk, j ≤ ψ(n,o), δo(k,∅) ≤ oo

)
k

δoR
δo(q,∅) ≤ oo,k ≤ q ⊢ δo(k,∅) ≤ oo, j ≤ ψ(n,o)

δoL
δo(q,∅) ≤ oo ⊢ δo(q,∅) ≤ oo, j ≤ ψ(n,o)

Next, we perform all the possible cuts between the leaves of the proof-tree
described above. The cut formulas involved in each of these cuts will necessarily
be one critical and one non-critical occurrence of the same proposition variable.
Thus, these cuts can be executed as follows:
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p ≤ l ⊢ p ≤ l, j ≤ ψ(n,o), βn(∅, l) ≤ nn

⊢ ¬l ≤ p, p ≤ l, j ≤ ψ(n,o), βn(∅, l) ≤ nn

kk ≤ qk ⊢ kk ≤ qk, j ≤ ψ(n,o), δo(k,∅) ≤ oo

⊢ qk ≤ ¬kk,kk ≤ qk, j ≤ ψ(n,o), δo(k,∅) ≤ oo

⊢ ¬l ≤ ¬kk,kk ≤ q, p ≤ l, βn(∅, l) ≤ nn, j ≤ ψ(n,o), δo(k,∅) ≤ oo

¬(¬l ≤ ¬kk) ⊢ kk ≤ q, p ≤ l, βn(∅, l) ≤ nn, j ≤ ψ(n,o), δo(k,∅) ≤ oo

kk ≤ ¬l ⊢ kk ≤ q, p ≤ l, βn(∅, l) ≤ nn, j ≤ ψ(n,o), δo(k,∅) ≤ oo

for any n, o and k, where, for each proposition variable, the index k ranges
over the multiplicity of that variable in δo, and qk and p are a negative and
a positive occurrence of that variable, while each kk is a different nominal
variable; however, kk ≤ ¬l translates into {x} ⊆ {y}cc, i.e. x = y, that is, the
cuts above give rise to new axioms.

Steps (ii) - (iv) Next, we start generating the rule corresponding to ψ(β, δ)
by applying the right-introduction rule bottom-up to its Skeleton ψ(!x, !y):

β ≤ n, δ ≤ o ⊢ j ≤ ψ(n,o)
ψR

⊢ j ≤ ψ(β, δ)

Writing it contrapositively, the relational information generated by the
bottom-up application of ψR is exactly the antecedent of the last line in the
ALBA run executed in Section A, which we report here for the reader’s conve-
nience.

∀j∀n∀o[ψ(n,o) ≤ ¬j ⇒
˙
n,o (¬o ≤ δo(RA(βn)(n)/p)].

We claim that every inequality ¬o ≤ δo(RA(βn)(n)/p) in the disjunction of
the succedent of the implication above provides the relational information of a
premise in the rule generated by the algorithm. Indeed, the starting point for
proving this claim is the observation that each such disjunct corresponds to a
certain subset of the axioms generated by the cuts executed at the end of the
first phase. Accordingly, in what follows, we proceed on one such disjunct ¬o ≤
δo(RA(βn)(n)), by identifying the corresponding axioms, and using them as the
leaves of a derivation of the corresponding premise, which we will generate by
successive applications of right-introduction rules on the βs and δs. Below, the
index k ranges over the length of x in δo(!x).(

kk ≤ ¬l ⊢ kk ≤ qk, pk ≤ lk, βk(lk) ≤ nk, δo(k) ≤ o, j ≤ ψ(n,o)
)
k

δoR
δo(q) ≤ o,k ≤ ¬l ⊢ q ≤ l, β(l) ≤ n, δo(k) ≤ o, j ≤ ψ(n,o)

βR
... βR

β(p) ≤ n, δo(q) ≤ o,k ≤ ¬l ⊢ β(l) ≤ n, δo(k) ≤ o, j ≤ ψ(n,o)

