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abstract. The alternation-free fragment of the propositional modal µ-

calculus (AFµ) allows less complex decision procedure for satisfiability judg-

ment than the full µ-calculus, yet it still has strong expressive power. In

this paper, we present a concrete decision procedure with its complexity for

AFµ enriched by features of nominals, backward modalities, and functional

modalities. While AFµ with all three features is undecidable, AFµ with

two out of the three features are decidable and the procedure is sound and

complete for these combinations. The procedure is suitable for implemen-

tation with BDDs. An application of the decision procedure for program

analysis is also reported.
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1 Introduction

The propositional modal µ-calculus has been studied extensively, and has
been applied to verification problems. The authors have proposed to apply
its variants for analyzing graph transformation systems [1, 2]. One of the
key operations for such analysis is determine whether a given formula is
satisfiable.

Known decision procedures for the propositional modal µ-calculus are
complex. To reduce the complexity, we have restricted ourselves to its
alternation-free fragment. Although this restriction does not reduce the the-
oretical complexity (both are EXPTIME-complete), it does lead to efficient
implementation using binary decision diagrams (BDDs). Meanwhile, the
restricted fragments are still sufficiently powerful, and we can apply them
to the analysis. In previous research, we established decision procedures
for the alternation-free modal µ-calculus (AFµ) [3] and its extension with
backward modalities [4]. They are used to analyze programs that handle
XML documents. To apply them to other areas such as shape analysis [5],
we require logics with more features, nominals and functional modalities,
as well as backward modalities.

A nominal is a type of atomic formula, which is satisfied by one and only
one node in a Kripke structure. A functional modality is interpreted in the
Kripke structures as a (partial) function on the set of states, whereas an
ordinary modality is interpreted as a relation on it. A backward modality
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m−1, where m is an ordinary (forward) modality, follows the transition
relation of a Kripke structure in the reverse direction.

In this paper, we extend the above-mentioned decision procedure to AFµ
that has (1) nominals, (2) backward modalities, and (3) functional modal-
ities. Unfortunately, the logic with all three features is undecidable [6].
However, the logics with any two features out of the three are decidable,
and we prove that the procedure is sound and complete for these combina-
tions. Moreover, the procedure is sound for the logic with all three features.
The complexity of the procedure is 2O(n log n) for AFµ + (2) + (3) and
2O(n2 logn) for the other two combinations. We have an application of the
decision procedure for shape analysis. We developed an experimental tool
for analyzing programs that manipulate pointers. The procedure was im-
plemented in the tool using JavaBDD [7] with a small modification to fulfill
requirements of the tool. Some properties of programs were successfully ver-
ified, including the partial correctness of the Deutsch-Schorr-Waite marking
algorithm.

The propositional modal µ-calculus was introduced by Kozen [8], which
he proved to be decidable. Emerson and Jutla proved that the complex-
ity of its satisfiability problem is EXPTIME-complete [9]. Bonatti and
Peron showed that the satisfiability of the modal µ-calculus with nomi-
nals, backward modalities, and graded modalities is undecidable [6]. By
checking their proof, one can see that AFµ + (1) + (2) + (3) is also un-
decidable. Bonatti et al. [10] proved that the satisfiability problems of the
modal µ-calculus extended with any two features out of nominals, back-
ward modalities, and graded modalities are decidable, and their complexity
is EXPTIME-complete. Since a functional modality is a type of graded
modality, and the satisfiability problem of AFµ is already EXPTIME-hard,
it is apparent from their results that “AFµ + any two of (1), (2), and (3)”
are also EXPTIME-complete.

The decision procedure given in [10] is based on alternating tree au-
tomata. From an application point of view, it is extremely complex and no
running implementations are reported. On the other hand, our procedure
consists of set operations, which are easily encoded in BDDs for efficient
implementation owing to the restriction to the alternation-free fragment.
To the best of our knowledge, our decision procedure is the first one that
covers all the above-mentioned features, and has been actually applied to
solve some concrete problems. Its applicability is also guaranteed by the
accurate computational complexity obtained by our analysis.

Various implementations exist for variants of modal logics. Emerson
provided a decision procedure for CTL based on the tableau method [11].
Pan et al. provided efficient implementations of the decision procedure using
BDDs for the minimal modal logic K [12, 13]. MONA [14] is a famous tool
that implements decision procedures for WS1S and WS2S. This tool also
utilizes BDDs for its implementation. Kupferman and Vardi [15] showed an
efficient decision procedure for tree automata which leads to implementation
for the modal µ-calculus. Eijck developed a theorem prover for hybrid
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logics [16] based on the tableau method. The decision procedure presented
in this paper cannot be replaced with any of the above-mentioned studies.
The first four do not contain nominals, and the last does not contain fixed-
point operators.

The remainder of the paper is organized as follows. In Section 2, we
define syntax and semantics of the logics. In Section 3, we describe the
decision procedure. In Section 4, its correctness is proved. The complexity
is discussed in Section 5. In Section 6, we present an application that uses
a variant of the procedure. Finally, future work is described in Section 7.

2 Preliminaries

2.1 Syntax
Let PS, Nom, PV, GMS, and FMS be countable sets of propositional sym-
bols, nominals, propositional variables, general modality symbols, and func-
tional modality symbols, respectively. The set Mod of modalities and the
set Form of formulas are defined as follows.

Mod ∋ m ::= g | f | g−1 | f−1

Form ∋ ϕ ::= p | x | X | ¬ϕ | ϕ ∨ ϕ | 〈m〉ϕ | µXϕ | @x ϕ
where p ∈ PS, x ∈ Nom, X ∈ PV, g ∈ GMS, and f ∈ FMS. In µXϕ, any
free occurrence of X in ϕ (i.e., an occurrence of X in ϕ that is not bound by
another µX or νX) must be positive (i.e., the number of negation symbols
whose scope contains the occurrence is even). A modality in the form of
m−1 is called a backward modality. We denote the set of formulas by L. We
define Atom = PS∪Nom, and MS = GMS∪FMS. For m ∈ Mod, the set of
the formulas in the form of 〈m〉ϕ and [m]ϕ are denoted by L〈m〉 and L[m],
respectively. When ϕ = 〈m〉ϕ′ or ϕ = [m]ϕ′, we denote ϕ′ by ~ϕ

We define (m−1)−1 = m for m ∈ MS, therefore, (m−1)−1 = m for any
m ∈ Mod.

The following standard abbreviations are used: false = p ∧ ¬p for some
fixed p ∈ PS, true = ¬false, ϕ1∧ϕ2 = ¬(¬ϕ1∨¬ϕ2), ϕ1 → ϕ2 = ¬ϕ1∨ϕ2,
[m]ϕ = ¬〈m〉¬ϕ, νXϕ = ¬µ¬ϕ[¬X/X].

2.2 Semantics
A Kripke structure for L is a tuple K = (S,R,L) that satisfies the following
conditions. We denote the powerset of S by P(S).

• S is a set. An element of S is called a state.

• R : MS→ P(S×S). R(f) is a (graph of partial) function if f ∈ FMS.

• L : Atom→ P(S). L(x) is a singleton if x ∈ Nom.

For x ∈ Nom, we denote the unique element of L(x) by L′(x), i.e., L(x) =
{L′(x)}. If f ∈ FMS and s ∈ dom(f), we express R(f, s) for the unique
s′ ∈ S such that (s, s′) ∈ R(f). We also consider that dom(R) = Mod by
defining R(m−1) = (R(m))−1 for m ∈ MS.

A function ρ : PV→ P(S) is called a valuation for K. The interpretation
[[ϕ]]K,ρ ⊆ S of ϕ ∈ L is defined in the standard manner as follows. Symbols



344 Yoshinori Tanabe, Koichi Takahashi and Masami Hagiya

K and/or ρ are omitted if there is no possibility of confusion. For a function
F , we denote by F [a 7→ b] a function G defined by dom(G) = dom(F )∪{a},
G(a) = b, and G(x) = F (x) for x ∈ dom(F ) \ {a}.

