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Abstract: The transformer model has recently been a milestone in artificial intelligence. The algorithm 
has enhanced the performance of tasks such as Machine Translation and Computer Vision to a level 
previously unattainable. However, the transformer model has a strong performance but also requires a 
high amount of memory overhead and enormous computing power. This significantly hinders the 
deployment of an energy-efficient transformer system. Due to the high parallelism, low latency, and 
low power consumption of field-programmable gate arrays (FPGAs) and application specific 
integrated circuits (ASICs), they demonstrate higher energy efficiency than Graphics Processing Units 
(GPUs) and Central Processing Units (CPUs). Therefore, FPGA and ASIC are widely used to 
accelerate deep learning algorithms. Several papers have addressed the issue of deploying the 
Transformer on dedicated hardware for acceleration, but there is a lack of comprehensive studies in 
this area. Therefore, we summarize the transformer model compression algorithm based on the 
hardware accelerator and its implementation to provide a comprehensive overview of this research 
domain. This paper first introduces the transformer model framework and computation process. 
Secondly, a discussion of hardware-friendly compression algorithms based on self-attention and 
Transformer is provided, along with a review of a state-of-the-art hardware accelerator framework. 
Finally, we considered some promising topics in transformer hardware acceleration, such as a high-
level design framework and selecting the optimum device using reinforcement learning. 
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1. Introduction  

The Transformer [1] has demonstrated impressive performance gains in Natural Language Processing 
(NLP) tasks, including Machine Translation, Text Categorization and Language Modeling [2–4]. Because 
the Transformer can process data in any order, it is possible to train on large volumes of data that would 
not have been possible. Likewise, this has led to the creation of pretrained models, such as Bert [5] 
and RoBERTa [6], which have achieved breakthroughs in several natural language understanding tasks, 
including Sentiment Analysis [7] and Semantic Role Labeling [8]. The Transforms and its variant 
models have become the backbone of many NLP tasks in modern times. 
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Figure 1. Overview of transformer compression and acceleration. 

However, the impressive performance of the Transformer is not only due to the innovation of the 
model but also to the improvement in conventional processing, that is, the advent of Graphics 
Processing Units (GPU). As the size of the transformer model continues to increase, the traditional 
Central Processing Unit (CPU) can no longer withstand the high time delay brought by the deployment 
of the Transformer, and high latency is also a consequence of the dramatic increase in memory 
bandwidth and computational complexity. For example, the Transformer usually has millions of 
parameters, such as the BERT [5] model has 340M parameters, and the BERT model after distill has 
67M parameters [9]. Therefore, GPU with high parallelism and memory bandwidth has become the 
main platform for transformer model training and inference in cloud computing. On the one hand, with 
the development of high-performance computing, corresponding requirements are put forward for the 
system's power consumption [9]. On the other hand, due to the excellent performance of transformers 
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in the field of NLP, the trend of applying this model on mobile terminals is becoming more and more 
obvious, such as mobile phones, tablets, etc. Such platforms also have great requirements for power 
consumption. FPGA takes into account the characteristics of low power consumption and high 
performance. It is very suitable as an acceleration platform for Transformer. FPGA is also widely used 
to accelerate deep learning algorithms because of its high parallelism, low latency, and low power 
consumption. At the same time, for acceleration platforms like Transformer and Deep Neural Network 
(DNN), FPGAs exhibit higher energy efficiency than GPUs and CPUs. From this, it can be seen that 
the need for Domain-specific hardware accelerators with specialized and customized deployment 
operations and memory hierarchies is becoming more and more obvious. In addition, because the 
development tools of GPU are very mature now, it is difficult to optimize the hardware architecture in 
the development process of using the C language to complete the entire function. Therefore, the 
hardware accelerators in this article refer to ASIC and FPGA. However, deploying huge models like 
transformers on these accelerated platforms is challenging because they often have limited on-chip 
memory, off-chip bandwidth, and resources. Therefore, compressing transformer model parameters 
and reducing computational cost has become an urgent topic. The compression model enables effective 
reduce memory and computational cost [10,11]. The compression techniques are driven by usage [12,13], 
data [14–16], transmission [17], and model [18,19]. However, it’s important to consider system 
performance (e.g., latency, energy cost, storage, and processing capability). In terms of algorithms, 
various algorithms for compressing transformers have been proposed in recent years, such as 
Knowledge Distillation [9,20–23], Network Sparsification [24–27], Data Quantization [28–31], Neural 
Architecture Search [32–34]. However, the model parameters processed by the compression algorithm 
are irregular in the memory, leading to irregular memory access, greatly consuming hardware resources, 
and reducing the operation speed, which is extremely unfriendly to hardware. And a survey on the 
compression algorithm of the transformer model has also been organized [35].  

However, a comprehensive survey of the corresponding hardware-deployed accelerated 
Transformer has not emerged by adopting hardware-friendly compression transformer algorithms and 
corresponding joint algorithms. Therefore, this paper’s purpose is to review the past hardware-friendly 
transformer compression algorithms and to give the hardware architecture for the application of the 
algorithm. Because self-attention is a very important part of the Transformer, most of the Transformer’s 
running time is mainly on the self-attention mechanism. Therefore, we also reviewed the hardware-
friendly compression algorithm of the self-attention mechanism and the hardware architecture of 
deploying the self-attention mechanism on hardware in conjunction with the corresponding 
compression algorithm. Figure 1 shows our classification of the hardware-friendly compression 
algorithms of self-attention and introduces the algorithm and hardware co-design of the above 
algorithms, that is, the related hardware architecture of self-attention and Transformer combined with 
the above algorithms for hardware acceleration is introduced. Finally, we conclude and discuss several 
interesting and promising topics in this field. 

The overall architecture of this paper is shown in Table 1. Section 2 briefly introduces the basics 
of the transformer model. The third section details the hardware architecture of the self-attention 
mechanism combined with the compression algorithm in hardware and the corresponding compression 
algorithm. The fourth section mainly introduces the hardware-friendly compression algorithm for the 
Transformer and the hardware architecture that combines this algorithm. The fifth section discusses 
the future trend and summary. 
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Table 1. Content guidance of this article. 

Preliminaries Brief Preliminaries of Transformer Section 2 

Self-attention 

Algorithm 

Approximation Section 3.1.1 

Network Sparsification Section 3.1.2 

Tensor Decomposition Section 3.1.3 

Hardware 

Accelerators with Approximation Section 3.2.1 

Accelerators with Network Sparsification Section 3.2.2 

Accelerators with Tensor Decomposition Section 3.2.3 

Transformers 

Algorithm 

Tensor Decomposition Section 4.1.1 

Data Quantization Section 4.1.2 

Network Sparsification Section 4.1.3 

Neural Architecture Search Section 4.1.4 

Hardware 

Accelerator with Tensor Decomposition Section 4.2.1 

Accelerator with Data Quantization Section 4.2.2 

Accelerator with Network Sparsification Section 4.2.3 

Accelerator with Neural Architecture Search Section 4.2.4 

Conclusions and Discussion 
Conclusions Section 5.1 

Discussion Section 5.2 

2. Brief preliminaries of transformer 

In this section, we briefly introduce the architecture and background of the transformer and 
variant model BERT. In the past, the state-of-the-art methods for Language Modeling and Machine 
Translation were long-short term memory (LSTM) [36], Gated Recurrent Unit (GRU) [37], and 
Self-Attentional mechanism [1,38]. However, they are performed in a loop, and the running time 
is linear with the sequence length, making it difficult to parallelize. The Transformer completely 
abandons this repetitive idea and uses a Self-Attentional mechanism to describe the dependency 
between input and output. 

