
 

Clean Technologies and Recycling, 4(1): 1–21. 

DOI: 10.3934/ctr.2024001 

Received: 06 December 2023 

Revised: 04 March 2024 

Accepted: 13 March 2024 

Published: 02 April 2024 

http://www.aimspress.com/journal/ctr 

 

Review 

Sustainability and innovation in 3D printing: Outlook and trends 

Muhammad Ali Saqib1,*, Muhammad Sohail Abbas1 and Hiroyuki Tanaka2 

1 Department of Mechanical Engineering, University of Engineering and Technology, 54890 Lahore, Pakistan 
2 Department of Chemical and Materials Engineering, University of Alberta, 9211 116 Street, 

Edmonton, AB T6G 1H9, Canada 

* Correspondence: Email: alisaqib11223@gmail.com; Tel: +923371426343. 

Abstract: The convergence of additive manufacturing (AM), sustainability, and innovation holds 

significant importance within the framework of Industry 4.0. This article examines the environmentally 

friendly and sustainable aspects of AM, more commonly referred to as 3D printing, a cutting-edge 

technology. It describes the fundamentals of AM in addition to its diverse materials, processes, and 

applications. This paper demonstrates how several 3D printing techniques can revolutionize 

sustainable production by examining their environmental impacts. The properties, applications, and 

challenges of sustainable materials, such as biodegradable polymers and recyclable plastics, are 

thoroughly examined. Additionally, the research explores the implications of 3D printing in domains 

including renewable energy component fabrication, water and wastewater treatment, and 

environmental monitoring. In addition, potential pitfalls and challenges associated with sustainable 3D 

printing are examined, underscoring the criticality of continuous research and advancement in this 

domain. To effectively align sustainability goals with functional performance requirements, it is 

imperative to address complexities within fused deposition modeling (FDM) printing processes, 

including suboptimal bonding and uneven fiber distribution, which can compromise the structural 

integrity and durability of biodegradable materials. Ongoing research and innovation are essential to 

overcome these challenges and enhance the viability of biodegradable FDM 3D printing materials for 

broader applications. 

Keywords: additive manufacturing; 3D printing; Industry 4.0; sustainability; environmental 

implications; sustainable materials; alternative energy sources 
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1. Introduction 

Additive manufacturing (AM) is driven by the primary goal of reducing both the time and steps 

required in the manufacturing process. This objective is achieved through the utilization of rapid 

prototyping technologies, which leverage 3D modelling software, such as computer-aided design (CAD), 

to expedite product design [1–3]. AM realizes the creation of products by adding successive layers of 

material, utilizing data derived from design software [4–7]. AM can be broadly categorized into two 

distinct types: single step manufacturing, which involves material fusion [7] to attain the fundamental 

geometry, and multistep manufacturing, which employs an adhesion principle, executed through a 

series of sequential processes [8]. A 3D-printed part and the layered manufacturing process are 

depicted in Figure 1. Selective laser sintering (SLS), stereo lithography (SLA), fused deposition 

modelling (FDM), laminated object manufacturing (LOM), and other AM techniques demonstrate how 

technology is evolving to achieve product geometry and optimize manufacturing [9]. With the least 

amount of material needed, AM is renowned for printing polymers, alloys, metals, and biomedical 

materials [10]. To combine materials for consolidated mechanical, optical, and physical properties, 

researchers took advantage of AM's interdisciplinary potential [11–13]. It has shortened lead times for 

crucial replacement parts and optimized supply chains [14]. 

 

Figure 1. Layered manufacturing of a 3D-printed component. 

AM stands as a transformative technology, significantly reducing the need for human intervention 

and reliance on service providers, particularly in remote areas. Its capability to enable users to 3D print 

machine repair parts bring forth a new era of self-sufficiency. The open-access nature of 3D printing 

design software fosters user adoption while concurrently saving resources. One of the most distinctive 

features of AM is its ability to facilitate fast mass customization, a realm in which conventional 

manufacturing methods often fall short [15]. Moreover, AM has effectively curbed labor and 

transportation costs by enabling on-demand production of products and parts. Unlike subtractive 

manufacturing, AM minimizes material waste by adding material only where needed, thus optimizing 

resource utilization [16,17]. 