[[a]] = L(a) for a ∈ Atom [[X]]ρ = ρ(X) for X ∈ PV
[[¬ϕ]] = S \ [[ϕ]] [[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]
[[〈m〉ϕ]] = {s ∈ S | ∃s′ ∈ S. (s, s′) ∈ R(m) and s′ ∈ [[ϕ]]}
[[µXϕ]]ρ =

⋂{T ⊆ S | [[ϕ]]ρ[X 7→T ] ⊆ T}
[[@xϕ]] = S if L′(x) ∈ [[ϕ]] [[@xϕ]] = ∅ if L′(x) 6∈ [[ϕ]]

We write K, ρ, s |= ϕ if s ∈ [[ϕ]]K,ρ. Again, K and/or ρ are often omitted.
We write K |= ϕ if K, ρ, s |= ϕ holds for any valuation ρ and state s.
Formulas ϕ and ϕ′ are equivalent (ϕ ≡ ϕ′) if [[ϕ]]K,ρ = [[ϕ′]]K,ρ for any
Kripke structure K and valuation ρ. A formula ϕ is valid if it is equivalent
to true. It is satisfiable if its negation is not valid.

2.3 Closures
A formula ϕ is in positive normal form (PNF), if ϕ satisfies the following
conditions:

• All negation operators (¬) in ϕ appear immediately before proposi-
tional symbols, nominals, or propositional variables.

• All propositional variables in ϕ are bound at most once.

It is easy to see that any formula is equivalent to a formula in PNF.
Symbol λ is used to express either µ or ν. Thus λXϕ is either

µXϕ or νXϕ. For the formula λXϕ, we denote by exp(λXϕ) the for-
mula ϕ[λXϕ/X], which is obtained from ϕ by replacing all free occur-
rences of X with λXϕ, and call it the expansion of λXϕ. For example,
exp(µX(p ∨ 〈m〉X)) = p ∨ 〈m〉(µX(p ∨ 〈m〉X)). It is easy to see that
exp(λXϕ) ≡ λXϕ.

We define relation F on the set of all formulas in PNF that satisfies the
following:

(ϕ1 ∨ ϕ2, ϕj) ∈ F and (ϕ1 ∧ ϕ2, ϕj) ∈ F for j = 1, 2
(〈m〉ϕ,ϕ) ∈ F ([m]ϕ,ϕ) ∈ F
(λXϕ, exp(λXϕ)) ∈ F (@nϕ,ϕ) ∈ F

and that no other pairs belong to F .
For a formula ϕ in PNF, the closure of ϕ is the least set of formulas that

contains ϕ and is closed under the relation F , i.e., if ϕ is in the closure
and (ϕ,ψ) ∈ F then ψ is in the closure. We denote the closure of ϕ by
cl(ϕ). The lean of ϕ is a subset of cl(ϕ) defined by {ψ ∈ cl(ϕ) | ψ ∈
Atom or ψ is in the form of 〈m〉χ, [m]χ, or @nχ}.

An occurrence of a propositional variable X in a formula ϕ is guarded
if there exists a formula ψ such that (1) ψ contains the occurrence, (2)
ψ is in the form of 〈m〉ψ′, [m]ψ′, or @nψ′, and (3) ψ is a subformula of
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the formula λXχ that binds the occurrence in ϕ. A formula is guarded if
all occurrences of bound propositional variables are guarded. For example,
µX(p ∨ 〈m〉X ∨@nX) is guarded, but µX(p ∨X) is not.

PROPOSITION 1. (Kozen) For every formula ϕ, there is a guarded for-
mula ψ such that ϕ ≡ ψ.

Refer to [17] for a proof of the proposition. With a little modification of
the proof, we see that ψ can be taken so that | cl(ψ)| ≤ | cl(ϕ)| if ϕ is in
PNF.

Hereafter in this paper, we assume that formulas are guarded and are in
PNF unless explicitly stated otherwise.

2.4 Alternation-freeness
A formula ϕ is alternation-free if the following conditions are satisfied:

• For any subformula ψ of ϕ in the form of µXψ′ and for any subformula
χ of ψ′ in the form of νY χ′, X does not occur freely in χ′.

• For any subformula ψ of ϕ in the form of νY ψ′ and for any subformula
χ of ψ′ in the form of µXχ′, Y does not occur freely in χ′.

For example, ϕ1 = µX(νY (p ∧ 〈m〉Y ) ∨ [m]X) is an alternation-free
formula, whereas ϕ2 = µX(νY (p ∧ 〈m〉(X ∧ Y )) ∨ [m]X) is not.

We denote the set of alternation-free formulas by L(µAF,nom,back, func).
Also, L(µAF,nom,back), L(µAF,nom, func), and L(µAF,back, func) are the
sets of alternation-free formulas that do not contain functional modalities,
backward modalities, and nominals, respectively.

We consider (cl(ϕ), F ) as a graph and denote the set of strongly connected
components (SCCs) of the graph by D(ϕ). Also, we denote by Dµ(ϕ) and
Dν(ϕ) the set of strongly connected components of the graph that contains
a formula in the form of µXψ and νXψ, respectively. If ϕ is clear from
the context, they are written as Dµ and Dν , respectively. Also we write
Dµ =

⋃Dµ and Dν =
⋃Dν . If ψ ∈ cl(ϕ) is an element of

⋃D(ϕ), we
denote by D(ψ) the strong connected component D ∈ D(ϕ) that contains ψ.

For example, consider the above formula ϕ1. By letting ψ1 = νY (p ∧
〈m〉Y ), D1 = {ϕ1, ψ1 ∨ [m]ϕ1, [m]ϕ1}, D2 = {ψ1, p ∧ 〈m〉ψ1, 〈m〉ψ1}, and
D3 = {p}, we have D(ϕ1) = {D1,D2,D3}, Dµ(ϕ1) = {D1}, and Dν(ϕ1) =
{D2}.

It is easy to show the following lemma.

LEMMA 2. Dµ(ϕ) ∩ Dν(ϕ) = ∅ if and only if ϕ is alternation-free.

2.5 Rank and choice functions
In this section, we prepare lemmas to be used to show the correctness of
the decision procedure. We denote the class of ordinal numbers by On.

Let ϕI be a closed alternation-free formula. Let K = (S,R,L) be a Kripke
structure and D ∈ Dµ(ϕI). We define UD,α ⊆ cl(ϕI)× S for α ∈ On as the
least set that satisfies the following conditions. We omit D and write Uα if
no confusion occurs.
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• U0 = {(ϕ, s) | ϕ ∈ cl(ϕI) \D, s ∈ S, s |= ϕ}.
• If ϕ ∈ cl(ϕI) and one of the following conditions holds, (ϕ, s) ∈ Uα.

– ϕ = ϕ1 ∨ ϕ2 and either (ϕ1, s) ∈ Uα or (ϕ2, s) ∈ Uα.

– ϕ = ϕ1 ∧ ϕ2 and both (ϕ1, s) ∈ Uα and (ϕ2, s) ∈ Uα.

– ϕ = λXϕ1 and (exp(ϕ), s) ∈ Uα.

– ϕ = 〈m〉ϕ1 and there is s′ ∈ S such that (s, s′) ∈ R(m) and
(ϕ1, s

′) ∈ Uβ for some β < α.

– ϕ = [m]ϕ1 and for all s′ ∈ S if (s, s′) ∈ R(m) then there exists
β < α such that (ϕ1, s

′) ∈ Uβ .
– ϕ = @nϕ1 and (ϕ1, L

′(n)) ∈ Uβ for some β < α.

LEMMA 3. For any D ∈ Dµ(ϕI), we have {(ϕ, s) ∈ cl(ϕI)× S | s |= ϕ} =⋃
α∈On UD,α.

Proof. We use the fact that s |= ϕ holds if and only if (ϕ, s) belongs to the
winning region of Player 0 in the corresponding parity game [18].

Let U∞ =
⋃
α∈On Uα and assume (ϕ, s) ∈ cl(ϕI)× (S \U∞). It is easy to

see that Player 1 can keep the vertex outside of U∞. Since cl(ϕI)×S \U∞ ⊆
D × S, the winner of the trace is Player 1. Therefore s 6|= ϕ.

The other direction can be shown by induction on α. �

We define the rank function rankD: its domain is {(ϕ, s) ∈ cl(ϕI) × S |
K, s |= ϕ}, its range is On, and rankD(ϕ, s) = min{α ∈ On | (ϕ, s) ∈ Uα}.
The following lemma clearly holds from the definition.