Figure 2 shows the overall architecture of the Transformer. Generally speaking, the Transformer 
is composed of Encoder and Decoder stacked, and the Encoder and Decoder are also stacked with Self-
attention and a fully connected (FC) layer. Figure 3(b) shows the calculation process of Self-attention. 
The role of the Encoder is to use the Self-Attentional mechanism to convert the input sequence into a 
digital code, and the role of the Decoder is to convert the digital code output by the Encoder into the 
corresponding output format. First, the input sequence passes through the Inputs Embedding layer to 
map each word into a vector. That is, the input sequence is adapted into a matrix form by the inputs 
embedding layer to express, and the Positional Encoding layer is used to show the word’s position. 
Because the Transformer completely abandons RNN and CNN, the Transformer has no word order 
information. In order to introduce word order information, the Transformer introduces Positional 
encoding as the relative or absolute position information of the input sequence and then adds Positional 
encoding and Input Embedding so that the complete information of the input sequence can be 
expressed. At the same time, the output part of the Output Embedding and Positional encoding is added, 
and then they are input into the Decoder. 
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Figure 2. Model structure of transformer [39]. 

Encoder: The Encoder consists of N identical layers. Each layer is composed of Multi-head 
Attention, Add & Norm, and FC Layers. Multi-head Attention and FC Layers will be connected to Add 
& Norm, and Add & Norm means Norm after Add operation. Add here can help the model explore 
deeper because there is no risk of gradient vanishing. 

Decoder: Decoder is also composed of N identical layers. Each layer consists of three sublayers: 
Masked Multi-head attention Layer, Multi-head attention Layer, and FC Layer. Each sublayer is also 
connected to an Add & Norm block, which is similar to Encoder. The Masked Multi-head attention 
layer masks the incoming output sequence and masks the words after the currently processed word to 
ensure that the prediction of the current position is only related to the word in its previous position. 
The Multi-head attention layer is different from the Encoder layer. The Multi-head attention of the 
Decoder plays a role in interacting with the output of the Encoder. It accepts the Encoder’s key matrix 
and value matrix output and combines it with the Decoder’s query matrix to achieve interaction. 

Multi-head Attention: As shown in Figure 3, it is obvious that the Multi-head Attention 
mechanism is a combination of a single Self-Attention Mechanism, and its function is that the model 
can obtain information from multiple spaces, thereby capturing more feature information. The 
expressions are shown in Eqs (2) and (3). Therefore, we mainly introduce Self-Attention Mechanism. 
From Eq (1), it can be seen that the Self-Attention function is not complicated. The input is only three 
matrices of Q, K, and V, and both Self-Attention Mechanism and the entire Transformer are a matrix 
operation. QKT represents the inner product operation to obtain the similarity score, and then the 
corresponding weight can be obtained through the softmax function, and dk is a scale factor to prevent 
the gradient vanishing due to too small gradient when backpropagation is performed during training. 

𝑂௧௧௧ ൌ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄, 𝐾, 𝑉ሻ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ
ொ

ඥௗೖ
ሻ𝑉            (1) [39]  

𝑂௨௧ିௗ ൌ 𝑐𝑜𝑛𝑐𝑎𝑡ሺ𝑂௧௧௧
 ሻ                              (2) 

𝑂௧௧௧
 ൌ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄, 𝐾, 𝑉ሻ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൬

ொ


ඥௗೖ
൰ 𝑉                  (3) 
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Figure 3. (a) Multi-head attention (b) Self-attention. 

Linear and Softmax: Linear and Softmax are connected after Decoder. Linear can map the 
vector output by the Decoder to a log-odds probability vector. For example, the transformer model 
learns 10,000 different English words from the training set, so the log-odds vector is a vector of 
length of 10,000 cells, each cell corresponding to the score of a word. Next, the Softmax function 
converts this score into a probability, the highest probability is selected, and its corresponding 
word is the time step output. 

3. Self-attention mechanism 

In the past, the state-of-the-art methods for Language Modeling and Machine Translation were 
LSTM, GRU, and Self-Attentional mechanism. However, they are performed in a loop, and the running 
time is linear with the sequence length, making it difficult to parallelize. The Transformer completely 
abandons this repetitive idea and instead uses a self-attention mechanism to describe the dependency 
between input and output. So Self-attention is very important for Transformer. In this section, we 
introduce the hardware-friendly compression algorithm used by the Self-Attention Mechanism on 
hardware in detail and also introduce the hardware architecture of combining corresponding 
compression algorithms to accelerate the Self-Attention Mechanism. 

As shown in Table 2, we have classified the compression algorithms of Self-attention and 
compared the performance of each algorithm. In terms of algorithm classification, I divided the 
compression algorithms proposed in related papers into Approximation, Network Sparsification, and 
Tensor Decomposition. First, determine whether the compression algorithm selects the key matrix part 
of the vector to filter out parameters that have little effect on the output result. If so, it is called 
approximation. If not, judge whether the parameters or operands of each layer are reduced a lot, which 
is called Network Sparsification. Then judge again, observe whether the tensor of the Transformer is 
divided into many smaller sub-tensors or use one tensor to replace many Tensor calculations, which is 
called Tensor Decomposition. 
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Table 2. Comparison of the hardware-friendly algorithm for self-attention. 

Reference  Algorithm  Dataset Accuracy Loss
Compression 

Ratio 
BLEU Year 

A3 [40] Approximation SQuADv1.1 1.3% / / 2020 

ELSA [41] Approximation SQuADv1.1 < 1%/2.5% / / 2021 

Zhang. et al. [42] 
Network 

Sparsification 
Multi30K 0% 95% 25.8 2021 

Lu et al. [43] 
Tensor 

Decomposition 
IWSLT2016 / / 23.57 2020 

3.1. Algorithm 

3.1.1. Approximation 

In essence, the Self-Attentional mechanism can be viewed as an approximate search of the input 
sequence. In the past calculation of the Self-Attentional mechanism, the similarity score is usually 
obtained by calculating the dot product of the key matrix and the query vector. Then the similarity 
score is normalized to weight by the softmax function, and the weight is weighted and processed with 
each row in the value matrix. Therefore, it can be seen that the computational complexity of the 
multiplication between the key matrix and the query matrix varies according to the input sequence 
length. Longer the input sequence and the time information, the larger the computational complexity 
and the resources required by the model. And for some other self-attention [1,44,45], models, the 
situation is even less optimistic because their self-attention calculation changes with the square of the 
input sequence. 

