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abstract. In this paper we prove that Japaridze’s Polymodal Logic is

PSPACE-decidable. To show this, we describe a decision procedure for

satisfiability on hereditarily ordered frames that can be applied to obtain

upper complexity bounds for various modal logics.
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1 Introduction

In this paper we investigate the complexity of well-known propositional poly-
modal provability logic GLP. This logic was introduced in [8], and now plays
a significant role in proof theory (see [4, 1]). In [8, 7], the logic GLP was
proved to be decidable, the question about its complexity was left open.
The PSPACE-decidability of GLP was conjectured in the recent paper [2].

The logic GLP is known to be Kripke-incomplete. In [2], it was shown
that GLP is polynomial-time reducible to a logic J with an explicit Kripke
semantics: J is characterized by a class of finite hereditary orders. This
class is defined as follows: a strict partial order is a hereditary order; a
strictly ordered (by a new relation, which is also a strict partial order) set
of hereditary orders is a hereditary order.

This paper proves the PSPACE-decidability of J. We propose a technique
allowing us to check modal satisfiability on frames obtained by “hereditarily
ordering”. This approach seems to be applicable to a large class of transitive
logics: in section 4 we give semantical conditions, sufficient for PSPACE-
decidability (Theorems 21 and 22 for the monomodal case, Theorem 35 for
the multi-modal case).

The paper is organized as follows. Section 2 introduces some standard
notions and notations. In section 3 we describe some truth-preserving trans-
formations for ordered sets of frames. In section 4, we introduce a notion of
conditional satisfiability, and show, how it can be applied to obtain decision
procedures for satisfiability on hereditarily ordered frames. First we formu-
late it for the monomodal case and then generalize for the multi-modal case.
In section 5, we apply the described technique to obtain a PSPACE-decision
procedure for J, and thus for GLP.
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2 Preliminaries

We consider propositional normal modal logics with finitely or countably
many modalities. Modal formulas are built using the connectives ⊥ (false),
→ (implication), a countable set of unary connectives 31,32, . . . (dia-
monds) and a countable set of propositional variables PV = {p1, p2, . . . }.
All other connectives are defined in the standard way, in particular
2iψ = ¬3i¬ψ. An N -formula is a formula that contains only connectives
31, . . . ,3N ,→,⊥.

An N -frame F is a tuple (W,R1, . . . , RN ), where W 6= ∅, R1, . . . , RN ⊆
W ×W ; R1, . . . , RN are called accessability relations of F.

In this paper we assume that all considered accessability relations are
transitive.

An N -model M over a frame F is a pair (F, θ), where θ : PV → 2W . The
notations w ∈ M, w ∈ F mean w ∈W .

A weak submodel M′ of M is a model ((W ′, R′1, . . . , R
′
N ), η), such that

W ′ ⊆W , R′1 ⊆ R1, . . . , R
′
N ⊆ RN , and η(p) = θ(p) ∩W ′ for any p ∈ PV .

For R ⊆ W ×W , V ⊆ W , by R|V we denote the restriction R to V :
R|V = R ∩ (V × V ). For an N -frame F = (W,R1, . . . , RN ), by F|V we
denote the restriction F to V : F|V = (V,R1|V, . . . , RN |V ). If M is a model
over F, and G is the restriction F to V , then the submodel of M over G is
called the restriction M to V (to G), in symbols, M|G or M|V .

The trues of a formula at a point in a model, and also the validity of a
formula in a frame (in a class of frames) are defined in the standard way,
see e.g. [3]; in symbols, M, w � ϕ means that ϕ is true at w in M, F � ϕ
means that ϕ is valid in F. Also, for a set of formulas Ψ, F � Ψ means F � ϕ
for any ϕ ∈ Ψ.

For an N -frame F, an N -formula ϕ is satisfiable in F (or F-satisfiable),
if ϕ is true at some point of a model over F. For a class of frames F , ϕ is
satisfiable in F (or F-satisfiable), if ϕ is F-satisfiable for some F ∈ F . For
a logic L, ϕ is L-satisfiable, if ϕ is F-satisfiable for some F � L.

As usual, a cluster in a frame (W,R) is an ∼R-equivalence class, where
∼R = (R∩R−1)∪{(w,w) | w ∈W}. Also, by a cluster we mean a frame
F = (W,W × W ), or a frame ({w},∅) (degenerate cluster). For n ≥ 1,
Cn denotes the n-element cluster (Wn,Wn ×Wn), where Wn = {1, . . . , n};
C0 = ({0},∅).

For a frame F = (W,R), w ∈ W , put R(w) = {w′ | wRw′}. If W =
R(w)∪ {w}, then F is a cone (or rooted frame), and w is called a root of F.

For N -frames F and G, the notation g : F ։ G means that g is a p-
morphism from F onto G; F ։ G means that g : F ։ G for some g. Recall
that if F ։ G then any G-satisfiable formula is F-satisfiable (see e.g. [3]).