LEMMA 4. Suppose (ϕ, s) ∈ dom(rankD). If ϕ 6∈ D, rankD(ϕ, s) = 0.
Otherwise, the following holds:

• rankD(ϕ1 ∨ ϕ2, s) = min({rankD(ϕj , s) | s |= ϕj , j = 1, 2}).
• rankD(ϕ1 ∧ ϕ2, s) = max(rankD(ϕ1, s), rankD(ϕ2, s)).

• rankD(〈m〉ϕ, s) = min{rankD(ϕ, s′) + 1 | (s, s′) ∈ R(m), s′ |= ϕ}.
• rankD([m]ϕ, s) = sup{rankD(ϕ, s′) + 1 | (s, s′) ∈ R(m)}.
• rankD(λXϕ, s) = rankD(exp(λXϕ), s).

• rankD(@nϕ, s) = rankD(ϕ,L′(n)) + 1.

A choice function c for ϕI and K is a function that satisfies the following
conditions:

• dom(c) = Φ×S, where Φ is the set of formulas in cl(ϕI) that is in the
form of either ϕ1 ∨ ϕ2 or 〈m〉ϕ where m ∈ Mod.

• For ϕ1 ∨ ϕ2 ∈ cl(ϕI) and s ∈ S, c(ϕ1 ∨ ϕ2, s) is either ϕ1 or ϕ2. If
s |= ϕ1 ∨ ϕ2, s |= c(ϕ1 ∨ ϕ2, s).
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• For 〈m〉ϕ ∈ cl(ϕI) and s ∈ S, s′ = c(〈m〉ϕ, s) ∈ S. If s |= 〈m〉ϕ,
(s, s′) ∈ R(m) and s′ |= ϕ.

A trace τ is a finite or an infinite sequence ((ϕi, si) | i < α), where
α < ω + 1, ϕi ∈ cl(ϕI), and si ∈ S, satisfying the following conditions:

(1) (ϕi, ϕi+1) ∈ F for i+ 1 < α.

(2) If ϕi = 〈m〉ϕi+1 or ϕi = [m]ϕi+1, (si, si+1) ∈ R(m).

(3) If ϕi = @nϕi+1, si+1 = L′(n).

(4) In cases other than (2) and (3), si+1 = si.

Trace τ = ((ϕi, si) | i < α) conforms with choice function c if the following
conditions are satisfied for i+ 1 < α:

• If ϕi = ξ ∨ η, ϕi+1 = c(ϕi, si).

• If ϕi = 〈m〉ϕi+1, si+1 = c(ϕi, si).

LEMMA 5. Let c be a choice function for ϕI and K and assume Z ⊆
cl(ϕI) × S. If the following conditions are satisfied, K, s |= ϕ holds for all
(ϕ, s) ∈ Z.

(1) If a is an atom or its negation, (a, s) ∈ Z implies K, s |= a.

(2) If ((ϕ, s), (ϕ′, s′)) is a trace that conforms with c and (ϕ, s) ∈ Z, then
(ϕ′, s′) ∈ Z.

(3) Assume ((ϕi, si) | i < ω) is an infinite trace that conforms with c,
(ϕi, si) ∈ Z for all i < ω, D ∈ Dµ(ϕI), and ϕ0 ∈ D. Then, there is
k < ω such that ϕk 6∈ D.

Proof. Using the choice function, a strategy σ for Player 0 is defined in an
obvious manner. We show that σ is a winning strategy on any (ϕ, s) ∈ Z.
By using condition (2), one can show that for any trace τ beginning at
(ϕ, s) and conforming σ and for any n ∈ dom(τ), τ(n) = (ϕn, sn) ∈ Z. If
dom(τ) is finite, the winner of τ is Player 0 by condition (1). If dom(τ) is
infinite, there is N ∈ ω and D ∈ D such that ϕn ∈ D for all n ≥ N . By
condition (3), D ∈ Dν . This means that all priorities (greater than zero)
appearing infinitely often are even and therefore the winner of τ in this case
is also Player 0. �

3 Decision procedure

Now, we describe the decision procedure. In Section 3.1, we define the
necessary concepts, and the procedure is defined in Section 3.2.

Let ϕI be the given formula of which we judge satisfiability. We denote
the lean of ϕI by Lean. When ϕI has free variables, we replace each of them
with a distinct fresh propositional symbol (i.e., one that does not appear
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in ϕI), and denote it by ϕ′I. It is clear that ϕI and ϕ′I are equi-satisfiable.
Therefore, hereafter, we assume that ϕI is closed. In what follows, we denote
by PS the set of propositional symbols that appear in ϕI. Thus, PS is a
finite set. The same convention is also applied to Nom, PV, GMS and FMS.

3.1 Tableau

For D ∈ Dµ, we denote by BModD the set of modality symbol m such that
there are formulas ϕ ∈ D in the form of 〈m〉ϕ′ or [m]ϕ′ and ψ ∈ D in the
form of 〈m−1〉ψ′ or [m−1]ψ′. We denote by BFormD the subset of D that
consists of the formulas in the form of 〈m〉ϕ, [m]ϕ, 〈m−1〉ϕ, or [m−1]ϕ for
some m ∈ BModD.

The decision procedure is a variant of the tableau method. A node of the
tableau is a pair (x, y) that satisfies the following conditions:

• x is a function and its domain is Lean. For ϕ ∈ Lean, x(ϕ) is either a
natural number or value “∞”. If ϕ ∈ Dµ and BFormD(ϕ) 6= ∅, then
either x(ϕ) ≤ |BFormD(ϕ)|+ 1 or x(ϕ) =∞; otherwise x(ϕ) is either
0 or ∞. We regard 0 < 1 < · · · <∞.

• y is a function and its domain is {ϕ ∈ Dµ ∩ Lean | x(ϕ) < ∞}. For
ϕ ∈ dom(y), y(ϕ) is a natural number and y(ϕ) ≤ |Nom| · |D(ϕ)|.

• If there is D ∈ Dµ such that ϕ1, ϕ2 ∈ D and x(ϕ1) < x(ϕ2) < ∞,
then y(ϕ1) ≤ y(ϕ2).

Note that there are only finitely many pairs (x, y) that satisfy the conditions.
We denote by Tab the set of all pairs that satisfy the above conditions.
When t = (x, y) ∈ Tab, x is denoted by xt and y is denoted by yt.

The intention is that at node t = (x, y), ϕ ∈ Lean is satisfied if x(ϕ) <∞
and is not satisfied if x(ϕ) = ∞. In the case ϕ ∈ D ∈ Dµ, due to (3) of
Lemma 5, if we can appropriately define a choice function c, there should
be a finite trace that conforms with c, starts with (ϕ, t), and goes outside
D. The values x(ϕ) and y(ϕ) both relate to the trace. If x(ψ) ≤ x(ϕ), we
regard that (ψ, t) can appear in the trace that starts with (ϕ, t). The value
y(ϕ) expresses the number of nominals that appear in the trace. For precise
meanings, refer to Section 4.

A function g from Nom to Tab is called a naming function when it satisfies
the following conditions:

• xg(n)(n) = 0 for all n ∈ Nom.

• xg(n1)(n2) = 0 =⇒ g(n1) = g(n2) for any n1, n2 ∈ Nom.

We denote the set of naming functions by NF. Note that NF is a finite set.
A naming function designates a node at which each nominal is satisfied. By
recalling that xt(ϕ) = 0 means that t satisfies ϕ, the first condition means
that a nominal should be satisfied at the node where the nominal is satisfied.
The second condition means that if n2 is satisfied at the node where n1 is
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satisfied, then the node where n1 is satisfied should be equal to the node
where n2 is satisfied.