However, the softmax function usually converts the value with a small similarity score is 
converted to weight by the softmax function, and the weight value is usually approximately close to 0. 
And these weights close to 0 often do not affect the accuracy of the model and the inference process, 
but they are important in the model training process, but the hardware accelerators we generally 
introduce only perform the inference process. So for these weights that are approximately 0, we make 
it equal to 0 in operation, which can reduce a large part of the calculation amount because they do not 
have to perform softmax calculation, value matrix weighted, and weighted sum calculation. The 
approximation algorithm proposed by A3 [40] can avoid selecting the corresponding vectors in the key 
matrix and query vertor that do not need the dot product operation. Since the approximation algorithm 
will anticipate that the weight of these vectors will be close to 0 after the dot product operation is 
carried out by softmax. Therefore, it can avoid the dot product operation of all rows of the key matrix 
and the query vertor, and accurately select the most important vector of the key matrix, and the 
corresponding weight of other unselected vectors is 0. It also preprocesses the key matrix's data without 
destroying the critical path to reduce the calculation and speed up. 

Specifically, the algorithm is divided into two parts, the first part is Greedy Candidate Search, and 
the second part is Post-scoring Approximation. The first part is more complicated and can be further 
divided into two small parts, Preprocessing and Iterative Candidate Selection. 

Figure 4 shows the Preprocessing stage. In the Preprocessing stage, first sort each column of the 
key matrix, and store it in the sortedkey register after sorting. After that, when the query vector is ready, 
the Candidate Search starts. In the first step, if the query[j] of the corresponding column is positive, 
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max_ptr is assigned to the row index of the data with the largest value in the sortedkey matrix. Instead, 
max_ptr is set to the row index of the data with the smallest value in the sortedkey matrix. Min_ptr is 
also set in the same but opposite way. The second step is to set maxQ or minQ. Indexed by max_ptr, 
the corresponding data in sortedkey is first multiplied by the corresponding query data, and then the 
result is inserted into maxQ, and its rowID and colID are given together. After Preprocessing, the 
Iterative Candidate Selection phase begins. First, in the preprocessing stage, we know that max_ptr is 
the largest in the corresponding entry (min_ptr is the smallest in minQ). If the similarity score for the 
data corresponding to max_ptr is positive (negative for the min_ptr case), it will be selected as a 
candidate to add to the greedy_score array. After that max_ptr (and min_ptr) will be updated as it will 
point to the next largest (post-min) entry. Likewise, the new maxQ (and minQ) corresponding to 
max_ptr (and min_ptr) will be updated accordingly. This step will be repeated M times (M is a user-
defined parameter), and the row with a positive greedy_score will be selected as a candidate row for 
softmax operation. 
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Figure 4. Illustration of the data structures for the efficient greedy search algorithm. minQ 
operations are omitted for conciseness. Adapted from [40]. 

After Greedy Candidate Search is executed, Post-scoring Approximation is performed, which 
directly calculates the dot product of the selected row of the key matrix and the corresponding query 
vector, and then inputs the result to the softmax function, and the result is the final weight value. After 
obtaining their dot product results, it is also necessary to take an approximation, that is, to sort their 
similarity scores, and then output the row with the highest score. 

The similar ELSA [41] also proposed an approximation method, and the principle is also to filter 
out parameters that have little effect on the output result, which can greatly reduce the amount of 
calculation. First, the design is combined with Sign random projection (SRP) [46], and Efficient Hash 
Computation proposed by Kronecker Product features [47,48] to estimate the angle between query and 
key vectors. Secondly, because the dot product is proportional to the cosine value of the angle between 
the two vectors, use the angle just estimated to approximate the dot product of the query and key 
vectors. Finally, the dot product result is compared with a threshold to determine whether the selected 
key is relevant to the query. 
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Figure 5. Approximate self-attention algorithm of ELSA. Adapted from [41]. 

Figure 5 is an approximation algorithm for self-attention. Next, the algorithm steps are described 
in detail. In preprocessing (step 0), the key is calculated using Efficient Hash Computation, and the 
norm of the key is calculated accordingly. After that, the approximate dot product of the query and all 
keys need to be calculated. Specifically, the first step is to calculate Efficient Query Hash Computation 
to get h(QX) and then calculate the hamming distance of query hash and all keys (i.e., hamming(h(x), 
h) (y))), hamming distance can be expressed as an unbiased estimator of the angular distance between 
them. The third step is to convert the hammering distance into the corresponding angle by Eq (4), and 
it is added 𝜃௦ for correction. The angle is then applied to the cosine function and multiplied by the 
corresponding key norm to estimate the dot product between the normalized query and the key. Finally, 
it is necessary to check whether these values are relevant to the query by comparing them with 
thresholds. Because the thresholds between different self-attention layers differ, models like BERT-
large have too many layers. Therefore, the design performs inference of the target neural network 
model on the training set and uses Self-Attention to check each layer's features so that the layer’s 
threshold corresponding to the user-specified degree of approximation can be automatically found. 

𝜃௫,௬ ൎ
గ


∙ ℎ𝑎𝑚𝑚𝑖𝑛𝑔൫ℎሺ𝑥ሻ, ℎሺ𝑦ሻ൯                              (4) 

It can be seen from Table 2 that ELSA has a smaller accuracy loss than A3 under the same dataset. 
This is because the self-attention module of A3 occupies a larger area, which reduces the parallelism 
and greatly limits the ability of A3 to reach the target accuracy on time. 

3.1.2. Network sparsification 

A smaller model of the Self-Attentional mechanism is usually used to deploy the mechanism on 
embedded devices with limited memory resources, or a standard large model is compressed to fit the 
device. Since they can allocate their memory and computational resources flexibly, compressed model 
weights can be efficiently deployed on CPU/GPU. However, memory allocation and computing kernel 
cannot be flexibly allocated for FPGAs at runtime. After compressing the weight model, the weight 
size, height, and width are different, which will result in very low FPGA on-chip memory utilization 
and computing kernel efficiency. Therefore, Zhang et al. [42] proposed a new structurally pruning 
method incorporating memory footprint-aware compression. 

This pruning algorithm performs two-stage pruning to ensure hardware efficiency after pruning 
compression, first coarse-grained pruning and then fine-tuning. Coarse-grained pruning is to prune 
each weight under the same proportion uniformly. The method used is that under all pruning rates, 
Getindex will get the smallest 𝛾 in the LayerNorm layer, where 𝛾 can be used as a scale factor to 
scale up or down a column of the input and 𝛾 can reflect the importance of the corresponding column 
of weight. At the same time, it is assigned to the weight column index, and the pruning rate is gradually 
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increased from 0%. The mask will shield the weight column in this column index, thus ensuring zero 
gradient vanishing during training. Finally, when the sparse model accuracy is lower than baseline 
(obtained at the beginning), the pruning rate reaches an upper limit. The fine-tuning is to prune the 
remaining 𝛾 cross-layer after coarse-grained prunes the masked column and prune the Encoder and 
Decoder, respectively. The first step is to group the 𝛾 of the cross-layer model norm and then store 
the 𝛾 of the corresponding weight after collecting the cross-layer 𝛾 type. 