Let us recall the notion of selective filtration.

DEFINITION 1. Let M be an N -model, Ψ a set of N -formulas closed under
subformulas. A weak submodel M′ of M is called a selective filtration of M
through Ψ, if for any w ∈ M′, for any formula ψ, for all i = 1, . . . , N , we
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Figure 1.

have
3iψ ∈ Ψ & M, w � 3iψ ⇒ ∃u ∈ R′i(x) M, u � ψ,

where R′1, . . . , R
′
N are the the accessability relations of M′.

LEMMA 2. If M′ is a selective filtration of M through Ψ, then for any
w ∈ M′, for any ψ ∈ Ψ, we have

M, w � ψ ⇔ M′, w � ψ.

For a modal formula ϕ, Sub(ϕ) denotes the set of all subformulas of ϕ,
〈ϕ〉 denotes the cardinality of Sub(ϕ).

On the set of all modal formulas we fix a linear order ⋖, such that for
any φ, ψ, if φ ∈ Sub(ψ) then φ⋖ ψ. For a set of formulas Ψ, let Ψ⋖ denote
the list of elements of Ψ ordered by ⋖. If Ψ⋖ = (ψ1, . . . , ψn), then for a
boolean vector v = (v1, . . . , vn) ∈ {0, 1}n we put

Ψv = {ψi | vi = 1, 1 ≤ i ≤ n}, Ψv =
∧

1≤i≤n
ψvi
i ,

where ψ1 = ψ and ψ0 = ¬ψ.

3 Partially ordered sets of frames

It is well-known that any transitive frame can be viewed as a set of clusters
ordered by a transitive and antisymmetric relation (skeleton, see e.g. [6]).
The following construction allows us to consider arbitrary frames instead of
clusters.

DEFINITION 3. Let G = (W,R) be a finite (strict or non-strict) partial
order, m = |W |, W = {w1, . . . , wm}.

For frames F1 = (V1, S1), . . . ,Fm = (Vm, Sm), we define the frame
G[(F1, . . . ,Fm)/(w1, . . . , wm)] = (W,R) obtained by replacing points
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w1, . . . , wm with frames F1, . . . ,Fm (Fig. 1):

W = ({w1} × V1) ∪ · · · ∪ ({wm} × Vm),

(w′, v′)R(w′′, v′′)⇔ (w′ 6= w′′ & w′Rw′′) or (w′ = w′′ = wi & v′Siv′′).

Also, for w ∈ W and a frame F = (V, S), we define the frame G[F/w] =
(W ′, R′) obtained by replacing w with F (Fig. 1):

W ′ = (W − {w}) ∪ V ′, where V ′ = {w} × V,
R′ = R|(W − {w}) ∪ {((w, u′), (w, u′′)) | u′Su′′} ∪

∪ (V ′ × (R(w)− {w})) ∪ ((R−1(w)− {w})× V ′).
For a class F of monomodal frames, we put

G[F ] = {G[(F1, . . . ,Fm)/(w1, . . . , wm)] | F1, . . . ,Fm ∈ F}.
Finally, for a class G of finite partial orders, we put

G[F ] =
⋃
{G[F ] | G ∈ G},

i.e. G[F ] is the class of frames, obtained from frames that belong to G by
replacing all their points with frames from F .

REMARK 4. By a straightforward argument,

G[(F1, . . . ,Fm)/(w1, . . . , wm)] = G[F1/w1] . . . [Fm/wm].

Note that the frame G[F/w] is transitive due to the transitivity of the rela-
tions R and S. Thus all frames that described in the above definition are
transitive.

Note also that if G is strict, and G′ is the corresponding non-strict partial
order, then

G[(F1, . . . ,Fm)/(w1, . . . , wm)] = G′[(F1, . . . ,Fm)/(w1, . . . , wm)].

EXAMPLE 5. Let PO denote the class of all finite non-strict partial orders.
If F = {C0}, then PO[F ] is the class of all finite strict partial orders, up

to isomorphisms.
If F is the class of all finite (non-degenerate) clusters, then PO[F ] is the

class of all finite transitive (and reflexive) frames, up to isomorphisms.

Let us generalize the above construction for the multi-modal case.

DEFINITION 6. Let G = (W,R) ∈ PO, m = |W |, W = {w1, . . . , wm}.
For an N -frame F = (V, S1, . . . , SN ), 1 ≤ k ≤ N , we define the frame

G[k;F/w] = (W ′, R′1, . . . R
′
N ) as follows. To define W ′ and R′k, we put

(W ′, R′k) = G[(V, Sk)/w]; for l 6= k we put

R′l = {((w, u′), (w, u′′)) | u′, u′′ ∈ V, u′Slu′′}.
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For a class of N -frames F , 1 ≤ k ≤ N , we put

G[k;F ] = {G[k;F1/w1] . . . [k;Fm/wm] | F1, . . . ,Fm ∈ F},
and for a class G of finite partial orders,

G[k;F ] =
⋃
{G[k;F ] | G ∈ G}.