Values x(ϕ) are defined only on Lean but we extend its domain to cl(ϕI)
by induction in the following manner. Assume t = (x, y). For a ∈ Atom,
x(¬a) = 0 if x(a) = ∞ and x(¬a) = ∞ if x(a) = 0. For disjunc-
tions, conjunctions, and fixed-points, we define the x-value basically as
the minimum values of its subformulas, the maximum values of its sub-
formulas, and the value of its expansion, respectively; however, if the for-
mula goes outside the SCC, the value goes to 0 or ∞. More precisely,
x(ϕ1 ∨ ϕ2) = min(x̃(ϕ1,D(ϕ1 ∨ ϕ2)), x̃(ϕ2,D(ϕ1 ∨ ϕ2))), x(ϕ1 ∧ ϕ2) =
max(x̃(ϕ1,D(ϕ1 ∧ ϕ2)), x̃(ϕ2,D(ϕ1 ∧ ϕ2))), and x(λXϕ) = x(exp(λXϕ)),
where x̃(ϕ,D) = 0 if x(ϕ) < ∞ and ϕ 6∈ D and x̃(ϕ,D) = x(ϕ) otherwise.
Note that the induction is sound since the formulas are guarded.

The domain of y is also extended to {ϕ ∈ Dµ | x(ϕ) < ∞} in a sim-
ilar manner: y(ϕ1 ∨ ϕ2) = min(ỹ(ϕ1,D(ϕ1 ∨ ϕ2)), ỹ(ϕ2,D(ϕ1 ∨ ϕ2))),
y(ϕ1 ∧ ϕ2) = max(ỹ(ϕ1,D(ϕ1 ∧ ϕ2)), ỹ(ϕ2,D(ϕ1 ∧ ϕ2))), and y(λXϕ) =
y(exp(λXϕ)). If x(ϕ) = ∞, then ỹ(ϕ,D) = ∞, else if ϕ 6∈ D, then
ỹ(ϕ,D) = 0, else ỹ(ϕ,D) = y(ϕ).

We write t 
 ϕ when xt(ϕ) <∞. The set {ϕ ∈ Lean | t 
 ϕ} is denoted
by sat(t). A node t ∈ Tab has a name if there is n ∈ Nom such that t 
 n.

For each m ∈ MS, we define the transition relation Tr(m) on Tab as the
conjunction of the following five conditions: ConBox(t, t′,m), ConBox(t′, t,
m−1), ConNom(t, t′,m), ConNom(t′, t,m−1), and LoopFree(t, t′,m), each
of which is defined below. For m ∈ MS, Tr(m−1) is defined as Tr(m−1) =
Tr(m)−1.

For t ∈ Tab and m ∈ Mod, we define Box(t,m) = sat(t) ∩ L[m] if
m ∈ Mod \ FMS and Box(t,m) = sat(t) ∩ (L[m] ∪ L〈m〉) if m ∈ FMS.
Then, ConBox(t, t′,m) is defined as “for all ϕ ∈ Box(t,m), t′ 
 ~ϕ”. The
intention of this definition should be clear if we consider Tr(m) as a corre-
sponding relation of R(m) of a Kripke structure. Note that if m ∈ FMS,
diamond formulas behave similarly to box formulas since there is at most
one successor.

For t, t′ ∈ Tab and ϕ ∈ dom(yt) ∩ Lean, ConNom(t, t′, ϕ) is defined as
follows: “~ϕ ∈ dom(yt′) and yt(ϕ) ≥ yt′(~ϕ) hold. Moreover if t′ has a name,
yt(ϕ) > yt′(~ϕ) holds.” This is also a natural requirement by considering the
intuitive meaning of the function y. For t, t′ ∈ Tab and m ∈ Mod, we write
ConNom(t, t′,m) if ConNom(t, t′, ϕ) holds for any ϕ ∈ dom(yt)∩Box(t,m).

For t, t′ ∈ Tab, m ∈ Mod, and ϕ ∈ Box(t,m), LoopFree(t, t′, ϕ) is defined
as follows: “there exists no formula ψ ∈ L[m]∩D(ϕ) such that both xt(ϕ) ≤
xt(~ψ) < ∞ and xt′(ψ) ≤ xt′(~ϕ) < ∞ hold.” We write LoopFree(t, t′,m)
if LoopFree(t, t′, ϕ) holds for any ϕ ∈ Box(t,m) ∩Dµ. This completes the
definition of Tr(m).

The intuitive reason why we require the loop-freeness for Tr(m) is as
follows: roughly speaking, we will create a Kripke structure from a tableau
in the manner that t ∈ Tab is a state, the transition relation of modality m
is defined by Tr(m), and ϕ is satisfied at state t if and only if t 
 ϕ. Suppose
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Figure 1. loop-freeness

that there is a transition of modality m from t to t′ and it is not loop-free
with regard to ϕ = [m]ϕ′. Take ψ = [m−1]ψ′ as in the definition. Then,
(ϕ, t) may appear in a trace from (ψ′, t), and (ψ, t′) may appear in a trace
from (ϕ′, t′). Furthermore, both ((ϕ, t), (ϕ′, t′)) and ((ψ, t′), (ψ′, t)) can be
adjacent pairs in traces. Combining these four parts (see Figure 1), one can
construct an infinite trace within D, which contradicts to Lemma 5.

For m ∈ Mod and ϕ ∈ Lean ∩ L〈m〉, we also define the relation Tr(ϕ)
on Tab as the set of tuples (t, t′) that satisfies the following three condi-
tions. (1) (t, t′) ∈ Tr(m). (2) t 
 ϕ. (3) If ϕ ∈ Dµ, ConNom(t, t′, ϕ) and
LoopFree(t, t′, ϕ) hold.

3.2 Procedure

For given ϕI, the decision procedure will try to find a suitable subset T of
Tab such that a model for ϕI is constructed from T . One of the difficulty
is to decide where nominals should be satisfied in T . For example if we
know that t should be in T and t 
 〈m〉(n ∧ (ϕ ∨ ψ)). If n is a mere
propositional symbol, we can request t1 or t2 be a member of T , where t1
and t2 are appropriate element of Tab such that t1 
 n ∧ ϕ and t2 
 n ∧ ψ
and (t, ti) ∈ Tr(m). However, if n is a nominal, and especially if ϕ and ψ
are mutually inconsistent, we need to ask exactly one of t1 and t2 exists in
T , but which of them should we choose?

Naming functions are used to solve the problem. We fix a naming function
g, and describe a subprocedure for g. In the subprocedure, we assume that
nominal n is satisfied at g(n) ∈ Tab. The entire procedure consists of a
loop over NF. If there is a g ∈ NF for which the subprocedure succeeds,
then we consider that ϕI is satisfiable. If the procedure fails for all g ∈ NF,
we judge that ϕI is not satisfiable. In the rest of this section, we define the
subprocedure for g.

We construct a sequence (Tk)k≤K of subsets of Tab so that T0 ⊇ T1 ⊇ · · · .
The construction is repeated until Tk = Tk+1 holds. Since Tab is a finite
set, there exists such k ∈ ω. We write this k as K. The procedure succeeds
if there is t ∈ TK such that t 
 ϕI, and for all n ∈ Nom, g(n) ∈ TK .

The initial set T0 consists of the elements t of Tab that satisfy the fol-
lowing conditions:
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• For all n ∈ Nom, t 
 n =⇒ t = g(n).

• For all ϕ ∈ Lean in the form of @nϕ′, if t 
 ϕ, then g(n) 
 ϕ′.
Moreover, if ϕ ∈ Dµ, yt(ϕ) > yg(n)(ϕ′).

Tk+1 is obtained from Tk by removing nodes that are ♦-inconsistent or
µ-inconsistent in Tk. Let T be a subset of Tab. Node t ∈ T is ♦-consistent
in T , if:

• for any m ∈ Mod\FMS and ϕ ∈ Lean∩L〈m〉, t 
 ϕ implies that there
exists t′ ∈ T such that (t, t′) ∈ Tr(ϕ), and

• for any m ∈ FMS, if there exists ϕ ∈ Lean ∩ L〈m〉 such that t 
 ϕ,
then there exists t′ ∈ T such that (t, t′) ∈ Tr(m).

We say t ∈ T is ♦-inconsistent if it is not ♦-consistent.
In order to define µ-consistency, we construct a sequence (Vj)j≤J of sub-

sets of T×P(Dµ∩Lean) so that V0 ⊆ V1 ⊆ · · · . We repeat it until Vj = Vj+1

holds, and set J = j. (J depends on T .) Since T ×P(Dµ ∩Lean) is a finite
set, there must be such j ∈ ω. A node t ∈ T is µ-consistent in T if for all
D ∈ Dµ, (t, {ϕ ∈ D ∩ Lean | t 
 ϕ}) ∈ VJ , and t is µ-inconsistent if it is
not µ-consistent.