3.1.2. Tensor decomposition 

The algorithm proposed by Lu et al. [43]divides the weight matrix into the same size matrices 
and sends them to the systolic array (SA) for operation so that all general matrix-matrix multiplications 
(GEMMS) can be completed by the SA module, whose size is limited to s × 64. The Tensor shape of 
the Self-Attention mechanism can be expressed as [Batch size, seq_len, dmodel], while in general, the 
Self-Attention mechanism Tensor K is always equal to V, and seq_len_q is equal to seq_len_v, so these 
three Tensor shapes can be represented uniformly by [Batch size, s, dmodel]. Assuming that when the 
Batch size is 1, the operation between each Tensor can be regarded as a matrix operation. As shown in 
Table 3, dmodel can be divided into 64 h, so most general matrix-matrix multiplications (GEMMS) 
can be done with s × 64SA. 

Table 3. Variations on transformer and the BERT architecture [43]. 

Model dmodel h 

Transformer-base 512 8 

Transformer-big 1024 16 

BERTBASE 768 12 

BERTLARGE 1024 16 

3.2. Hardware 

3.2.1. Accelerators with approximation 

First, we will introduce the hardware architecture of the basic Self-Attentional mechanism in 
A3 [40] and then introduce the hardware accelerator modules specially designed for the 
approximation method, namely candidate selection and post-scoring approximate. Figure 6 shows 
the overall A3 architecture combined with A3 Base Design, candidate selection, and post-scoring 
approximate modules. 

Candidate
Selection
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Post-
Scoring

Selection

Exponent
Computation

Output
Computation

M cycles C cycles K cycles K cycles

N entries C entries C entries K entries K entries

 

Figure 6. High-level block diagram of the A3 design with approximation. Adapted from [40]. 
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The A3 Base Design module can be divided into three sub-modules: Dot-Product, Exponent 
Computation, and Output Computation. The Dot-Product module will loop out each row of the key 
matrix and then multiply and accumulate it with the query vector and store the result in the register. In 
addition, the maximum value in the result vector can be obtained. For the Exponent Computation 
module, this design does not sacrifice too many hardware resources but adopts the look-up table (LUT) 
method to prevent the overflow caused by the input fixed-point number being too large. The module 
first subtracts the maximum value in the input vector from the incoming dot product value so that all 
inputs will be less than or equal to 0, and the exponent of the corresponding input must also be less 
than or equal to 1. This does not cause errors because the softmax function simultaneously adds (or 
subtracts) the same number to the input, and the output is unchanged. In order to reduce the size of the 
LUT, this module decomposes an exponent operation into the multiplication of two exponents. The 
Output Computation module divides each element through the exponential outputting module by the 
sum of all output elements to complete the normalization operation. Then multiply the result by the 
value matrix to get the final output. 

Figure 7 is a detailed diagram of the Candidate Selection Module. The key matrix is pre-stored in 
sram after sorting, and the row index of the corresponding data is also stored in sram. This module 
includes two d registers for max_ptr and min_ptr, two multipliers, two sets of multiplication buffers, 
two comparison trees, and a greedy score register. First, use max_ptr (and min_ptr) as an index to find 
the corresponding value from the sorted key matrix and Query vector in sram, send it to the multiplier 
for multiplication, and then enter the multiplication buffer to wait for a column of data to be full, and 
send all the data in the multiplication buffer to the comparison tree for comparison. Thus, the max (and 
min) value is obtained, and then its row index is sent back to max_ptr (and min_ptr) for updating. At 
the same time, the dot product result is also input to the greedy score register, and the Candidate Vector 
is output after the sorted key matrix is all calculated. 
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Figure 7. Simplified block diagram of the A3 candidate selection module. Adapted from [40]. 

As shown in Figure 6, the Post-scoring Approximate Module hardware module is placed in front 
of the index calculation module. The main function of this module is to select a row with the largest 
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dot product value among all the candidate rows after the candidate selection module. Therefore, it 
needs to calculate the difference between the maximum dot product value and the remaining rows. 
Specifically, when the difference between a data being compared and the selected maximum dot 
product value is greater than a preset threshold, the compared data can pass through the module to 
reach the index calculation module. 

Figure 8 shows the ELSA accelerator’s data flow and pipeline situation [41]. The input of the 
ELSA accelerator only includes the query matrix, key matrix, and value matrix. After the query and 
key matrix are fetched from their respective memory and ready, the preprocessing stage starts first. In 
this stage, the Hash computation module calculates the corresponding hash values of all rows of the 
key matrix and calculates and stores it in Key hash memory after completion. Then, the key norm is 
calculated by the norm computation module and stored in the key norm memory. Then calculate the 
hash value of each row of the query matrix. Candidate Selection will always receive query hash, key 
hash and key norm as input and then calculate the hamming distance between key hash value and query 
hash value by XOR and adder. Then access the filled LUT with the obtained hamming distance and 
the LUT stores cosሺ 𝜋 𝑘⁄ ∙ 𝑑ு െ 𝜃௦ሻ . After the corresponding value is retrieved, it is 
multiplied by the key norm to get the approximate similarity score, and then the approximate value is 
compared with the threshold. If it is greater than the threshold, it is selected, and the key index is passed 
to the queue. Multiple candidate selection modules are executed in parallel, and their outputs are sent 
to the arbit module and then passed to the self-attention computation for computation after arbitration. 
After the Attention computation module receives the input key index of the arbit module, it uses the 
multiplier and adder tree to calculate the dot product of the corresponding key and query. For softmax, 
the design uses the LUT method to calculate the exponent of the value, and the sumexp register 
accumulates a low of the exponent components, and the sum is sent to the output div module as the 
output of the self-attention computation module. After calculating the index of the corresponding dot 
product value, multiply and accumulate it with the corresponding value. When the calculation of all 
the corresponding selected keys of the current query is completed, the obtained output vector and 
sumexp are passed to the output div module. The output div module divides all components output by 
the self-attention computation module corresponding softmax function completed by sumexp. 
Attention computation and output div modules are fully pipelined, and output div modules can be 
parallelized with other modules. 
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 Figure 8. ELSA pipeline block diagram [41].  

Table 4 compares the chip area and power of A3 and ELSA deployed on ASIC. ELSA is better 
than A3 on Area, which indirectly proves that the approximation scheme proposed in ELSA better 
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reflects hardware friendliness. 

Table 4. Comparison of accelerators with approximation. 