PROPOSITION 7. Let G ∈ PO, w ∈ G, F and F′ be N -frames, 1 ≤ k ≤ N .
Then F′ ։ F implies G[k;F′/w] ։ G[k;F/w].

Proof. Let g : F′ ։ F. The required p-morphism g′ is defined as follows.
For v ∈ F′ put g′(w, v) = (w, g(v)); for w′ ∈ G− {w′} put g′(w′) = w′. �

Let F ∈ PO. By Ht(F) we denote the height of F, i.e., the maximal
length of strictly ascending chains in F (by length of a chain we mean the
number of its elements); by branching of a point w ∈ F we mean the number
of immediate successors of w in F; Br(F) denotes the branching of F, i.e.,
the maximal branching of its points.

By a tree we mean a rooted non-strict partial order (W,R) such that
R−1(w) is a chain for every w. By T we denote the class of all finite trees.
By Tn,b we denote the class of trees with the height not more then h and
the branching not more then b:

Th,b = {T ∈ T | Ht(T) ≤ h, Br(T) ≤ b}.
Let us recall the notions of disjoint sum (or disjoint union) and ordinal

sum of frames. Suppose that frames F1 = (W1, R1) and F2 = (W2, R2) have
no common points. Put

F1 ⊔ F2 = (W1 ∪W2, R1 ∪R2) disjoint sum of F1 and F2,
F1 + F2 = (W1 ∪W2, R1 ∪ (W1 ×W2) ∪R2) ordinal sum of F1 and F2.

If M is a model over the frame F1 ⊔ F2 (over the frame F1 + F2), and
M1 = M|W1, M2 = M|W2, then M is called the disjoint (ordinal) sum of
models M1 and M2, in symbols: M = M1 ⊔M2 (M = M1 + M2).

REMARK 8. By sum of frames that have common points, we mean sum of
their isomorphic copies:

F1 ⊔ F2 = G⊔[(F1,F2)/(1, 2)], where G⊔ = ({1, 2},∅);

F1 + F2 = G+[(F1,F2)/(1, 2)], where G+ = ({1, 2}, {(1, 2)}).
Disjoint sum of N -frames is defined analogously (see e.g. [3]). Let us

modify the notion of ordinal sum for the multi-modal case.

DEFINITION 9. Let F = (W,R1, . . . , RN ) and F′ = (W ′, R′1, . . . , R
′
N ) be

N -frames, 1 ≤ k ≤ N . Put F +k F′ = (V, S1, . . . , SN ), where (V, Sk) =
(W,Rk) + (W ′, R′k), and (V, Sl) = (W,Rl) ⊔ (W ′, R′l) for l 6= k.
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The above definitions imply the following

PROPOSITION 10. Let F be a class of N -frames, 1 ≤ k ≤ N , and let
G ∈ Th+1,b[k;F ] for some h, b ≥ 1. Then G is either isomorphic to a frame
F ∈ F or isomorphic to a frame F +k (G1 ⊔ · · · ⊔ Gb′), where 1 ≤ b′ ≤ b,
F ∈ F , G1, . . .Gb′ ∈ Th,b[k;F ].

Proof. For some T ∈ Th+1,b, we have G ∈ T[k;F ]. Then either T is a
singleton (when Ht(T) = 1), and in this case G is isomorphic to a frame
F ∈ F , or T is isomorphic to a frame C1 + (T1 ⊔ · · · ⊔ Tb′), where b′ is the
branching at the root of T and T1, . . .Tb′ ∈ Th,b. �

LEMMA 11. Let F be a class of N -frames, 1 ≤ k ≤ N , G be a finite rooted
partial order. Then for any H ∈ G[k;F ] there exists a tree T ∈ T such that
for some H′ ∈ T [k;F ] we have H′ ։ H.

Proof. By the standard unravelling argument. Let w0 be the root of G. To
define T = (W,R), put
W = {(w0, . . . , wk) | w0, . . . , wk ∈W, wi+1 is an immediate

successor of wi for all i = 0, . . . , k − 1};
(w0, . . . , wk)R(w0, . . . , wl)⇔ (w0, . . . , wk) is a prefix of (w0, . . . , wl). �

It is well-known that any K4-satisfiable formula ϕ is satisfiable in some
finite frame with the height and the branching of its skeleton not more then
〈ϕ〉 (see e.g. [6]). The following lemma generalizes this observation.

LEMMA 12. Let F be a class of N -frames, 1 ≤ k ≤ N . If an N -formula
ϕ is PO[k;F ]-satisfiable, then ϕ is T〈ϕ〉,〈ϕ〉[k;F ]-satisfiable.

Proof. By Lemma 11, ϕ is satisfiable in a frame H ∈ T[k;F ], where T ∈ T .
Then M, (w0, v) � ϕ, where M is a model over H, w0 ∈ T, (w0, v) ∈ H.