Despite the high initial setup costs associated with 3D printing machines, AM-produced goods 

remain less expensive than those manufactured through traditional processes. The essentiality of AM 

in Industry 4.0 is evident, especially in the realm of mass customization [18]. The convergence of AM 
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with technologies like AI, and cloud computing has given rise to the concept of digital twins, capable 

of addressing printing issues through monitoring, control, and real-time corrections [19]. 

Sustainable development, a critical global imperative, necessitates a delicate balance between 

social, environmental, technological, and economic facets. Extensive literature on additive 

manufacturing underscores the diversity in research methodologies, emphasizing the need to evaluate 

new sustainable technologies. Some studies compare qualitative and quantitative methods [20], while 

others delve into the integration of sustainability into firm strategies [21,22]. The energy-efficient 

nature of AM, along with its capacity to minimize material waste and inventory, positions it as a 

sustainable manufacturing solution [23–25]. Nonetheless, challenges such as hazardous powder 

emissions [26] and non-recyclable waste [27] persist, complicating assessments of AM's overall 

environmental impact [20,28]. 

A product's environmental impact is measured over the course of its life cycle through life cycle 

assessment (LCA) [29]. Goal definition, scoping, inventory analysis, impact assessment, and 

interpretation are among the LCA phases [30]. Numerous studies have been conducted on LCA 

techniques and applications [31–35]. Environmental benefits and cost-effectiveness are key 

considerations in product design. Decision-makers can compare the cost-effectiveness of investments 

and business decisions with the aid of the economic life cycle assessment (LCC) [36]. LCC analysis 

uses goal definition, scoping, and life cycle inventory analysis to identify the most economical course 

of action. LCC has a wealth of theoretical and practical documentation and is being used more and 

more in industry and government [37–41]. 

In the context of industry-specific applications, AM has demonstrated profound implications 

across various sectors including construction, medical, and manufacturing. Recent studies have 

explored emerging additive manufacturing technologies in 3D printing of cementitious materials 

within the construction industry [42]. Additionally, investigations into binder jetting 3D printing and 

large-scale construction applications provide valuable insights into the diverse applications of AM in 

construction [43,44]. 

2. Problem statement and objectives 

The use of AM, particularly 3D printing, in industrial settings opens up a plethora of opportunities 

for sustainable production in the context of Industry 4.0. Nonetheless, despite promising developments, 

incorporating environmentally friendly practices and materials into 3D printing poses challenges. There 

is a critical knowledge gap regarding the full scope of environmental consequences, material 

limitations, and overall sustainability of various 3D printing techniques. Furthermore, the translation 

of sustainable practices, such as the use of recyclable and biodegradable materials, from theoretical 

frameworks to practical applications in 3D printing has largely gone unexplored. Existing literature 

emphasizes the importance of conducting extensive research into the environmental impact, material 

properties, and practicality of sustainable 3D printing. 

This research aims to fill the gaps mentioned above and contribute to the long-term evolution of 

additive manufacturing by achieving the following goals: 

• Investigate the environmental implications of various 3D printing techniques, such as energy 

efficiency, material efficiency, and waste generation, to gain a thorough understanding of their 

sustainability profiles. 

• Evaluate the properties and limitations of sustainable materials used in extrusion-based 3D 



4 

Clean Technologies and Recycling  Volume 4, Issue 1, 1–21. 

printing, such as recyclable plastics, biodegradable polymers, and modified filaments, 

providing insights into their applicability and potential challenges. 

• To understand the potential impact of 3D printing on sustainable development, investigate its 

role in specific domains such as renewable energy component fabrication, water and 

wastewater treatment, and environmental monitoring. 