Reference Algorithm Area (mm2) Dynamic Power (mW) Static Power (mW) Target Year

A3 [40] Approximation 2.082 98.92 11.502 ASIC 2020

ELSA [41] Approximation 1.255 956.05 13.31 ASIC 2021

3.2.2. Accelerators with network sparsification 

The Network Sparsification of the hardware architecture joint algorithm proposed by Zhang 
et al. [42] is shown in Figure 9 for its system hardware architecture diagram. This design considers 
that the memory resources of the FPGA still cannot bear compressed model size. Therefore, it is 
necessary to cooperate in design modules such as data calculation, exchange, and scheduling. 

The input, weight, and output data in Figure 9 are the corresponding buffer areas. In front of the 
DDR interface, there will be a data bus with a ping-pong buffer function to support continuous data 
processing. The processing element (PE) schedule register is used to store data acquisition information 
and execution times so that one output column and the entire output column can be obtained. Among 
them, PE has two types, multiplication and addition. The two multiplications are packaged into the 
DSP and then accumulated through the addition PE, and the multiplication PE is used for simultaneous 
processing, and the addition PE accumulates the tree structure of the two vectors for operation. Read 
the corresponding elements from the PE schedule register, input buffer, and weight buffer and perform 
the calculation, thereby outputting all column elements. And the accelerator can be called recursively 
to perform the matrix multiplication operation in the Transformer. 
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Figure 9. Attention mechanism accelerator with Network Sparsification architecture overview [42]. 
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3.2.3. Accelerators with tensor decomposition 

The hardware design proposed by Lu et al. [43] combined the weight matrix into several sub-
matrices adapted to the SA to accelerate the Self-Attentional mechanism, as shown in Figure 10, this 
hardware also designed layer-norm, but this section only introduces the hardware architecture of self-
attention. The s ×64 SA module outputs column by column, Temp1 and Temp2 are intermediate 
registers, and P is a self-attention mechanism output structure accumulator. Because the weight matrix 
is divided into h parts, it needs to be executed in a loop for h times. Figure 10 is the overall architecture 
diagram of the hardware. Next, introduce its data flow. The sub-matrix multiplication is performed in 
the SA module. First, there will be a multiplexer after Q, K, V, Temp1, and P to control whether they 
can pass through and then input to the SA module for multiplication. The S adder adds bias from the 
Bias Memory, and then the results of Q and K will be sent to Temp1 and Temp2 in turn. Each of them 
is then input to the SA module again through the multiplexer for operation. The result is used as the 
input of the Softmax module and sent to the Temp1 register. After V is calculated by the SA and S 
adders, it is stored in Temp2, and then Temp1 and Temp2 enter the SA module together for operation 
and output to the P register, and the final output is obtained after h times of accumulation. From this 
point of view, the SA module has the highest complexity and does not stop running until the Layer-Norm 
module starts. The complexity second to SA in this design should be the softmax module. Similarly, 
softmax’s exponentiation and division operations are very critical to the hardware. The article by Wang et 
al. [49] is referenced, log sum-exp is used to express the technique [50], and an algorithmic strategy for the 
reduction index and logarithmic function is designed. This module also uses the log-sum-exp trick to avoid 
calculations such as division. As seen from Eq (5), the softmax module is constructed by transforming 
exponential and logarithmic functions without using regular multipliers and LUT. Table 5 shows the 
performance comparison of accelerators with Structurally Pruning and Tensor Decomposition. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝑋ሻ ൌ
𝑒𝑥𝑝ሺ𝑋 െ 𝑋௫ሻ

∑ 𝑒𝑥𝑝൫𝑋 െ 𝑋௫൯ௗೖ
ୀଵ

 

ൌ 𝑒𝑥𝑝 ሺ𝑋 െ 𝑋௫ െ 𝑙𝑛 ሺ∑ 𝑒𝑥𝑝 ሺ𝑋 െ 𝑋௫ሻௗೖ
ୀଵ ሻሻ      (5) 
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Figure 10. The top-level architecture of accelerator with partitioning matrices. Adapted from [43]. 
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Table 5. Comparison of accelerators with structurally pruning and tensor decomposition. 

Reference Algorithm  Latency Throughput Target Year 

Zhang et al. [42] 
Structurally  

Pruning 
8.4 ms 2.04Gop FPGA 2021 

Lu et al. [38] Tensor Decomposition 8.9 ms / FPGA 2020 

4. Transformer 

In this section, we introduce the classification method of the transformer compression algorithm, 
the hardware-friendly algorithm used on the transformer hardware, and the hardware architecture that 
combines the above corresponding compression algorithms to accelerate the Transformer. 

For the classification method of the transformer compression algorithm, determine whether 
the Tensor of the Transformer is divided into many smaller sub-Tensors first, or one Tensor can 
replace many Tensor calculations, called Tensor Decomposition. If not, judge whether the model 
parameter bit width is reduced, which is represented as Data Quantization. Then judge again to see 
if the parameters or operands of each layer are reduced a lot, which is called Network Sparsification. 
Finally, an efficient and suitable model method Neural Architecture Search (NAS) is searched 
through a large search space [51].  

4.1. Algorithm 

4.1.1. Tensor decomposition 

The algorithm proposed by Li et al. [39] references the Block-circulant Matrix (BCM) 
compression algorithm and proposes the Enhanced Block-Circulant Matrix model compression 
algorithm. While CirCNN [52] and C-LSTM [53] adopt the BCM algorithm for image classification 
and language recognition, respectively, both significantly improve performance. According to CirCNN, 
C-LSTM did not research large-scale language representation and wanted to maintain the prediction 
accuracy further. Based on this incentive, an Enhanced Block-Circulant Matrix model compression 
algorithm was proposed with a larger compression ratio and less accuracy loss. Specifically, the 
original weight matrix is replaced by one or more circulant matrix blocks to reduce storage, and the 
input is divided accordingly. For previous compression using BCM, they only indexed the first 
row/column as an index vector, i.e., only the first row/column was stored and computed. And Zhao et 
al. [54] also derived the theoretical basis, demonstrating their effectiveness, but they lacked efficient 
representations for other rows/columns. Based on the model compression of the designed Enhanced 
BCM, the formula of the exponential vector is modified to Equation 6. Use b to denote the row/column 
size of each circulant matrix. In terms of matrix-vector multiplication, the algorithm adopts the fast 
Fourier transformer (FFT), which is based on the Cyclic convolution theorem [55,56]. BCM-based 
matrix-vector multiplication WijXj = Pij○* Xj = IFFT(FFT(Pij)○FFT(Xj)), where ○* represents circular 
convolution and ○ is element-level multiplication. 
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4.1.2. Data quantization 