Let t = (x, y) ∈ Tab and E ⊆ Dµ. For ϕ ∈ Lean, we define xE(ϕ) by
xE(ϕ) = ∞ if ϕ ∈ Dµ \ E, and xE(ϕ) = x(ϕ) otherwise. Then, we extend
the domain of xE to cl(ϕI) in the same manner as we extended the domain
of x. We write tE 
 ϕ when xE(ϕ) <∞.

The initial set V0 is defined as V0 = {(t,∅) | t ∈ T}. Assume we have Vj .
Then Vj+1 is defined so that (t, E) ∈ Vj+1 if and only if (t, E) ∈ Vj or the
following conditions are satisfied:

(a) The following holds for all ϕ ∈ E.

• t 
 ϕ.
• For all ψ ∈ D(ϕ) ∩ Lean, if xt(ϕ) > xt(ψ) then ψ ∈ E.
• For all ψ ∈ D(ϕ)∩Lean∩ dom(yt), if yt(ϕ) > yt(ψ) then ψ ∈ E.

(b) For any m ∈ Mod \ FMS and ϕ ∈ L〈m〉 ∩ sat(t), there is (t′, E′) ∈ Vj
such that:

• (t, t′) ∈ Tr(ϕ).

• For any ψ ∈ E ∩ L[m], t′E
′ 
 ~ψ.

• If ϕ ∈ E, t′E
′ 
 ~ϕ.

(c) For any m ∈ FMS that satisfies L〈m〉∩sat(t) 6= ∅, there is (t′, E′) ∈ Vj
such that:

• (t, t′) ∈ Tr(m).

• For any ψ ∈ E ∩ (L〈m〉 ∪ L[m]), t′E
′ 
 ~ψ.

This completes the description of the decision procedure.
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4 Correctness

In this section we prove that the decision procedure presented in the previous
section is sound and complete for L(µAF,nom,back), L(µAF,nom, func),
and L(µAF,back, func); and sound for L(µAF,nom,back, func). We first
show the soundness (if there is a Kripke structure that satisfies ϕI, the
procedure succeeds) in Section 4.1; then, we show the completeness, the
other direction, in Section 4.2.

4.1 Soundness
Assume that there is a Kripke structure K = (S,R,L) and sI ∈ S such that
K, sI |= ϕI. We define a function h : S → Tab and show that h(sI) 
 ϕI

and all nodes in the range of h remain in Tk. For ϕ ∈ Dµ and s ∈ S, we
denote the set {rankD(ψ, s) | ψ ∈ BFormD, rankD(ψ, s) ≤ rankD(ϕ, s)} by
X(ϕ, s), where D = D(ϕ). It is finite since BFormD is finite. If we write
h(s) = (x, y), x and y are defined as follows. If s 6|= ϕ, x(ϕ) =∞. Otherwise,
if ϕ ∈ Dµ then x(ϕ) = |X(ϕ, s)| + 1, else x(ϕ) = 0. For ϕ ∈ dom(y),
y(ϕ) = |Y (ϕ, s)|, where Y (ϕ, s) = {(n, ψ) ∈ Nom ×D | rankD(ψ,L′(n)) <
rankD(ϕ, s)} and D = D(ϕ).

The following three lemmas can be easily proved and we omit the proofs.

LEMMA 6. For ϕ ∈ cl(ϕI) and s ∈ S, K, s |= ϕ ⇐⇒ h(s) 
 ϕ.

LEMMA 7. (s, s′) ∈ R(m) =⇒ (h(s), h(s′)) ∈ Tr(m) holds for s, s′ ∈ S
and m ∈ Mod.

LEMMA 8. Suppose s ∈ S, (x, y) = h(s), ϕ,ψ ∈ Dµ and D(ϕ) = D(ψ).
Let us write D = D(ϕ) = D(ψ).

(1) x(ϕ) ≤ x(ψ) ⇐⇒ rankD(ϕ, s) ≤ rankD(ψ, s).

(2) If ϕ,ψ ∈ dom(y), y(ϕ) ≤ y(ψ) ⇐⇒ rankD(ϕ, s) ≤ rankD(ψ, s).

For D ∈ Dµ, α ∈ On, and s ∈ S, let us denote by FD(α, s) the set
{ϕ ∈ D ∩ Lean | s |= ϕ, rankD(ϕ, s) < α}.
LEMMA 9. For any α ∈ On and D ∈ Dµ there exists j ∈ ω such that for
any s ∈ S, (h(s), FD(α, s)) ∈ Vj.
Proof. We prove the lemma by induction on α. The case α = 0 is trivial
since FD(0, s) = ∅. The case in which α is limit is also clear since there
exists J ∈ ω such that Vj = VJ for all j ≥ J .

For the remaining case of α+1, we assume that (h(s), FD(α, s)) ∈ Vj for
all s ∈ S and prove that (h(s), FD(α+1, s)) ∈ Vj+1 for all s ∈ S. Take s ∈ S
and let t = h(s) and E = FD(α+1, s). We need to check the conditions (a),
(b) and (c) of the definition of Vj+1. The condition (a) can be proved
without difficulty by using Lemmas 6 and 8. For the condition (b), assume
m ∈ Mod \ FMS, ϕ = 〈m〉ϕ′ ∈ Lean, and t 
 ϕ. Since s |= ϕ by Lemma 6,
we can take s′ ∈ S such that s′ |= ϕ and (s, s′) ∈ R(m). Moreover, if
ϕ ∈ Dµ, we take s′ so that rankD(ϕ′, s′) < rankD(ϕ, s) is satisfied. Let
t′ = h(s′) = (x′, y′) and E′ = FD(α, s′). By the induction hypothesis, we
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have (t′, E′) ∈ Vj . The three items in the condition (b) can be checked for
(t′, E′). We skipped the details. For the condition (c): Assume m ∈ FMS,
ϕ = 〈m〉ϕ′ ∈ Lean, and t 
 ϕ. By Lemma 6, we have s′ ∈ S such that
(s, s′) ∈ R(m) and s′ |= ϕ′. Let t′ = h(s′) and E′ = FD(α, s′). The two
items in the condition (c) can be checked for (t′, E′). �

LEMMA 10. If h[S] ⊆ T ⊆ Tab, A node t ∈ h[S] is both ♦-consistent and
µ-consistent in T .

Proof. The ♦-consistency clearly holds by combining Lemmas 6 and 7.
For the µ-consistency, note that FD(α, s) = {ϕ ∈ D ∩ Lean | s |= ϕ} if α is
sufficiently large, for example if α is a larger cardinal than the cardinality
of S. The conclusion follows from Lemmas 6 and 9. �

Now we prove the soundness.

THEOREM 11. If there is a Kripke structure K = (S,R,L) and sI ∈ S
such that K, sI |= ϕI, the procedure succeeds.

Proof. Let us define g(n) = h(L′(n)) for n ∈ Nom. It is easy to see that g
is a naming function. We claim for this g that h[S] ⊆ Tk holds for all k ∈ ω.
This claim, combined with Lemma 6, is sufficient for the proof.

We prove the claim by induction on k. For k = 0, h[S] ⊆ T0 can be
checked using Lemma 6 and the definition of the y-part of h.

Assume h[S] ⊆ Tk. Then by Lemma 10, h[S] ⊆ Tk+1. This completes
the proof. �

4.2 Completeness
To prove the completeness, we assume that the procedure succeeds. Let g
be the naming function for which the procedure succeeds.

We fix an SCC D0 ∈ Dµ and a cyclic permutation τ on Dµ. In case
Dµ = ∅, we consider Dµ = {∅}; therefore D0 = ∅ and τ is the identity.

Let Nom′ be a set of representatives of the equivalence class induced by
the equivalence relation {(n, n′) ∈ Nom | g(n′) 
 n}. For t ∈ Tab and
D ∈ Dµ, the set sat(t) ∩D is denoted by satD(t).