• Identify and analyze the limitations and challenges of using sustainable materials in 3D printing, 

with a focus on issues such as material translation accuracy, print quality, and structural 

integrity. 

3. Research methodology 

A thorough and comprehensive systematic literature review (SLR) technique was used in this study 

to examine the complex interactions among innovation, sustainability, and additive manufacturing. The 

first stage was a laborious search that produced a large number of papers that were carefully selected 

based on inclusion criteria that guaranteed relevancy, with a focus on peer-reviewed sources and recent 

publications within the previous ten years. We have arranged the literature into major theme categories, 

including the foundations of additive manufacturing, sustainable materials, environmental implications, 

technique analysis, applications, and limits, in order to present an ordered study. Using a qualitative 

methodology, a comprehensive thematic analysis was conducted on the chosen literature to extract 

important conclusions and insights, promoting a nuanced comprehension of the condition of the field's 

study at the moment. The information was then carefully organized into parts that made sense and 

covered diverse aspects of innovation, sustainability, and additive manufacturing. Relationships between 

the various concepts were then identified and clarified. For every article that was chosen, a critical quality 

evaluation was carried out, analyzing factors including the article's relevance to the study subject, the 

technique used, and the reliability of the sources. To ensure the authenticity of the results, a thorough 

validation procedure was used, which included cross-referencing data from several sources, depending 

on credible journals and conference proceedings, and carefully examining and addressing any differences. 

Adhering to ethical guidelines, appropriate reference and recognition were upheld throughout the work, 

underscoring a dedication to scholarly honesty.  

Despite possible gaps in the developing subject, this study attempted to include a variety of 

viewpoints and acknowledged its limits by concentrating only on material published up until the deadline. 

The positionality of the researchers was openly acknowledged, taking into account their prior knowledge 

in pertinent domains while scrupulously preserving neutrality throughout the thorough investigation of 

innovation, sustainability, and additive manufacturing. With the use of this SLR approach, significant 

insights and important patterns might be extracted, advancing our understanding of this dynamic and 

ever-evolving field of study. 

4. Discussion on findings 

4.1. Material choice analysis 

4.1.1. Recyclable plastics for extrusion-based 3DP 

FDM plastics must be recycled to extend their life cycle and enable sustainable and eco-friendly 
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AM. Their linear molecular chain structure allows thermoplastics to soften when heated and harden 

when cooled, making them recyclable [42]. Thermoset plastics cure irreversibly. Reusability depends 

on this fundamental difference. Table 1 lists common 3D printing thermoplastics like ABS and PLA. 

Tensile strength and Young's modulus, which measure tensile elasticity, are crucial. ABS is ideal for 

high-stress tooling parts, while PLA is better for healthcare and prosthetics [43,44]. 

Table 1. Common 3D printing thermoplastics and their applications. 

Abbreviation Full name Applications References 

ABS Acrylonitrile butadiene styrene Industry, Health care [45–47] 

PLA Polylactic acid Health care, Industry [46,47] 

PC Polycarbonate Health care [48] 

PET Polyethylene terephthalate Industry [49] 

HIPS High-impact polystyrene Industry [50] 

PHA Polyhydroxyalkanoates Health care, Industry [51] 

PVA Polyvinyl alcohol Health care [52] 

PCL Polycaprolactone General application, Health care [53] 

 

Mechanical or chemical recycling can recycle thermoplastics. Mechanical recycling melts 

shredded plastic into 3D printer feedstock filament. While economically beneficial, each recycling 

cycle degrades material properties due to chain-scission reactions caused by impurities, lowering 

molecular weight by 46% and viscosity by 80% as examined by P. Jagadeesh et al, also an observed 

lower tensile strength for recycled part as compared to its virgin counterpart [54,55] this is also 

exemplified in Table 2 with ABS. Material properties can also contribute in varying other parameters 

such as natural frequencies [56]. Conversely, chemical recycling depolymerizes plastic through a 

chemical reaction to reproduce it [57]. The open-source Recyclebot recycles plastic waste into 3D 

printing filament, reducing embodied energy and environmental impact compared to standard filament 

manufacturing [57,58]. The melt-extrude cycle degrades physical properties. Regenerating and 

purifying nylon-6 waste does better at maintaining FDM filament material properties [59,60]. 