Quantization is one of the common and important methods for model compression. Quantization 
can reduce the bit width of the parameter data of the transformer model and retain the original 
structurally system, thereby reducing its huge computational complexity and memory consumption. 
The Quantization bit width and precision loss have become the distinguishing criteria of the 
Quantization algorithm. The Quantization method proposed by Liu et al. [57] fully quantizes BERT, 
including weight, activation, Softmax, layer normalization, and all intermediate results, so that 
computational complexity and memory issues can be better optimized. This algorithm is also friendly 
to hardware, and it quantizes all data to integer or fixed-point data, 8/4 bit and 8/8 bit multiplication 
when used by the hardware. The quantization of weight and activation adopts a hardware-friendly 
symmetric linear strategy. However, for the quantization of bias, the bias is quantized into a 32-bit 
integer using the scale factor of quantization weight and activation, which can facilitate its deployment 
on hardware. The quantization of other parameters such as softmax and layer normalization is 8 bits. 
However, under what circumstances can the Quantization accuracy be the best, and the previous work 
was to compare it by yourself. The algorithm of quantized Vision Transformers (ViTs) proposed by 
Sun et al. [58] realizes the automation framework and only needs to give the model structure and the 
required frame rate to automatically output the required quantization accuracy of activation. Figure 11 
illustrates VAQF that builds an FPGA-based ViT inference accelerator. The ViT structure and desired 
frame rate (target FPS) are provided as input information. A compilation step is conducted to decide 
the required precision for activations with the accelerator settings to satisfy the FPS target, when the 
weights are binary. Specifically, it introduces a binarization method, using binary precision for weight 
and low precision for activation to achieve a tradeoff between efficiency and loss of precision. This 
binarization method is different from Binary-BERT [30], which directly applies the 1-bit 
convolution [59,60] method for binary weight quantization. The binary weight quantization according 
to the definition of 1-bit convolution (see Eq (7)), the two-mechanism weight 𝑊 matrix is obtained 
from the given real number 𝑊, where 𝜔 and 𝜔 are a specific element of the matrices 𝑊 and 

𝑊, respectively, and 
∥ௐೝ∥భ


 is the scale factor that minimizes the difference between the binary value 

and the actual weight value. 

𝜔 ൌ
∥ௐೝ∥భ


𝑆𝑖𝑔𝑛ሺ𝜔ሻ ൌ ቐ


∥ௐೝ∥భ


,   𝑖𝑓 𝜔  0

െ
∥ௐೝ
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,   𝑖𝑓 𝜔  0

                  (7) 

Table 6 summarizes the data quantization methods introduced above, mainly compared in terms 
of data bit width, compression ratio, and precision loss. In terms of Accuarcy Loss, the Fully-
Quantization proposed by Liu et al. [57] is smaller. It may be because, in the weight Quantization 
part, Sun et al. [58] chose 1 bit for the Quantization bit width. 
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Table 6. Comparison of the algorithm of data quantization. 

Reference Dataset Weight Bits Activation Bits Accuracy Loss
Compression 

Ratio 
Year 

Liu et al. [57] SST-2 4 bit 8 bit 0.81% 7.94 ൈ 2021 

Sun et al. [58] ImageNet-1K 1 bit 8 bit 4% / 2022 
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Figure 11. Overall flow of VAQF. 

4.1.3. Network sparsification 

The difference between Network Sparsification and Quantization is that Quantization reduces the 
bit width of the corresponding parameters of each layer to simplify the algorithm itself, while 
sparsification reduces the number of operands, which can greatly reduce the amount of memory and 
calculation necessary to achieve the acceleration. Deep learning models often employ methods such 
as irregular pruning [61], structured pruning [62], and pattern pruning [63]. Naturally, sparse 
operations also entail irregular memory accesses and non-zero element index overheads. 

Qi et al. [63] proposed a hardware-friendly Hierarchical Pruning (HP) algorithm, which 
combines block structured pruning (BP) [64] and vector-wise pruning (VW) [65] methods to 
propose this hierarchical pruning Hierarchical Pruning algorithm. Specifically, the BP model is 
used as the backbone model of HP, so the first coarse-grained pruning is performed with the BP 
algorithm, which mainly prunes some unimportant columns of the weight matrix divided into 
blocks. A second fine-grained pruning is then performed using the VW algorithm to prune the 
unimportant parameters from the first unpruned columns, maintaining balance by pruning the same 
number of parameters in each block. 

The part of the pruning also affects the accuracy of the model, and weight pruning reduces the 
number of weights and speeds up the Transformer. Peng et al. [66] proposed column-balanced block 
pruning for transformers. Similarly, column balance is achieved by trimming the weight matrix by an 
equal number of elements across each column. 

Firstly, divide the weight matrix into sub-matrices of the same size, calculate the L2 norm of each 
sub-matrix block, and discard the sub-matrix with the smallest L2 norm. After all pruning, the obtained 
sub-matrices are horizontally connected to form the trimmed matrix. 

Qi et al. [66] proposed a block balanced pruning using structurally pruning because of the strong 
regularity of structural pruning [64,67,68], which is friendly to hardware. Ma et al. [63] compared the 
accuracy of block-balanced pruning (BBP) [69] and block-wise pruning (BW) [68] under different 
sparsity ratios and finally chose BBP as the compression algorithm. Because the pruning method of 
BBP is more fine-grained, it will not prune the whole block like BW, which is likely to delete some 
important information from the model.  
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Our comparison of the pruning methods introduced above is shown in Table 7, comparing each 
method’s compression ratio and accuracy. Generally, the tradeoff between sparsity ratio, structure, and 
accuracy establishes the essence of each pruning algorithm. Based on the above algorithm, block-level 
or structural pruning is performed according to the model structure, and a balance is achieved by 
pruning the same number of parameters to ensure a sufficient hardware compatibility level. 

Table 7. Comparison of algorithm of network sparsification. 

Reference Dataset Model Compression Ratio Accuracy  Year 

Qi et al. [69]  WikiText-2 Transformer 89.85% 96.13% 2021 

Peng et al. [66] WikiText-2 Transformer 90% 95.12% 2021 

Qi et al. [70] WikiText-2 Transformer 80–90% / 2021 

4.1.4. Neural architecture search 

In addition to the above compression methods, Neural Architecture Search is also an effective 
method for determining the most appropriate transformer model, such as Evolved Transformer [71]. 
However, the search process is prohibitively expensive, and the hardware will be more expensive. 
Wang et al. [72] applied a weight-sharing supernet to identify efficient models. The Hardware-Aware 
Transformer (HAT) framework is proposed and utilizes Neural Architecture Search (NAS) to discover 
suitable and efficient methods for deployment on target hardware. Its hardware-aware neural 
architecture search framework is illustrated in Figure 12. As a beginning, it is necessary to construct a 
large design space to identify as many encoders, decoders, and heterogeneous layers as possible. The 
randomly selected sub-transformers are then iteratively optimized to train a supernet-supertransformer 
that can be shared with weights. The supernet-supertransformer can provide a performance proxy to 
the subtransformer. In this step, the hardware platform is brought into play, which will collect a dataset 
with the subtransformers and measure delays, and train the delay predictor to obtain fast and accurate 
delay times. Finally, a search is carried out based on time constraints to identify an efficient input 
model for the hardware platform. As soon as the model is obtained, it is trained from scratch until the 
final performance is obtained. 
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Figure 12. Hardware-Aware Transformer(HAT) overview [72]. 
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4.2. Hardware 