Let T = (W,R). For a point w ∈W , put

Ψw = {3kψ ∈ Sub(ϕ) | M, (w, v) � 3kψ for some (w, v) ∈ H}.

Inductively we define a set Wi. Put W0 = {w0}, Ψi =
⋃{Ψw | w ∈Wi}.

If Ψi 6= ∅, we define Wi+1. First, for every w ∈ Wi we define a set
Uw: if Ψw = ∅, we put Uw = ∅; for Ψw = {3kψ1, . . . ,3kψl}, put Uw =
{u1, . . . , ul}, where ui is an R-maximal point in the set

{u | u ∈ R(w), M, (u, v) � ψi for some (u, v) ∈ M}.

Put Wi+1 =
⋃{Uw | w ∈Wi}.

Note that |Ψi+1| < |Ψi|, thus for some l < 〈ϕ〉 we obtain Ψl = ∅.
Then we put W ′ = W0 ∪ · · · ∪Wl, V ′ = {(w, v) ∈ H | w ∈ W ′}, and put
T′ = T|W ′, M′ = M|V ′, H′ = H|V ′. Due to the construction, T′ ∈ T〈ϕ〉,〈ϕ〉
and H′ ∈ T〈ϕ〉,〈ϕ〉[k;F ]. Also, M′ is a selective filtration of M through
Sub(ϕ), thus ϕ is T〈ϕ〉,〈ϕ〉[k;F ]-satisfiable. �
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Figure 2.

4 Conditional satisfiability

4.1 Monomodal case
Is this subsection we assume that all frames, models and formulas are
monomodal.

DEFINITION 13. Let M be a model, Ψ be a set of formulas. For a formula
ϕ and a point w ∈ M, we define the truth-relation (M, w|Ψ) � ϕ:

(M, w|Ψ) � p ⇔ M, w � p
(M, w|Ψ) 6� ⊥
(M, w|Ψ) � ϕ→ ψ ⇔ (M, w|Ψ) 6� ϕ or (M, w|Ψ) � ψ
(M, w|Ψ) � 3ϕ ⇔ ϕ ∈ Ψ or 3ϕ ∈ Ψ or

for some v ∈ R(w) we have (M, v|Ψ) � ϕ,

where R is the accessability relation in M.
We read (M, w|Ψ) � ϕ as “ϕ is true at w in M under the condition Ψ”.

Note that (M, w|∅) � ϕ⇔ M, w � ϕ.

PROPOSITION 14. Consider models M0, M, their ordinal sum M0 + M,
and a set of formulas Φ (Fig. 2,a). If

Ψ = {ψ ∈ Sub(ϕ) | (M, v|Φ) � ψ for some v},
then for any formula ϕ, w ∈ M0,

(M0 + M, w|Φ) � ϕ⇔ (M0, w|Ψ ∪ Φ) � ϕ.

Proof. The proof is straightforward, by induction on the length of ϕ.
Consider only the case ϕ = 3ψ, ψ 6∈ Φ, 3ψ 6∈ Φ.

Suppose (M0+M, w|Φ) � 3ψ. Then (M0+M, v|Φ) � ψ for some v ∈ R(w),
where R is the accessability relation of M0 + M. If v ∈ M, then ψ ∈ Ψ; if
v ∈ M0, then (M0, v|Ψ ∪ Φ) � ψ by the induction hypothesis; in both cases
(M0, w|Ψ ∪ Φ) � 3ψ.
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Suppose (M0, w|Ψ∪Φ) � 3ψ. If ψ ∈ Ψ or 3ψ ∈ Ψ, then (M, v|Φ) � ψ∨3ψ
for some v ∈ M. Thus (M0 + M, w|Φ) � 3ψ. �

COROLLARY 15. Consider models M0 and M. For any formula ϕ, w ∈
M0, we have (Fig. 2,b)

M0 + M, w � ϕ⇔ (M0, w|{ψ ∈ Sub(ϕ) | M, v � ψ for some v}) � ϕ.

DEFINITION 16. Let F be a cone, Ψ be a set of formulas. We say that ϕ is
F-satisfiable under the condition Ψ, if ϕ is true at a root of F in some model
over F under the condition Ψ. For a formula ϕ and vectors v,u ∈ {0, 1}〈ϕ〉,
the notation

F | u 
ϕ v

means that the formula Sub(ϕ)v is F-satisfiable under the condition
Sub(ϕ)u. For a class F of cones, F | u 
ϕ v means that F | u 
ϕ v
for some F ∈ F .

The following constructions are generalization of the construction pro-
posed in [10].

DEFINITION 17. For a positive integer d, a sequence (Fn)n∈N of sets of
cones is called d-moderate, if there exists an algorithm such that for any
formula ϕ and any vectors u,v ∈ {0, 1}〈ϕ〉 it decides whether

F〈ϕ〉 | u 
ϕ v

in space O(〈ϕ〉d). A sequence (Fn)n∈N is moderate, if it is d-moderate for
some integer d.