Table 2. Material properties of extruded and recycled plastics (ABS, PLA, Nylon-6). 

Material Yield tensile strength [MPa] Young's modulus [GPa] Melting temperature [°C] Source 

ABS, extruded 13.0–65.0 1.00–2.65 177–320 [61–64] 

ABS, recycled 32 2.125 177–320 [65] 

PLA, extruded 30 2.3 205 [65,66] 

Nylon-6, extruded 35.0–186 0.450–3.50 205 [65,66] 

Nylon-6, recycled 55.79–86.91 1.64 205 [65, 66] 

4.1.2. Biodegradable plastics for extrusion-based 3DP 

Biodegradable plastics degrade naturally due to their composition. Photodegradation, thermal-

oxidative degradation, and microorganism metabolization of polymer chains are enabled by the sun's UV 

light [67]. Degradation depends on material structure, chemical composition, and environment [68]. 

AM made from biodegradable materials reduces waste and avoids landfills. Composting these 

materials reduces landfill volumes [69]. 
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PET, HIPS, PLA, PHA, and PVA are biodegradable polymers used in FDM. While PET is 

recyclable, some bacteria can biodegrade it [70]. Due to its high impact resistance, HIPS may warp 

when printed and be degraded by certain bacteria [71]. PLA is biodegradable and made from plant 

starch. Another bioplastic, PHA, is produced by microorganisms and has petroleum-like properties. 

Water-soluble, petroleum-based PVA is biodegradable and recyclable [72]. Table 3 lists the tensile 

strengths and melting temperatures of the mentioned materials. 

Table 3. Material properties of biodegradable polymers (PET, HIPS, PLA, PHA, PVA) for FDM. 

Material Yield tensile strength 

[MPa] 

Young's modulus [GPa] Melting temperature 

[°C] 

Source 

PET 45.0–90.0 0.107–5.20 120–295 [73,74] 

HIPS 26   140–295 [75] 

PLA 8.00–103 1.97 220–240 [74] 

PLA, recycled once 51 0.050–13.8 - [75] 

PLA, recycled five 

times 

48.8 3.093 plus/minus 0.194 - [76] 

PHA 15–40 3.491 plus/minus 0.098 1.0–2.0 [76,77] 

Extrusion-based 3D printing uses thermoplastics, but recycling them requires energy and 

degrades their properties. Some plastics take at least 50 years to biodegrade, depending on 

conditions (aerobic or anaerobic). Aerobic bacteria decompose plastic into carbon dioxide and water 

using oxygen [78–80]. Respiration and fermentation can occur anaerobically [78,80]. 

4.1.3. Modified plastic filaments 

To make greener FDM feedstock, companies are developing filaments from biodegradable 

plastics and biomass-based fillers (Table 4). To mimic wood, these bio composite filaments contain up 

to 40% biomass-based fillers like bamboo, pine, birch, or olive wood fibers [81]. This innovation could 

lead to more sustainable AM materials. 

Table 4. Biodegradable and biomass-based filament compositions for greener FDM feedstock. 

Material composition Filament diameter [mm] Extrusion temperature [°C] Source 

PLA/lignin (5–15 wt%) 1.78 plus/minus 0.04 205 [82] 

PLA/PHA/recycled wood fibers (10–20 

wt%) 

2.85 plus/minus 0.1 210 [83] 

PLA/wood flour (5 wt%) 1.75 210 [81] 

PLA/cellulose fiber (0–20%) 2.85 210 [84] 

PVA/cellulose nanocrystals (2–10 wt%) 1.7   [85] 

PCL/cocoa shell waste (0–50%) 1.75 120 [86] 
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4.1.4. Cellulose materials for extrusion-based 3DP 