4.2.1. Accelerators with tensor decomposition 

The hardware architecture of Li et al. [39] combined the Enhanced BCM compression algorithm 
to accelerate the Transformer. Although the transformer model has been model compressed, the entire 
model size is still too large for the memory resources of the FPGA, and the transformer parameters 
cannot be satisfied by the on-chip resources of the FPGA. Therefore, in FTRANS, the model is divided 
into Embedded layer and Encoder/Decoder stack, where Embedded layer is designed as a LUT for 
converting input sentence discrete tokens into continuous space. In order to avoid the consumption 
caused by frequent access to off-chip weight, the Embedded layer is offloaded to off-chip memory, 
and the FPGA on-chip resources are exclusively used for Encoder and Decoder stack calculations. 
Then, FTRANS performed inter-layer coarse-grained pipelines, intra-layer fine-grained pipelines, and 
computational scheduling to alleviate I/O constraints. 

4.2.2. Accelerators with data quantization 

In general, when the Quantization data bit width is larger than 8 bits, the loss of precision is 
negligible. However, obtaining Quantization with a lower bit width is possible in pursuit of higher 
performance with an acceptable loss of precision in the Quantization field. In the deep learning 
model, there are usually two types of Quantization, fixed bit width Quantization and variable bit 
width Quantization. 

Liu et al. [57] proposed fully quantizing the BERT (FQ-BERT) to introduce variable bit width. 
Since different layers of BERT have different bit widths, a reconfigurable module design with variable 
bit width is adopted. A bit-level reconfigurable multiplication accelerator is proposed, which can 
support 8/4-bit and 8/8-bit multiplication. As shown in Figure 13, adopting a method similar to Bit-
fusion [73], a Bit-split Inner-product Module (BIM) is designed for demultiplexing the same module 
to support operations of different bit widths. Each BIM contains multipliers, adder trees, and 
corresponding shift adders, and each multiplier has a signed signal to represent the difference between 
signed and unsigned numbers. The function of the shift-add logic is to shift the partial sum when the 
input bit width is greater than 4 bits. There are two ways to add the position of the shift logic. Using 
TypeA can save more resources, but the input data needs to be arranged in order. In a Processing 
Elements (PE) of FQ-BERT, the output of the BIM is sent to an accumulator to be added to the previous 
data, and then the result is input into PsumBuf. Then PsumBuf is input to the Quantization module, so 
that the final value including the bias and scale factor is obtained. 
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Figure 13. Two types of BIM. Adapted from [57]. 
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For the introduction of fixed bit width, Sun et al. [58] quantized the weight into two bits, activated 
low-precision Quantization and accelerated ViT based on this algorithm. It uses loop-tile technology 
to divide the input, weight, and output of each layer of ViT into tiles to reduce the memory and 
computing resources of FPGA. Figure 14(a) shows the tiles of the unquantized layer. At the module 
computing level, the multi-layer perceptron (MLP), the FC layer of the multi-head attention module, 
and the self-attention module in ViT are computationally complex and intensive. For the multi-head 
attention module, it must be used multiple times to achieve parallel processing, but the FC layer 
calculation only performs one matrix multiplication. In order to be compatible with the FC layer at the 
same time, the input of the FC layer is divided into a parallel number of multi-head attention modules. 
The output of each segment is then added together when it is output. Figure 14(b) shows the calculation 
flow of these two layers. The computation is made more efficient by unrolling and piping the L2, L3, 
and L4 loops under L1. Figure 14(c) shows a flow of whether it is a vit layer of Quantization, when no 
Quantization is performed the DSP resources on the FPGA are occupied, and the Quantization is 
replaced by the corresponding addition and subtraction of the LUT. Because the weight is binarized, 
the weight value is +1 or -1. In addition to the above contributions of this design, it is worth noting 
that it implements automated operations and only needs to give the model structure and the required 
frame rate to automatically output the Quantization accuracy required for activation. 

Input: Input tile I with size of 
ሺ𝑁ℎ ൈ 𝑇𝑛 ሻ ൈ 𝐹 𝑜𝑟 ሺ𝑁ℎ ൈ 𝑇𝑛
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  𝑇𝑚 ൈ 𝐹 𝑜𝑟 𝑇𝑚
𝑞 ൈ 𝐹; 

 
for (f = 0; f < F; f += 1) 
 L1: for (𝑡ℎ  = 0; 𝑡ℎ  < F; 𝑡ℎ+= 𝑃ℎ) 
#PIPELINE II=1 
  L2: for (m = 0; m < 𝑇𝑚 ሺ𝑇𝑚

𝑞 ሻ; m+=1) 
#UNROLL 
   L3: for (h = 0; h < 𝑃ℎ ; h+=1) 
#UNROLL 
    L4: for (n = 0; n < 𝑇𝑛 ሺ𝑇𝑛

𝑞 ሻ; n+=1) 
#UNROLL 
   o = Oሾ𝑚ሿሾ𝑓ሿ; 
   𝜔 = Wሾ𝑚ሿሾ𝑡ℎ  𝑛ሿሾ𝑛ሿ; 
   i = Iሾ𝑡ℎ  ℎሿሾ𝑛ሿሾ𝑓ሿ; 
   o = MAC(𝜔, 𝑖); 
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o+= w×i; If(w==+1)
   o = o + i;
else
   o = o - i;

 

Figure 14. Detailed implementation of ViT accelerator. (a) Loop tiling of input, weight, 
and output for one model layer; (b) Computation flow in compute engine with loop tiling, 
pipelining, and unrolling; (c) Processing flow of one model layer based on whether it is 
quantized or not. The superscript q represents the parameter after Quantization. Adapted 
from [58]. 

Table 8 compares the Throughout, Latency, and FPS/W of each accelerator under the corresponding 
bit width. The balance between model accuracy and performance should also be considered. INT2 or INT4 
can achieve a good balance in small-sized datasets, and quantized INT4 is the best choice for large datasets. 

Table 8. Comparison of accelerators with data quantization. 

Reference Weight Bits Activation Bits Latency Throughout FPS/W Target Year 

Liu et al. [57]  4 bit 8 bit 43.89 ms / 2.32 FPGA 2021 

Sun et al. [58]  1 bit 8 bit / 861.2GOPS 2.85 FPGA 2022 
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4.2.3. Accelerators with network sparsification 

After the pruning algorithm processes the matrix parameters, they will become sparse matrices. 
That is, the number of non-zero elements (NZ) is much smaller than the number of zero elements. In 
order to skip the computation of a large number of 0 elements in sparse matrices, various sparse matrix 
storage formats have been proposed to compress sparse matrices to reduce computational and storage 
resources, and the typical formats are such as COO [74], CSR [75], BCSR [75], and MBR [76], etc. 