EXAMPLE 18. It is clear, that if a sequence (Fn)n∈N can be effectively
described in polynomial of n space, then it is moderate. In particular, if
(Fn)n∈N is a sequence of finite sets of finite cones, such that for some k
Fk = Fk+1 = . . . , then (Fn)n∈N is moderate. For instance, (Fn)n∈N is
moderate, if:

• Fn is the set of all (non-degenerate) clusters with cardinality not more
then n: for all n Fn = {C0, . . . ,Cn} or for all n Fn = {C1, . . . ,Cn};

• Fn consists of a single frame which is a singleton: for all n Fn = {C0}
or for all n Fn = {C1}.

Next we show that tree-like structures “constructed” from moderate se-
quences are also moderate.

For boolean vectors u,v of the same length, let u∨v denote their bitwise
disjunction.

PROPOSITION 19. Let F be a class of cones. Then for any formula ϕ, for
any u,v ∈ {0, 1}〈ϕ〉, for any integers h, b ≥ 1, the following two conditions
are equivalent.
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1. Th+1,b[F ] | u 
ϕ v.

2. Either F | u 
ϕ v, or for some vectors v1, . . . ,vb′ ∈ {0, 1}〈ϕ〉, where
1 ≤ b′ ≤ b, we have: Th,b[F ] | u 
ϕ vj for all j = 1, . . . , b′, and
F | u ∨ v1 · · · ∨ vb′ 
ϕ v.

Proof. Put Φ = Sub(ϕ).
(1 ⇒ 2) Suppose that Th+1,b[F ] | u 
ϕ v. Then G | u 
ϕ v for some

G ∈ T[F ], where T ∈ T , Ht(T) = h′ ≤ h+ 1 and Br(T) ≤ b.
The case h′ = 1 is trivial: here G is isomorphic to some frame from F ,

thus F | u 
ϕ v.
Suppose h′ > 1. Let b′ be the branching at the root of T. Then G

is isomorphic to a frame F + (G1 ⊔ · · · ⊔ Gb′), where F ∈ F , 1 ≤ b′ ≤ b,
G1, . . .Gb′ ∈ Th,b[F ].

For some model M over G we have (M, w|Φu) � Φv, where w is a root of
G. For 1 ≤ j ≤ b′, let wj be a root of Gj ,

Φj = {ψ ∈ Φ | (M, wj |Φu) � ψ}.

Then Gj | u 
ϕ vj , where vj is determined by the equation Φj = Φvj
.

For a formula ψ ∈ Φ, we have:

(M, w′|Ψu) � ψ for some w′ ∈ G1 ⊔ · · · ⊔ Gb′ iff ψ ∈ Φj for some j.

Let M′ be the restriction M to F. By Proposition 14, we obtain
(M′, w|Ψu ∪ Φ1 ∪ · · · ∪ Φb′) � Φv. Thus F | u ∨ v1 · · · ∨ vb′ 
ϕ v.

(2⇒ 1) If F | u 
ϕ v for some F ∈ F , then Th+1,b[F ] | u 
ϕ v, since F is
isomorphic to some frame from T1,1[F ].

In the second case, (M′, w|Ψu ∪ Φv1 ∪ · · · ∪ Φvb′ ) � Φv for some model
M′ over a frame F ∈ F , and (Mj , wj |Φu) � Ψvj for some models Mj over
frames from Th,b[F ], where w is a root of M, wj is a root of Mj , j = 1, . . . , b′.
Put M = M′+(M1⊔· · ·⊔Mb′). By Proposition 14, we have (M, w|Ψu) � Φv.
Thus Th+1,b[F ] | u 
ϕ v. �

COROLLARY 20. Let F be a class of cones. Suppose that SatModerate
is an algorithm such that for any formula ϕ, for any u,v ∈ {0, 1}〈ϕ〉, it
decides whether

F | u 
ϕ v.

Then SatTree (see Table 1) is an algorithm such that for any formula ϕ,
for any u,v ∈ {0, 1}〈ϕ〉, for any integers h, b ≥ 1, it decides whether

Th,b[F ] | u 
ϕ v.

THEOREM 21. If (Fn)n∈N is d-moderate sequence of sets of cones, and
P is a polynomial of degree d′, then the sequence (TP (n),P (n)[Fn])n∈N is
max{2 + d′, d}-moderate.
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Table 1. Algorithm SatTree
Function SatTree(formula ϕ; boolean vectors v,u; integers h, b)

returns boolean;
\∗ SatTree decides whether Th,b[F ] | u 
ϕ v ∗\
Begin
if SatModerate(ϕ,v,u) then
\∗ F | u 
ϕ v ∗\
return(true);

if h > 1 then
for every integer b′ such that 1 ≤ b′ ≤ b
\∗ b′ is the branching ∗\
for every boolean vectors v1, . . . ,vb′ ∈ {0, 1}〈ϕ〉
if SatModerate(ϕ,v,u ∨ v1 · · · ∨ vb′) then
\∗ F | u ∨ v1 · · · ∨ vb′ 
ϕ v ∗\
if

∧
1≤j≤b′

SatTree(ϕ,vj ,u, h− 1, b) then

\∗ Th,b[F ] | u 
ϕ vj for all j ∗\
return(true);

return(false);
End.