Extrusion-based 3D printing (3DP) materials' environmental impacts are crucial to the 

sustainability of this additive manufacturing (AM) process. Cellulose materials are a cost-effective 

and eco-sustainable alternative. Cellulose, the most abundant renewable biopolymer in plant cell 

walls and a structural component, has promise. Due to their tendency to decompose at high 

temperatures and swell in narrow-diameter nozzles, unmodified cellulose materials are not suitable 

for extrusion-based 3DP [87,88]. Table 5 lists feedstock cellulose-based materials. Tenhunen et al. 

investigated rigid cellulose acetate and flexible acetoxypropyl with acetic acid and acetone for textile 

applications. The branched structure of acetoxypropyl cellulose reduced adhesive properties, making 

it a promising material for textile customization and functionalization [89]. Henke and Treml tested 

spruce chips, similar to those used in particle boards, with various binders. Their 3DP process 

involved depositing a dry mixture of bulk and binder, then adding water as an activator for material 

solidification [90]. Kariz et al. used a piston to extrude two beech wood powder feedstocks with 

different adhesives (polyvinyl acetate and urea formaldehyde). This process took 2 hours to solidify 

on a heated bed at 80 °C and then another 2 weeks to cure, longer than conventional AM methods [91]. 

Rosenthal et al. also studied the liquid deposition of a paste-like suspension of ground beech sawdust 

and methyl cellulose, a lubricant and binding agent. Despite poor mechanical properties, the authors 

created an extrudable feedstock of 89% sawdust [92]. 

Table 5. Cellulose-based feedstock materials and solidification methods for 3DP applications. 

Material composition Method of solidification Printer used Source 

Cellulose acetate/acetic acid (30/70) Solvent Evaporation 3DN-300, 20–41 psi pressure [89] 

Acetoxypropyl cellulose/acetone 

(80/20) 

Solvent Evaporation 3DN-300, 20–41 psi pressure [89] 

Spruce wooden chips/binding agents Aerosolized water as an 

activator 

Homemade Delta 3D printer [91] 

(methyl cellulose, gypsum, sodium 

silicate, cement) 

- - - 

Beech wood powder/PVAc (17.5/82.5, 

20/80) 

Drying (80 °C, 2 h) Homemade Delta 3D printer [91] 

Beech wood powder/UF (15/85, 

17.5/82.5) 

Drying (80 °C, 2 h) Homemade Delta 3D printer [91] 

Ground beech sawdust/ methyl 

cellulose (90/10) 

Drying (60 °C, 5 days) Cartesian 3D printer [92] 

4.2. Material choice analysis 

Below is a flowchart depicting the names of the nine sustainable 3D printing techniques. Each node 

in the flowchart in Figure 2 represents one of these techniques, providing a quick visual reference. 
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Figure 2. Common sustainable additive manufacturing techniques. 

Following the flowchart, a detailed Table 6 presents a comprehensive comparison of these 

methods based on material efficiency, energy efficiency, and waste generation. This data will help 

readers gain a deeper understanding of the sustainability aspects associated with each 3D printing 

technique. 

Table 6. Comprehensive comparison of material efficiency, energy efficiency, and waste 

generation for 3D printing techniques. 

3D printing process Material efficiency Energy efficiency Waste 

generation 

Comments Source 

FDM Moderate, depends 

on material 

Energy-efficient, heats 

material during 

printing 

Low Sustainability 

depends on material 

choice. 

[93] 

Wire plus arc 

additive 

manufacturing 

(WAAM) 

Moderate, 

improved with 

recycled wire 

feedstock 

Energy-efficient, relies 

on arc welding 

technology 

Moderate Recycled wire 

feedstock can 

enhance 

sustainability. 

[94] 

Electron beam 

freeform fabrication 

(EBFF) 

High, used in 

aerospace 

applications 

Energy-efficient with 

electron beams 

Low Highly material-

efficient, especially 

for aerospace 

applications. 