To see that we have reached a merging point (cf. Section 3), observe
that, by construction, the set of the non-pure inequalities of S :=
β ≤ n, δ ≤ o ⊢ j ≤ ψ(n,o) is the union of the non-pure inequalities of the
S(o,n) := β(p) ≤ n, δo(q) ≤ o,k ≤ ¬l ⊢ β(l) ≤ n, δo(k) ≤ o, j ≤ ψ(n,o) asso-

ciated with every disjunct, and the derivations π
(o,n)
ψ′ also corresponding to all
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these disjuncts. Hence, the rule r generated by the algorithm corresponding to
ψ(β, δ) is (

Γ,k ≤ ¬l ⊢ βn(l) ≤ n, δo(k) ≤ o, j ≤ ψ(n,o),∆
)
o,n

Γ ⊢ j ≤ ψ(n,o),∆

where o as before ranges over the number of δs, while the index n ranges over
all possible combinations of βs whose critical proposition variables occurs in δo.
The last line in the derivation above is the premise of the rule r corresponding
to the disjunct ¬o ≤ δo(RA(βn)). To complete the proof, let us show that the
relational information in this premise is equivalent to ¬o ≤ δo(RA(βn)):

Lemma A.1 The following are equivalent for every perfect distributive modal
algebra A, and all formulas δ(!x) and β(!y) such that δ is monotone in each
x-coordinate and each β in β is antitone in y:

(i) A |= ∀k∀l∀n∀o
(
k ≤ ¬l ⊢ β(l) ≤ n, δ(k) ≤ o

)
;

(ii) A |= ∀n∀o
(
¬o ≤ δ(RA(β)(n)) ⊢

)
.

Proof. From (ii) to (i), it is enough to show that if k ∈ J∞(A)k and l ∈
M∞(A)l and n ∈ M∞(A)n and o ∈ M∞(A), such that k ≤ ¬l and ¬n ≤ βA(l)

and ¬o ≤ δA(k), then ¬o ≤ δA(RA(βA)(n)).
The assumption ¬o ≤ δA(k) and the monotonicity of δA imply that it is

enough to show k ≤ RA(βA)(n) for each coordinate of δA. The assumption
¬n ≤ βA(l) is equivalent to βA(l) ≰ n which by adjunction is equivalent to
(RA(β))A(n) ≰ l, i.e. ¬l ≤ (RA(β))A(n). The required inequality then follows
by transitivity, combining the latter inequality with the assumption k ≤ ¬l.

Conversely, let n ∈ M∞(A)n and o ∈ M∞(A) such that ¬o ≤
δA((RA(β))A(n)), and let us find k ∈ J∞(A)k and l ∈ M∞(A)l such that

k ≤ ¬l and ¬n ≤ βA(l) and ¬o ≤ δA(k).
Since δ(!x) is a definite negative PIA formula which is positive in each

coordinate, δA(!x) is completely join-preserving in each coordinate; thus,

¬o ≤ δA((RA(β))A(n)) can be equivalently rewritten as ¬o ≤
∨
{δA(k) | k ∈

J∞(A), k ≤ (RA(β))A(n)}. Since ¬o ∈ J∞(A) and is hence completely join-
prime, the latter inequality is equivalent to ¬o ≤ δA(k) for some k ∈ J∞(A)l

such that k ≤ (RA(β))A(n). Let l := ¬k ∈ M∞(A) for each k in k. Then
k ≤ (RA(β))A(n) iff (RA(β))A(n) ≰ l iff βA(l) ≰ n iff ¬n ≤ βA(l), as re-
quired. 2

The proof of correctness when ψ(β, δ) is properly inductive w.r.t. some
strict order Ω is similar. Consider for instance a formula ψ′(p1, p2) :=
ψ(β1(∅, p1), β2(q1, p2), δ(q2,∅)), with p1 <Ω p2. Running ALBA on ψ′(p1, p2)
yields

∀n1∀n2∀o∀j[ψ(n1,n2,o) ≤ ¬j ⇒ ¬o ≤ δ(RA(β2)(RA(β1)(n1),n2))]

The first phase proceeds as described in section 3, and produces the following
cuts:



De Domenico, Greco 389

p1 ≤ l1 ⊢ p1 ≤ l1, j ≤ ψ(n1,n2,o), β1(∅, l1) ≤ n1

⊢ ¬l1 ≤ p1, p1 ≤ l1, j ≤ ψ(n1,n2,o), β1(∅, l1) ≤ n1

i ≤ q1 ⊢ i ≤ q1, j ≤ ψ(n1,n2,o), β2(i, l2) ≤ n2

⊢ q1 ≤ ¬i, i ≤ q1, j ≤ ψ(n1,n2,o), β2(i, l2) ≤ n2

⊢ ¬l1 ≤ ¬i, i ≤ q1, p1 ≤ l1, β1(∅, l1) ≤ n1, j ≤ ψ(n1,n2,o), β2(i, l2) ≤ n2

i ≤ ¬l1 ⊢ i ≤ q1, p1 ≤ l1, β1(∅, l1) ≤ n1, j ≤ ψ(n1,n2,o), β2(i, l2) ≤ n2

k ≤ q2 ⊢ k ≤ q2, j ≤ ψ(n1,n2,o), δ(k,∅) ≤ o

⊢ q2 ≤ ¬k,k ≤ q2, j ≤ ψ(n1,n2,o), δ(k,∅) ≤ o

p2 ≤ l2 ⊢ p2 ≤ l2, j ≤ ψ(n1,n2,o), β2(i, l2) ≤ n2

⊢ ¬l2 ≤ p2, p2 ≤ l2, j ≤ ψ(n1,n2,o), β2(i, l2) ≤ n2

⊢ ¬l2 ≤ ¬k,k ≤ q2, p2 ≤ l2, δ(k,∅) ≤ o, j ≤ ψ(n1,n2,o), β2(i, l2) ≤ n2

k ≤ ¬l2 ⊢ k ≤ q2, p2 ≤ l2, δ(k,∅) ≤ o, j ≤ ψ(n1,n2,o), β2(i, l2) ≤ n2

Using the new axioms, let us complete the second phase as follows:

i ≤ ¬l1 ⊢ i ≤ q1, p1 ≤ l1, β1(∅, l1) ≤ n1, j ≤ ψ(n1,n2, o), β2(i, l2) ≤ n2

i ≤ ¬l1, β1(∅, p1) ≤ n1 ⊢ i ≤ q1, β1(∅, l1) ≤ n1, j ≤ ψ(n1,n2, o), β2(i, l2) ≤ n2

k ≤ ¬l2 ⊢ k ≤ q2, p2 ≤ l2, δ(k,∅) ≤ o, j ≤ ψ(n1,n2, o), β2(i, l2) ≤ n2

k ≤ ¬l2, δ(q2,∅) ≤ o ⊢ p2 ≤ l2, δ(k,∅) ≤ o, j ≤ ψ(n1,n2, o), β2(i, l2) ≤ n2

i ≤ ¬l1,k ≤ ¬l2, β1(∅, p1) ≤ n1, δ(q2,∅) ≤ o, β2(q1, p2) ≤ n2 ⊢ β1(∅, l1) ≤ n1, j ≤ ψ(n1,n2, o), β2(i, l2) ≤ n2, δ(k,∅) ≤ o

β1(∅, p1) ≤ n1, δ(q2,∅) ≤ o, β2(q1, p2) ≤ n2 ⊢ j ≤ ψ(n1,n2, o)

⊢ j ≤ ψ(β1(∅, p1), β2(q1, p2), δ(q2,∅))

Notice that the dashed line above is a successful merging point where there
is only one premise. Hence, the output rule is:

Γ, i ≤ ¬l1,k ≤ ¬l2 ⊢ β1(∅, l1) ≤ n1, j ≤ ψ(n1,n2,o), β2(i, l2) ≤ n2,∆(k,∅) ≤ o,Γ

Γ ⊢ j ≤ ψ(n1,n2,o),∆

With an argument similar to the one used to prove the equivalence in
Lemma A.1, it can be shown that the relational information of the premise
of the rule above is equivalent to ¬o ≤ δ(RA(β2)(RA(β1)(n1),n2)).
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