Proof. At every step of recursion, the algorithm SatTree usesO(n2) amount
of space for a formula ϕ, where n = 〈ϕ〉. We also need O(nd) amount of
space that used by SatModerate. The depth of recursion is P (n), thus we
need O(n2P (n) + nd) amount of space. �

The above fact implies the following

THEOREM 22. Suppose that a logic L is characterized by PO[F ] for some
class F . If there exists a moderate sequence (Fn)n∈N such that Fn ⊆ F for
all n ∈ N, and any L-satisfiable formula ϕ is PO[F〈ϕ〉]-satisfiable, then L
is in PSPACE.

Proof. Consider an L-satisfiable formula ϕ with 〈ϕ〉 = n. Then ϕ is satisfi-
able at a root of some G ∈ PO[Fn]. By Lemma 12, ϕ is satisfiable at a root
of some G′ ∈ Tn,n[Fn]. Thus, by Corollary 20, ϕ is L-satisfiable iff for some
v = {v1, . . . , vn−1, 1} ∈ {0, 1}n we have SatTree(ϕ,v, (0, . . . , 0), n, n) =
true. �

COROLLARY 23. If L = L(PO[F ]) for some finite class of finite cones F ,
then L is in PSPACE.

Proof. Put Fn = F for all n. �

EXAMPLE 24. As an example, consider the logics K4,S4 , Gödel-Löb logic
GL, and Grzegorczyk logic GRZ. They are well-known to be PSPACE-
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decidable, see e.g [9, 11, 5]. Let us illustrate, how this fact follows from
Theorem 22.

GRZ (GL) is the logic of all finite non-strict (strict) partial orders, see
e.g. [6]: GRZ = L(PO[{C1}]), GL = L(PO[{C0}]). By corollary 23, GRZ
and GL are in PSPACE.

Note that any K4-satisfiable formula is satisfiable at some finite transitive
frame F such that the cardinality of any cluster in F does not exceed 〈ϕ〉.
Put

FK4
n = {C0, . . . ,Cn}, FS4

n = {C1, . . . ,Cn}.
Then for any ϕ we have:

ϕ is K4-satisfiable iff ϕ is PO[FK4
〈ϕ〉]-satisfiable,

ϕ is S4-satisfiable iff ϕ is PO[FS4
〈ϕ〉]-satisfiable.

Since the sequences (FK4
n )n∈N and (FS4

n )n∈N are moderate, then by Theorem
22, K4 and S4 are in PSPACE.

REMARK 25. Using the standard method of translating of QBF-formula
into modal logics [9], it is not difficult to obtain PSPACE-hardness for log-
ics of classes PO[F ], thus described in Theorem 22 logics are PSPACE-
complete (for non-empty F).

4.2 Multi-modal case

DEFINITION 26. Let M be an N -model. A condition for M is a tuple
Ψ = (Ψ1, . . . ,ΨN ) of sets of N -formulas. For an N -formula ϕ and a point
w ∈ M, we define the truth-relation (M, w|Ψ) � ϕ (“ϕ is true at w in M
under the condition Ψ”):

(M, w|Ψ) � p ⇔ M, w � p
(M, w|Ψ) 6� ⊥
(M, w|Ψ) � ϕ→ ψ ⇔ (M, w|Ψ) 6� ϕ or (M, w|Ψ) � ψ
(M, w|Ψ) � 3kϕ ⇔ ϕ ∈ Ψk or 3kϕ ∈ Ψk or

for some v ∈ Rk(w) we have (M, v|Ψ) � ϕ,

where R1, . . . , RN are the accessability relations in M.

PROPOSITION 27. Consider N -frames F and G. Let 1 ≤ k ≤ N , M be a
model over the frame F +k G, and let M′ be the restriction M to F. Let ϕ be
an N -formula ϕ, Φ be a condition.

Then for any w ∈ M′ we have

(M, w|Φ) � ϕ⇔ (M′, w|(Φ′1, . . . ,Ψ′
N )) � ϕ,

where Φ′i = Φi for i 6= k, and

Φ′k = Φk ∪ {ψ ∈ Sub(ϕ) | (M, w|Φ) � ψ for some w ∈ G}.
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Proof. By induction on the length of ϕ, analogously to the proof of Propo-
sition 14. �

DEFINITION 28. We call an N -frame G = (W,R1, . . . , RN ) rooted, if for
some w ∈ W we have {w} ∪ R1(w) ∪ · · · ∪ RN (w) = W ; w is called a root
of G.

The following propositions are straightforward consequences of the above
definition.