[95,96] 

Stereolithography 

(SLA) 

Low, improvements 

with resin recycling 

Energy-efficient, uses 

UV light for 

photopolymerization 

Moderate Sustainability can 

be enhanced 

through resin 

recycling. 

[97] 

Direct light 

processing (DLP) 

Low, sustainability 

through material 

selection 

Energy-efficient, 

utilizes UV light for 

curing 

Moderate Material choice and 

waste reduction are 

critical for 

sustainability. 

[97] 

Continued on next page 
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3D printing process Material efficiency Energy efficiency Waste 

generation 

Comments Source 

Selective laser 

sintering (SLS) and 

digital metal laser 

sintering (DMLS) 

High, highly 

sustainable for 

metal parts 

Energy-efficient, laser 

selectively fuses metal 

powder 

Low Highly sustainable 

for metal 

components. 

[97] 

Electron beam 

melting (EBM) 

High, suitable for 

aerospace and 

medical 

applications 

Energy-efficient, 

electron beams 

consume less energy 

Low Sustainable for 

aerospace and 

medical 

applications. 

[98,99] 

Selective laser 

melting (SLM) 

High, sustainable 

for metal parts 

Energy-efficient, uses 

laser to selectively 

melt metal powder 

Low Sustainable for 

metal parts with 

high material 

efficiency. 

[100] 

Laser metal 

deposition (LMD) 

Moderate, 

sustainable for 

repair and feature 

addition 

Energy efficiency 

depends on application 

and power settings 

Low Suitable for repair 

and feature addition 

applications. 

[101] 

4.3. Applications 

Figure 3 depicts how 3D printing transforms manufacturing, changing its environmental impact 

throughout the product life cycle and promoting sustainability. Since additive manufacturing builds 

products layer by layer without cutting or reshaping, it uses fewer resources and produces less waste. 

Support structures are usually removed after production and reused in most 3D printing methods, 

causing few material losses [102]. The manufacturing process is shorter and more direct with 3D 

printing, reducing energy consumption and CO2 emissions [102]. Technology that allows on-site 

production could reduce shipping-related carbon emissions. 3D printing has the potential to reduce 

industrial net CO2 emissions and energy use, but it must be implemented in mass production, production 

speed improved, and printable materials made more accessible. Considering a ‘rebound effect' where 

efficiency increases activity is also important [102,103]. Some 3D printing methods such as laser metal 

deposition, are better for material reuse than others, like FDM, which uses less energy but produces 

emissions [104–107]. 
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Figure 3. 3D printing applications for sustainable environment. 

4.3.1. Air quality monitoring 

3D printing is used to make air quality monitors. Salamone et al. 3D-printed nEMoS, a nano 

environmental monitoring system that measures indoor air quality. Cheap and reliable, nEMoS 

reports CO2 concentration and other environmental parameters [108]. The customization capabilities 

of 3D printing have helped create casings for other air quality monitors like iAir for indoor air quality 

and HOPE for outdoor air quality [109,110]. Wang et al. created a small, portable wearable particulate 

matter monitor using 3D printing, advancing miniaturized sensors [111]. Pollutant filters and scrubbers 

are 3D printed. A flexible air filter with a photocatalyst by Xu et al. removes NO from the air [112]. 

Additionally, 3D printing has enabled unique geometry in scrubber components like the Vortecone 

scrubber's circular channel [113]. 

4.3.2. Water and wastewater treatment 

Advanced 3D printing technology has enabled new water and wastewater treatment methods. The 

customization capabilities of 3D printing could lead to cheaper membranes, a cost-effective and 

efficient alternative to conventional methods [114,115]. 3D printing is ideal for ceramic membrane-

based treatment materials [116], but it struggles to print structures below submicron resolution and 

material compatibility [115,117]. 3D-printed ceramic water filters and oil-water separation meshes 

have been studied [118,119]. Super hydrophilic membranes and air filters can be 3D printed to improve 

pollutant removal [120]. 
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4.3.3. Alternative energy sources 