We construct a (possibly infinite) forest (W,RW ), that is, a disjoint union
of trees, where W is the underlying set and RW is the forest relation on W ,
together with functions t : W → TK , l : RW → Mod, D : W → Dµ,
E : W → P(Dµ ∩ Lean), and j : W → ω. During the construction, we will
keep the following invariant: for w,w′ ∈ W , j(w) > 0 =⇒ (t(w), E(w)) ∈
Vj(w) \ Vj(w)−1.

At the first stage of the construction, we create elements wI and wn for
n ∈ Nom′ and let W = {wI} ∪ {wn | n ∈ Nom′} and RW = ∅. Also, we
define t(wI) = tI and t(wn) = g(n) for n ∈ Nom′. And for w ∈W , we define
D(w) = D0, E(w) = satD0(t(w)), and j(w) = min{j ∈ ω | (t(w), E(w)) ∈
Vj}. The invariant holds for the first stage: since t(w) ∈ TK , t(w) is µ-
consistent, therefore, the set in the right hand side of the definition of j(w)
is not empty.
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At the second and succeeding stages, we pick a leaf node w of W which
has not yet been processed and is located at the shallowest level of the
forest among such nodes. If there is n ∈ Nom′ such that t(w) = t(wn) but
w 6= wn, nothing needs to be done. In this case, w is a leaf of the forest.

Otherwise, for each m ∈ Mod \FMS and ϕ ∈ sat(t(w))∩L〈m〉, we create
a node w′ and add it to W . Also for each m ∈ FMS that satisfies (1)
sat(t(w)) ∩ L〈m〉 6= ∅, and (2) there is no ŵ ∈ W such that (ŵ, w) ∈ RW
and l(ŵ, w) = m−1, we create a node w′ and add it to W . In both cases, a
pair (w,w′) is added to RW and we define l(w,w′) = m.

We define t(w′) depending on the value of j(w). If j(w) = 0, since t(w) ∈
TK , it is ♦-consistent in TK . When m ∈ Mod\FMS, take t′ ∈ TK such that
(t(w), t′) ∈ Tr(ϕ), where ϕ is the formula that corresponds to w′. When
m ∈ FMS, take t′ ∈ TK such that (t(w), t′) ∈ Tr(m). In both cases we define
t(w′) = t′. Also, we define D(w′) = τ(D(w)), E(w′) = satD(w′)(t(w′)), and
j(w′) = min{j ∈ ω | (t(w′), E(w′)) ∈ Vj}. The invariant can be checked as
before.

If j(w) > 0, from the invariant there is (t′, E′) ∈ Vj(w)\Vj(w)−1 that satis-
fies the conditions in the description of the procedure. We define t(w′) = t′,
D(w′) = D(w), E(w′) = E′ and j(w′) = min{j ∈ ω | (t′, E′) ∈ Vj}. The
invariant trivially holds. This completes the construction of the forest.

We define an equivalence relation∼ onW : w1 ∼ w2 if and only if w1 = w2

or there exists n ∈ Nom′ such that t(w1) = t(w2) = g(n). Note that in each
equivalence class there is at most one element that has successors. Using
this, we define a tuple K = (S,R,L) as follows:

• The underlying set S is W divided by the equivalence relation ∼. For
brevity, we also write w for the equivalence class that contains w.

• R(m) = {(w1, w2) ∈ RW | l(w1, w2) = m or l(w2, w1) = m−1}.
• L(p) = {w ∈ S | t(w) 
 p}.

Tuple K is almost a Kripke structure, but R(m) might not be a function
for m ∈ FMS. For example if two new nodes are added with 〈m−1〉n for
n ∈ Nom at two different nodes, they are equivalent and the equivalence
class has two successors in K. However, one can easily check that the
following lemma holds.

LEMMA 12. If ϕI is in either L(µAF,nom,back), L(µAF,back, func), or
L(µAF,nom, func), tuple K is a Kripke structure.

To prove the completeness using Lemma 5, we take a choice function c
as follows. Let w ∈ S, (x, y) = t = t(w), D = D(w), and E = E(w). When
ϕ = ϕ0 ∨ ϕ1 ∈ cl(ϕI), c(ϕ,w) is determined in the following order. (1) If
x(ϕ) = ∞, either ϕ0 or ϕ1 can be chosen. (2) If only one of x(ϕi) < ∞
(i = 0, 1) holds, choose ϕi. (3) If ϕ 6∈ D, either ϕ0 or ϕ1 can be chosen.
(4) If only one of ϕi 6∈ D (i = 0, 1) holds, take ϕi. (5) If y(ϕ0) and y(ϕ1)
differs, choose the smaller of the two. (6) If x(ϕ0) and x(ϕ1) differs, choose
the smaller of the two. (7) If xE(ϕ0) and xE(ϕ1) differs, choose the smaller
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of the two. (8) Either ϕ0 or ϕ1 can be taken. When ϕ = 〈m〉ϕ′, (1) if t 6
 ϕ,
any w′ ∈ S can be chosen. (2) If m ∈ FMS and there is w′ ∈ S such that
l(w′, w) = m−1, choose it. (3) In this case, a successor w′ of w for ϕ was
created during the construction. Choose it.

Let Z = {(ϕ,w) ∈ cl(ϕI) × S | t(w) 
 ϕ}. We will show that the choice
function c and Z satisfies the conditions of Lemma 5. We start with a
preliminary lemma.

LEMMA 13. Assume t = (x, y) ∈ Tab, D ∈ Dµ, E ⊆ D ∩ Lean, and E
is closed under downward order of x, that is, ψ ∈ D ∩ Lean, ψ′ ∈ E, and
x(ψ) < x(ψ′) implies ψ ∈ E. Then, for ϕ1, ϕ2 ∈ D, if x(ϕ1) < x(ϕ2) then
xE(ϕ1) < xE(ϕ2) or xE(ϕ1) = xE(ϕ2) =∞.

Proof. This lemma can be shown by double induction, first on ϕ1, then on
ϕ2. We omit details, which are tedious but not difficult. �

Next, let us summarize the properties of the forest as a lemma.

LEMMA 14. The following holds for all w ∈W :

(1) j(w) > 0 =⇒ (t(w), E(w)) ∈ Vj(w) \ Vj(w)−1.

(2) E(w) ⊆ D(w)

(3) Assume m ∈ Mod, ϕ ∈ sat(t(w)) ∩ L〈m〉, and w′ = c(ϕ).

(a) Either (w,w′) ∈ RW or (w′, w) ∈ RW holds. If m 6∈ FMS, then
(w,w′) ∈ RW holds.

(b) (t(w), t(w′)) ∈ Tr(ϕ) holds.

(c) If m 6∈ FMS and ϕ ∈ E(w), t(w′)E(w′) 
 ~ϕ holds.

(4) For any w′ ∈ W , (w,w′) ∈ RW implies (t(w), t(w′)) ∈ Tr(l(w,w′))
and (t(w′), t(w)) ∈ Tr(l(w,w′)−1).

(5) For any w′ ∈W , (w,w′) ∈ RW implies the following:

(a) If j(w) > 0, then we have j(w) > j(w′), D(w′) = D(w), and
t(w′)E(w′) 
 ~ψ for any ψ ∈ E(w) ∩ L[l(w,w′)].

(b) If j(w) = 0, then we have E(w) = ∅, D(w′) = τ(D(w)) and
E(w′) = satD(w′)(t(w′)).

(6) For m ∈ FMS, w has at most one w′ ∈ W such that either (w,w′) ∈
RW and l(w,w′) = m or (w′, w) ∈ RW and l(w′, w) = m−1.

Proof. (1) is the invariant we keep through the construction and the others
can also be checked easily. �

LEMMA 15. Suppose that (wi | i ∈ ω) is a sequence of elements of W and
(wi, wi+1) ∈ RW for all i ∈ ω. Also suppose D ∈ Dµ and l ∈ ω.
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(1) There exists k ∈ ω such that l ≤ k and E(wk) = ∅.

(2) There exists k ∈ ω such that l < k, D(wk) = D, and E(wk) =
satD(t(wk)).

Proof. (1) is clear from Lemma 14 (5).
(2) By Lemma 14 (5), there is k′ ≥ l such that D(wk′) = τ(D(wl)).
Since Dµ is finite and τ is a cyclic permutation on Dµ, by repeating this
finitely many times, we have k > l such that j(wk−1) = 0, E(wk−1) = 0,
D(wk) = τ(D(wk−1)) = D, and E(wk) = satD(t(wk)). �

Now we prove the key lemma of this section.