PROPOSITION 29. Suppose that in the condition of Proposition 27 we also
have G = G1 ⊔ · · · ⊔Gb for some rooted N -frames G1, . . . ,Gb. Let wi denote
a root of Gi, i = 1, . . . , b. Then for any w ∈ M′ we have

(M, w|Φ) � ϕ⇔ (M′, w|(Φ′1, . . . ,Ψ′
N )) � ϕ,

where Φ′i = Φi for i 6= k, and

Φ′k = Φk ∪
⋃

1≤i≤b
{ψ ∈ Sub(ϕ) | (M, wi|Φ) � ψ ∨31ψ ∨ · · · ∨3Nψ}.

PROPOSITION 30. Let F be a class of rooted N -frames, 1 ≤ k ≤ N ,
G ∈ PO. If G is rooted, H ∈ G[k;F ], then H is rooted.

DEFINITION 31. As well as in the monomodal case, we say that an N -
formula ϕ is F-satisfiable under the condition Ψ = (Ψ1, . . . ,ΨN ), if ϕ is true
at some root of F in some model over F under the condition Ψ.

For an N -formula ϕ, put

Sub∗(ϕ) = Sub(ϕ) ∪ {3iψ | 1 ≤ i, j ≤ N, 3jψ ∈ Sub(ϕ)}.
Consider an N -formula ϕ with Sub∗(ϕ)⋖ = (ψ1, . . . , ψn). For vectors

v,u1, . . . ,uN ∈ {0, 1}n, the notation

F | (u1, . . . ,uN ) 
ϕ v

means that Sub∗(ϕ)v is F-satisfiable under the condition

(Sub∗(ϕ)u1 , . . . , Sub
∗(ϕ)uN

) .

(Note that if N = 1 then Sub∗(ϕ) = Sub(ϕ), so this notation does
not contradict the monomodal case). For a class F of rooted N -frames,
F | (u1, . . . ,uN ) 
ϕ v means that F | (u1, . . . ,uN ) 
ϕ v for some F ∈ F .

Also, for 1 ≤ k ≤ N , we define auxiliary function fk. For boolean vector
v = (v1, . . . , vn), we put fk(v) = (v′1, . . . , v

′
n), where v′i = 1 iff vi = 1 or for

some j, l, k′ we have ψi = 3kψl, ψj = 3k′ψl, and vj = 1.

DEFINITION 32. For a positive integer d, a sequence (Fn)n∈N of sets of
rooted N -frames is called d-moderate, if there exists an algorithm such that
for any N -formula ϕ, for any vectors v,u1, . . . ,uN ∈ {0, 1}|Sub∗(ϕ)|, it de-
cides whether

F|Sub∗(ϕ)| | (u1, . . . ,uN ) 
ϕ v
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Table 2. Algorithm SatTreeN

Function SatTreeN(formula ϕ; boolean
vectors v,u1, . . . ,uN ; integers h, b, k) returns boolean;

Begin
if SatModerateN(ϕ,v,u1, . . . ,uN ) then return(true);
if h > 1 then
for every integer b′ such that 1 ≤ b′ ≤ b
for every boolean vectors v1, . . . ,vb′ ∈ {0, 1}〈ϕ〉
if SatModerateN(ϕ,v,u1, . . . ,uk ∨ fk(v1) · · · ∨ fk(vb′), . . . ,u′N ) then

if
∧

1≤j≤b′
SatTreeN(ϕ,vj ,u1, . . . ,uN , h− 1, b, k) then

return(true);
return(false);

End.

in space O(|Sub∗(ϕ)|d).
The following statement is a straightforward generalization of Proposition

19.

PROPOSITION 33. Let F ba a class or rooted N -frames, ϕ be an N -
formula, n = |Sub∗(ϕ)|, 1 ≤ k ≤ N . Then for any u1, . . . ,uN ,v ∈ {0, 1}n,
for any integers h, b ≥ 1, the following two conditions are equivalent.

1. Th+1,b[k;F ] | (u1, . . . ,uN ) 
ϕ v.

2. Either F | (u1, . . . ,uN ) 
ϕ v or there exist vectors v1, . . . ,vb′ ∈
{0, 1}n, where 1 ≤ b′ ≤ b, such that

Th,b[k;F ] | (u1, . . . ,uN ) 
ϕ vj for all j = 1, . . . , b′, and

F | (u′1, . . . ,u′N ) 
ϕ v,

where u′i = ui for i 6= k, u′k = uk ∨ fk(v1) · · · ∨ fk(vb′).

Proof. By Propositions 29 and 30, analogously to the proof of Proposition
19. �

COROLLARY 34. Let F be a class of rooted N -frames. Suppose that
SatModerateN is an algorithm such that for any N -formula ϕ, for any
u1, . . . ,uN ,v ∈ {0, 1}|Sub∗(ϕ)|, it decides whether

F | (u1, . . . ,uN ) 
ϕ v.