3D-printed microbial fuel cells, wind turbine blades, and photovoltaic (PV) cells are being 

tested in renewable energy technologies. Microbial fuel cells, which generate power and oxidize 

organic pollutants in wastewater, benefit from 3D printed anodes that have better microbial adhesion 

and area [121,122]. Flexible solar cells are printed on metal foils and translucent plastics using 3D 

printing. This technology also creates ultra-thin microcell arrays with flexible front electrodes that 

perform similarly to solar cells [123]. Since their geometries can be optimized, 3D-printed 

photovoltaic cells have higher energy densities than flat, stationary panels [123,124]. Researchers 

have used 3D printing to create turbine blades that mimic plant leaves and self-heating mesh for 

blade de-icing [125,126]. Small, affordable residential wind turbines can be built using 3D printing, 

providing a sustainable power source [127–129]. 

5. Limitations 

In the pursuit of sustainable manufacturing practices, the integration of biodegradable materials 

within FDM 3D printing processes presents several challenges that impact both structural integrity and 

environmental goals. 

5.1. Fused filament fabrication parameter adjustments for sustainable 3D printing 

• Achieving accurate printing with biodegradable materials necessitates meticulous parameter 

adjustments and printer configurations tailored to the specific characteristics of each material [130]. 

• The diverse melting points, moisture contents, and compositional variations inherent in 

biodegradable polymers complicate the standardization of printing parameters, demanding 

continuous calibration for optimal results. 

• Factors such as extrusion temperature, printing speed, nozzle diameter, and filament quality 

significantly influence the printing outcome, adding complexity to the process and potentially 

reducing efficiency. 

5.2. Void formation and mechanical weakness 

• The layer-by-layer construction inherent in FDM 3D printing introduces voids and inconsistencies 

between layers, compromising the mechanical strength and durability of printed objects. 

• These voids act as stress concentration points, diminishing fracture toughness and overall structural 

integrity [131]. 

• The challenges associated with void formation stem from suboptimal extrusion parameters, 

inaccurate temperature settings, filament quality issues, and inadequate bed adhesion, among 

others. 

• Despite efforts to mitigate void formation through parameter adjustments, achieving uniform 

mechanical properties across different biodegradable materials remains elusive due to their varied 

material characteristics. 
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5.3. Brittleness and limited performance of biodegradable materials 

• Biocomposite filaments composed of biodegradable materials exhibit increased brittleness and 

limited heat resistance compared to traditional non-biodegradable materials [132]. 

• Uneven fiber distribution within the polymer matrix exacerbates microvoid formation, further 

compromising material strength and longevity. 

• These limitations, coupled with accelerated moisture deterioration and high production costs, pose 

significant challenges to the widespread adoption of biodegradable materials in FDM 3D printing 

applications. 

• The performance gap between biodegradable and non-biodegradable materials underscores the 

need for ongoing research and innovation to enhance the mechanical properties and processing 

capabilities of sustainable printing materials. 

6. Conclusions 

While the integration of biodegradable materials in FDM 3D printing holds promise for advancing 

sustainability objectives, inherent complexities pose significant hurdles to achieving desired structural 

quality and functional performance. Addressing these limitations requires a multifaceted approach, 

including the development of standardized printing parameters, advancements in material science, and 

continued innovation in additive manufacturing technologies. By acknowledging and addressing these 

challenges, researchers and industry stakeholders can pave the way for the widespread adoption of 

sustainable 3D printing practices in diverse application domains. 

7. Future recommendations: 

• Explore novel materials and formulations to improve mechanical properties and reduce brittleness. 

• Develop standardized printing parameters and configurations for diverse biodegradable materials 

to enhance printing accuracy and efficiency. 

• Investigate advanced bonding techniques and infill strategies to minimize void formation and 

enhance structural integrity. 

• Foster collaborations between academia, industry, and regulatory bodies to drive innovation and 

address sustainability challenges in 3D printing technologies. 
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