LEMMA 16. The choice function c and the set Z satisfies the conditions of
Lemma 5. Therefore, t(w) 
 ϕ implies K, w |= ϕ.

Proof. The conditions (1) and (2) of Lemma 5 can be checked easily from
the definitions.

To show the condition (3), we use the reduction to absurdity and assume
that there exist D ∈ Dµ and an infinite trace ((ϕk, wk) | k < ω) that
conforms with c such that t(wk) 
 ϕk and ϕk ∈ D for all k < ω.

CLAIM 17. For all k ∈ ω, yt(wk)(ϕk) ≥ yt(wk+1)(ϕk+1). If wk 6= wk+1 and
t(wk+1) has a name, yt(wk)(ϕk) > yt(wk+1)(ϕk+1).

Proof. When ϕk = ϕ ∨ ψ or ϕk = 〈m〉ϕ, the claim holds by the definition
of c. (If m ∈ FMS, we need Lemma 14 (3) as well.) When ϕk is in the form
of ϕ∧ψ or µXϕ, the claim follows from the definition of y. For ϕk = [m]ϕ,
use Lemma 14 (4) and for ϕk = @nϕ, use the definition of T0. And ϕk
cannot be an atomic formula, its negation, or νXϕ since ϕk ∈ D ∈ Dµ. �

From this claim, it is clear that named nodes appear only finitely many
times in the trace. (Note also that formulas are guarded. Therefore there
cannot exist K ∈ ω such that wk = wK for all k ≥ K.) More precisely, we
can take k0 ∈ ω such that t(wk) 6
 n for all k ≥ k0 and n ∈ Nom.

CLAIM 18. If K,L ∈ ω, k0 ≤ K ≤ L, and wK = wL (we denote it by w),
then xt(w)(ϕK) ≥ xt(w)(ϕL). Moreover, if there is k′ such that K < k′ < L
and wk′ 6= w, then xt(w)(ϕK) > xt(w)(ϕL).

Proof. We prove the claim by induction on L − K. The claim becomes
trivial when L−K = 0, so we assume K < L.

If ϕK is in the form of ϕ ∨ ψ, ϕ ∧ ψ, or µXϕ, then wK = wK+1 and
xt(w)(ϕK) ≥ xt(w)(ϕK+1). Therefore the induction hypothesis leads to the
conclusion. Since k0 ≤ K, ϕK cannot be in the form of @n, ϕ. Also, because
ϕK ∈ D, it is neither an atomic formula or its negation.

The remaining cases are ϕK = 〈m〉ϕK+1 and ϕK = [m]ϕK+1, where
m ∈ Mod. In these cases, wK+1 6= wK since W is a forest. Let M be
the least index such that K < M and wM = wK . Clearly K + 1 ≤ M −
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1 and wK+1 = wM−1 since W is a forest. Let w′ = wK+1 = wM−1.
By the induction hypothesis, we have (1) xt(w′)(ϕK+1) ≥ xt(w′)(ϕM−1)
and (2) xt(w)(ϕM ) ≥ xt(w)(ϕL). Therefore if we show (3) xt(w)(ϕK) >
xt(w)(ϕM ), we have xt(w)(ϕK) > xt(w)(ϕL) as desired by combining (2)
and (3). Note that either ϕM−1 = 〈m−1〉ϕM or ϕM−1 = [m−1]ϕM holds
since wM−1 is different from wM . In order to prove (3), it is sufficient to
show either LoopFree(t(w), t(w′), ϕK) or LoopFree(t(w′), t(w), ϕM−1) since
we have (2).

First assume ϕK = 〈m〉ϕK+1. By Lemma 14 (3), (t(w), t(w′)) ∈ Tr(ϕK).
Therefore if ϕM−1 = [m−1]ϕM , LoopFree(t(w), t(w′), ϕK) holds. In the
other case, i.e. ϕM−1 = 〈m−1〉ϕM , if we assume m 6∈ FMS, again by
Lemma 14 (3), we have (w,w′) ∈ RW and (w′, w) ∈ RW , which is impossible
since W is a forest. Thus, we have m ∈ FMS, and then, LoopFree(t(w),
t(w′), ϕK) holds from the definition of Tr(m) and Tr(〈m〉ϕ). The same
argument can be done if we assume ϕM−1 = 〈m〉ϕM .

The only case remained is ϕK = [m]ϕK+1 and ϕM−1 = [m−1]ϕM . Since
((ϕK , wK), (ϕK+1, wK+1)) is a trace, (wK , wK+1) ∈ R(m). Therefore ei-
ther (wK , wK+1) ∈ RW and l(wK , wK+1) = m or (wK+1, wK) ∈ RW and
l(wK+1, wK) = m−1. Then by Lemma 14 (4), (t(wK), t(wK+1)) ∈ Tr(m)
holds, and therefore we have LoopFree(t(w), t(w′), ϕK) as desired. �

From this lemma, it follows that the set {k ∈ ω | w = wk} is finite for any
w ∈ W , We define m(w) by max{k ∈ ω | w = wk}, and a sequence (L(i) |
i ∈ ω) of natural numbers by L(0) = m(wk0) and L(i+1) = m(wL(i)+1). It is
clear that wL(i+1) = wL(i)+1. Note that ϕL(i) ∈ Lean since wL(i)+1 6= wL(i).

CLAIM 19. There is a natural number i0 ∈ ω such that for all i ∈ ω,
i ≥ i0 =⇒ (wL(i), wL(i+1)) ∈ RW .

Proof. Since wL(i) 6= wL(i)+1 and L(i) ≥ k0, ϕL(i) is either 〈m〉ϕL(i)+1 or
[m]ϕL(i)+1 for some m ∈ Mod. Therefore (wL(i), wL(i)+1) ∈ R(m), that is,
either (wL(i), wL(i)+1) ∈ RW or (wL(i)+1, wL(i)) ∈ RW holds. Since W is a
forest, the relation RW is well-founded, so there is at least one i0 ∈ ω that
(wL(i0), wL(i0)+1) ∈ RW . We show by induction on i, (wL(i), wL(i+1)) ∈ RW
for all i ≥ i0. The case i = i0 is trivial. The case i + 1: recall that
either (wL(i+1), wL(i+1)+1) ∈ RW or (wL(i+1)+1, wL(i+1)) ∈ RW holds. If
the latter is the case, since (wL(i), wL(i)+1) ∈ RW , wL(i)+1 = wL(i+1), and
W is a forest, we have wL(i) = wL(i+1)+1, which contradicts the fact that
L(i) is the largest index since L(i) < L(i + 1) + 1. Therefore the former
should be the case, i.e., (wL(i+1), wL(i+1)+1) ∈ RW . �

The reflexive transitive closure of RW is denoted by RW+.

CLAIM 20. For any j ∈ ω and k > L(ij), (wL(ij), wk) ∈ RW+ holds.

Proof. We prove the claim by induction on k. The base case k = L(ij) + 1
is clear from Claim 19. For the general case, assume (wL(ij), wk) ∈ RW+. If
we further assume (wL(ij), wk+1) 6∈ RW+, wk+1 must be identical to wL(ij)
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since ϕk = 〈m〉ϕk+1 or ϕk = [m]ϕk+1 for some m ∈ Mod because k ≥ k0.
It again contradicts the fact that L(ij) is the maximum index. �

By applying Lemma 15 (2) to the sequence (wL(i) | i0 ≤ i < ω), we
can take i1 ∈ ω such that i1 ≥ i0, D(wL(i1)) = D, and E(wL(i1)) =
satD(t(wL(i1))). In particular, ϕL(i1) ∈ EL(i1).

CLAIM 21. For all k ≥ L(i1), D(wk) = D and t(wk)E(wk) 
 ϕk holds.