Then SatTreeN (see Table 2) is an algorithm such that for any formula ϕ,
for any u1, . . . ,uN ,v ∈ {0, 1}|Sub∗(ϕ)|, for any integers h, b ≥ 1, it decides
whether

Th,b[k;F ] | (u1, . . . ,uN ) 
ϕ v.
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Since at every step of recursion the algorithm SatTreeN uses O(n2)
amount of memory for a formula ϕ with |Sub∗(ϕ)| = n, we obtain

THEOREM 35. If (Fn)n∈N is d-moderate sequence of sets of rooted N -
frames, 1 ≤ k ≤ N , P is a polynomial of degree d′, then the sequence

(TP (n),P (n)[k;Fn])n∈N

is max{2 + d′, d}-moderate.

5 PSPACE-decidability of GLP

Is this section we construct PSPACE-decision procedure for GLP.
First, we need to quote some results from [2].
For an N -frame F = (W,R1, . . . , RN ) let F+ denote the (N + 1)-frame

(W,∅, R1, . . . , RN ), and let F∞ denote the frame (W,R1, . . . , RN ,∅,∅, . . . )
with countably many relations.

DEFINITION 36 ([2]). For N ≥ 1, we inductively define a class F (N) of
N -frames. Let F (1) be the class of all finite strict partial orders,

F (N+1) = PO[1;G(N)], where GN = {F+ | F ∈ F (N)}.
Also put FJ={F∞ | F ∈ F (N) for some N}.
Let J be the logic of the class FJ (complete axiomatization of this logic

is given in [2]). These frames are called hereditary strict orders, and were
introduced in [2], where the following result was proved:

THEOREM 37 ([2]). There exists a polynomial-time translation f such that
for any formula ϕ we have

GLP ⊢ ϕ⇔ J ⊢ f(ϕ).

PROPOSITION 38 ([2]).
(1) If (W,R1, . . . , RN , R, S1, . . . , SK) ∈ F (N+K+1) then
(W,R1, . . . , RN , S1, . . . , SK) is isomorphic to some frame from F (N+K).
(2) If (W,R1, . . . , RN , S1, . . . , SK) ∈ F (N+K) then
(W,R1, . . . , RN ,∅, S1, . . . , SK) is isomorphic to some frame from
F (N+K+1).

Proof. The proof is straightforward (by Definition 36).
Another proof is based on the first-order conditions that characterized

the class of hereditary strict orders, see [2] for details. �

LEMMA 39. Let ϕ be an N -formula, and let {3i1 , . . . ,3iK} be the set of all
diamonds that occur in ϕ, where i1 < i2 < · · · < iK . Let ϕ′ be the K-modal
formula that obtained from ϕ by replacing 3ij with 3j for all j = 1 . . . K.
Then ϕ is F (N)-satisfiable iff ϕ′ in F (K)-satisfiable.
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Proof. ⇒). Suppose that ϕ is satisfiable in a frame F = (W,R1, . . . , RN ) ∈
F (N). Clearly, ϕ′ is satisfiable at the frame G = (W,Ri1 , . . . , RiK ). G
is obtained from F by ‘deleting’ some relations, so by Proposition 38, an
isomorphic copy of G belongs to F (K). Thus ϕ′ is F (K)-satisfiable.
⇐). Suppose that ϕ′ is satisfiable in a frame G = (W,S1, . . . , SK) ∈

F (K). Then ϕ is satisfiable in F = (W,R1, . . . , RN ), where Rij = Sj for all
j = 1 . . . K, and all other relations of F are empty. By Proposition 38, ϕ is
F (N)-satisfiable. �

For N,h, b ≥ 1, by induction on N we define a class T (N)
h,b . Let T (1)

h,b =

Th,b[{C0}], i.e., T (1)
h,b is the class (up to isomorphisms) of all finite transitive

irreflexive trees with the height not more then h and the branching not more
then b. Put

T (N+1)
h,b = Th,b[1; {F+ | F ∈ T (N)

h,b }].
THEOREM 40. The satisfiability problem for J is in PSPACE.

Proof. Consider an N -formula ϕ. Let n = 〈ϕ〉. By Lemma 39, we may
assume that N < n.

Suppose that ϕ is J-satisfiable. Then ϕ is satisfiable at some N -frame
F ∈ F (N). Using Lemma 12, by induction on N , one can show that ϕ is
satisfiable at the root of some N -frame T ∈ T (N)

n,n . Thus

ϕ is J-satisfiable ⇐⇒ ϕ is T (N)
n,n -satisfiable.

By induction on N we obtain that there exists d, such that for any N the
sequence (T (N)

n,n )n∈N is d-moderate (Theorem 35), and, moreover, we obtain
that it is possible to check whether ϕ is T (〈ϕ〉)

〈ϕ〉,〈ϕ〉-satisfiable in polynomial of
〈ϕ〉 space. Thus satisfiability problem for J is in PSPACE. �

THEOREM 41. GLP is in PSPACE.

Proof. Follows from Theorems 37 and 40. �
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