Proof. We use induction on k. The base step k = L(i1) is trivial.
For the general step, we first consider the case ϕk = ϕk+1 ∨ ψ. Since

wk = wk+1, D(wk+1) = D. Note that ψ ∈ D, otherwise c should have
chosen ψ. Let (x, y) = t(wk) and E = E(wk). By the definition of c, either
x(ϕk+1) < x(ψ) or x(ϕk+1) = x(ψ) and xE(ϕk+1) ≤ xE(ψ) holds. In the
former case, by Lemma 13, xE(ϕk+1) < xE(ψ) or xE(ϕk+1) = xE(ψ) =∞.
Here, xE(ϕk+1) = xE(ψ) = ∞ implies xE(ϕk) = ∞, which is impossible.
Therefore, in both cases, xE(ϕk+1) ≤ xE(ψ), which implies xE(ϕk+1) =
xE(ϕk) <∞.

The cases ϕk = ϕk+1 ∧ ψ and µXψ are easy and we omit them.
The remaining cases are ϕk = 〈m〉ϕk+1 and [m]ϕk+1. In these two

cases, either (wk+1, wk) ∈ RW or (wk, wk+1) ∈ RW holds. Assume first
(wk+1, wk) ∈ RW . Clearly D(wk+1) = D(wk) = D. Since for all j such that
L(i1) ≤ j < k, one of (wj+1, wj) ∈ RW , (wj , wj+1) ∈ RW , or wj = wj+1

holds, so by Claim 20, there is i such that L(i1) ≤ i < k + 1 such that
wi = wk+1. Let E = E(wi) and (x, y) = t(wi). By induction hypothe-
sis we have x(ϕi) < ∞. On the other hand we have x(ϕi) > x(ϕk+1) by
Lemma 18. Therefore by Lemma 13, xE(ϕk+1) < xE(ϕi) <∞.

Assume next (wk, wk+1) ∈ RW holds. In the case of ϕk = 〈m〉ϕk+1,
we have t(wk+1)E(wk+1) 
 ϕk+1 by the definition of c and the induction
hypothesis. In the case of ϕk = [m]ϕk+1, since ϕk ∈ E(wk) 6= ∅, j(wk) must
be positive by Lemma 14 (5). Then again by Lemma 14 (5), D(wk+1) =
D(wk) = D and t(wk+1)E(wk+1) 
 ϕk+1. �

Claim 21 contradicts Lemma 15 (1), which establishes the condition (3)
of Lemma 5. That completes the proof of Lemma 16. �

THEOREM 22. Assume that the decision procedure succeeds for ϕI in either
L(µAF,nom,back), L(µAF,back, func), or L(µAF,nom, func). Then, there
is a Kripke structure and its state that satisfies ϕI.

Proof. Lemma 12 guarantees that K is a Kripke structure. Since t(wI) =
tI 
 ϕI, K, wI |= ϕ by Lemma 16. �

5 Complexity

Our decision procedure solves the satisfiability problems of three logics –
L(µAF,nom,back), L(µAF,nom, func), and L(µAF,back, func). Their com-
plexities have already been known to be EXPTIME-complete [10]. More
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detailed calculation of the time complexity of our procedure is shown in the
following proposition. Let n be the length of the formula ϕI.

PROPOSITION 23. The time complexity of the decision procedure pre-
sented in Section 3 is 2O(n logn) for formulas in L(µAF,back, func) and
2O(n2 logn) for formulas in L(µAF,nom,back) and L(µAF,nom, func).

Proof. Let us count the number of naming functions. The domain of
a naming function is Nom and the range is Tab. Such functions exist at
most (nn · n2n)n = 23n2 logn. In the case of L(µAF,back, func), the number
of functions is 1 since there are no nominals. Therefore it is enough to
show that the time complexity of the subprocedure for a naming function
is 2O(n logn).

Next we count the number A of nodes in the tableau. Component x can
be regarded as a function from Lean to {0, 1, . . . , n − 1}. The number of
such functions is at most nn. Component y can be regarded as a function
from Lean to {0, 1, . . . , n2 − 1}. The number of such functions is at most
(n2)n. Therefore, A ≤ nn · (n2)n = 2O(n logn).

The body of the subprocedure is a double-loop. In the outer loop, T0 ⊃
T1 ⊃ · · · ⊃ TK are calculated. Since |T0| ≤ A, the number of repetition K
does not exceed A. The inner loop calculates V0 ⊂ V1 ⊂ · · · ⊂ VJ . Since
each Vj is a subset of T0 × P(Lean), the number of repetition J does not
exceed B = A · 2n.

In each repetition of the inner loop, Vj+1 is calculated from Vj . This is
done by verifying that each (t, E) is an element of Vj+1. The number of
such (t, E) does not exceed B. Each (t, E) is checked against conditions
(a), (b), and (c). They can be performed in polynomial time C once pair
(t′, E′) is fixed and the number of candidates (t′, E′) does not exceed B.

Therefore, time required to perform the subprocedure is A ·B ·B ·C ·B =
C ·A4 · (2n)3 = 2O(n logn). �

Although we need to transform a given formula into a guarded PNF be-
fore applying the decision procedure, we can still presume that n in the
proposition refers the length of the given formula, since the proof of Propo-
sition 23 can be done by regarding n as the size of cl(ϕI).

6 Application

We apply the decision procedure to verify some properties of programs writ-
ten in imperative languages that manipulate pointers.

We regard program heaps as Kripke structures. Thus, a property of a
heap is expressed by a formula ϕ of the µ-calculus. Each operation σ on
the heap can be regarded as a transformation of Kripke structures, and we
compute the weakest precondition wp(σ, ϕ) as a formula. Then, we can
determine whether a Kripke structure that satisfies ϕ can be transformed
into a structure that satisfies ψ by verifying that formula ϕ ∧ wp(σ, ψ) is
satisfiable. Refer to [19] for details. We built an experimental tool, called
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id len # cl # nom time

regr56 35 11 3 461

listRevNoLeakB 92 25 5 610

listRevSwapA 148 37 6 1199

dswPopC2 188 46 7 2615

dswPushA1 372 54 7 9469

Table 1. Examples of formulas used in the analysis

MLAT [20], based on this method. It is programmed in Java, and the
decision procedure is implemented using JavaBDD [7].

There are several versions of MLAT. By using one of the versions, we
verified the partial correctness of the Deutsch-Schorr-Waite marking algo-
rithm [21]. Details are reported in [19].

Using this version of the tool, the user constructs an abstract transi-
tion system by hand, and the tool checks whether the transition system
is a correct abstraction of the concrete transition system corresponding to
a given source code. As the logic for describing predicates, we employ
L(µAF,nom,back) for this version.

We simplify the procedure for efficiency; we do not use the component
y at all. When the procedure with this simplification succeeds, a nominal
may be satisfied with two different nodes s1 and s2 in the resulting “model”;
however, such nodes are “indistinguishable” in the sense that s1 |= ϕ ⇐⇒
s2 |= ϕ holds for any ϕ ∈ cl(ϕI).

The modified procedure is still sound. In general, any sound decision
procedure can be used in the predicate abstraction technique. The proce-
dure should not necessarily be complete, but using incomplete procedures
may affect the precision of the analysis. In our analysis, however, there
is another reason for losing the precision: the selection of predicates. Our
experiment shows that the second reason affects the results more than the
first. We have several cases in which we failed to analyze the properties due
to inappropriate selection of predicates, but there is no case in which the
analysis failed due to incompleteness of the procedure. Apparently, “indis-
tinguishability” is a good approximation for nominality in our application.

During the verification, a number of formulas were checked for satisfiabil-
ity. Examples are shown in Table 1. The columns of the table are formula
ID, the length of the formula, the size of the closure, the number of nomi-
nals in the formula, and elapsed time for the judgment in milliseconds. The
machine used for the the measurement is Pentium 4 CPU 2.4GHz, 1GB
memory running Microsoft Windows XP.

7 Future work

In the future we would like to implement the entire decision procedure. At
the moment, we have only implemented modified versions of the procedure
for particular applications, as described in Section 6.
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Another possibility is to strengthen our decision procedures for applica-
tions to more powerful logics. The loosely guarded fragment (LGF) is a
decidable sublogic of the first-order predicate logic, and the extension of
the LGF with fixed-point operators is called µ-LGF, which can be regarded
as a natural extension of the two-way modal µ-calculus. A natural question
is whether our procedure can be extended to the alternation-free part of
µ-LGF. A simple adaptation of our procedure to the logic does not work,
and further investigations are required.
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