Qi et al. [69] proposed a bitmap format similar to MBR to cooperate with the HP algorithm, which 
can further reduce memory usage. The corresponding format is selected according to whether the 
sparse ratio is 0, consisting of the number of blocks, the column index of the block, and three sets of 
arrays with non-zero elements in the column. In contrast, the other format lacks the column index array. 
Its accelerator design is different from the previously proposed accelerators [65,77–79], and their 
methods cannot be applied to transformers. In order to solve the challenge of random reading and 
writing, the design changes the memory access mode. By multiplying the multi-line of the input matrix 
by one column of the weight matrix to achieve sequential writing, the matrix problem of random 
writing results can be solved so that the parallelism between rows can be used to calculate the dot 
product and corresponding column of the weight matrix of the input matrix at the same time. An input 
matrix row buffer IRB is allocated to buffer each row of the multiplied input matrix, which is 
implemented by a randomly accessible register. 

Peng et al. [66] also proposed the compressed sparse column block (CSCB) compressed sparse 
matrix format based on their Column Balanced Block Pruning algorithm. This compression format is 
formed by combining the CSB format and the BCSR format, which ensures that only one index address 
is needed for each sub-matrix block, so it has lower memory consumption than CSB and BCSR formats. 
Figure 15 shows the overall architecture of the design. Because the Embedded layer is usually designed 
as a LUT, it is used in external memory to save on-chip memory. The data flow is: first, the PC sends 
the generated tokenized sentence to the FPGA through PCIe, and then the DDR controller obtains the 
embedding information of each word in the DRAM, and transmits the word input sequence to the on-
chip memory of the FPGA for use by Encoder and Decoder. 

Host
CPU

Host
Memory

PCIe

Host

Embedding
layer

DDR
controller

Memory interface

FPGADRAM

BRAM

Encoder
accelerator stacks

Decoder
accelerator

BRAM

 

Figure 15. Overall structure of the [66]. 

The sparse matrix multiplication operation occupies most of the computation during the 
transformer inference process, and this accelerator delves into the sparse matrix multiplication 
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accelerator. This sparse matrix multiplication accelerator is combined with the Column Balanced 
Block Pruning algorithm and CSCB compression method, and a dedicated pipeline is designed by 
exploiting the parallelism between PEs and within PEs. Store the compressed sparse weight matrix 
and its index matrix in BRAM, and extract an element in the vector and a data block in the compressed 
sparse matrix from the index value of the index matrix, respectively. And perform general dense matrix 
multiplication within a PE, after which the result is sent to the accumulation module for accumulation, 
which will traverse all block columns of the sparse matrix to obtain the final dot product output. 

Qi et al. [70]proposed Compressed Block Row(CBR) for Block balance pruning that proposed by 
themselves. It consists of a three-dimensional array to store the non-zero elements of the sparse weight 
matrix and a two-dimensional array to store the internal block index of the non-zero sub-rows, so it 
can significantly reduce memory usage and take advantage of the block balanced nature to save 
decoding overhead. Figure 16 shows the detailed data flow of the transformer accelerator proposed by 
this accelerator. It consists of FPGA on-chip memory to establish weight buffers, intermediate result 
buffers, and five calculation modules. Among them, the five calculation modules are Multi-head 
attention, add_norm, feed-forward connected, and decoder. These five modules run in the order in the 
figure due to the dependency between the data. Similarly, the dot product operation of the Multi-head 
attention module needs to be run in parallel to improve computational efficiency. The pipeline method 
is used for each layer of operations to provide transportation efficiency. In terms of saving memory, it 
reuses intermediate result buffers multiple times per layer. Also, because sine and cosine operations 
are used in embedding and positional encoding, it is very computationally expensive for FPGA and 
cannot take advantage of its parallelism. Therefore, operations are performed on the CPU side, and 
then input to the FPGA side through the PCIe interface. 
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Figure 16. The detailed computation dataflow of [70]. 
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Table 9. Comparison of compression format. 

Reference 
Compression 

Format 
Contribution Target Year

Qi et al. [52] MBR Change Memory access FPGA 2021

Peng et al. [55] CSCB Improvement of CSB and BCSR FPGA 2021

Qi et al. [56] CBR Take advantage of the balanced properties of the block FPGA 2021

Table 9 summarizes the compression format of each accelerator with Network Sparsification and 
innovation of their compression format. Table 10 summarizes and compares each accelerator with 
Network Sparsification, mainly to collect and compare the Latency and Throughout parameters of each 
accelerator. It can be seen that the accelerator proposed by Qi et al. [69] yields better performance. In 
addition, it can be seen that applying hardware-friendly compression algorithms can eliminate the 
overhead caused by irregular memory access on the hardware. 

Table 10. Comparison of accelerators with network sparsification. 

Reference Model Latency Throughout Target Year 

Qi et al. [69]  Transformer 6.45 ms 14.14GFLOPS FPGA 2021 

Peng et al. [66]  Transformer 10.35 ms 3091.8FPS FPGA 2021 

Qi et al. [70] Transformer 7.85 ms 0.1136GFLOPS FPGA 2021 

4.2.4. Accelerators with neural architecture search 

In terms of hardware, Wang et al. [72] designed an accelerator named SpAtten to co-process the 
self-attention layer in computational NLP. The accelerator can support novel token pruning to reduce 
the memory access and computation of the self-attention layer. The entire accelerator module is 
completely pipelined, and each module corresponds to each operation, which will not cause a lot of 
data movement and greatly reduce the data movement overhead. The attention layer input is stored in 
High Bandwidth Memory (HBM). Because there will be random access problems after Token pruning, 
it uses a crossbar to deal with address conflicts so that HBM channels are kept busy, and bandwidth 
utilization is also increased accordingly. Then, the top-k engine has a high degree of parallelism and 
can support dynamic pruning of tokens with certain time complexity. For the dynamic low-precision 
implementation, an on-chip bit-width converter is used to deal with the segmentation of the obtained 
bits and the connection of msb and lsb. 

The detailed diagram of the SpAtten accelerator architecture is shown in Figure 17. For the 
attention calculation of each query, the top-k module first handles the accumulation of important scores, 
and the obtained K indices are input into the fetcher. Fetcher calculates the address of K and then inputs 
it into the crossbar, and then the crossbar transmits the relevant data and performs dot product operation 
and softmax calculation to obtain the attention probability. Then, the probability is provided to the 
dynamic precision determination module and the importance score accumulator, which play the roles 
of whether lsb is required and the execution of accumulation, respectively. After that, the local token 
is calculated by top-k for local token pruning and the k index of the corresponding V is sent to the 
fetcher. Finally, the attention output of the residual probability and the corresponding V multiplied is 
obtained. From Table 11, VAQF gets the biggest accuracy loss, [42] gets the smallest accuracy loss, 
and ELSA gets the smallest average accuracy loss.  
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Table 11. Comparison of accuracy loss of accelerators. 

 A3 [40] 
ELSA 

[41] 

Zhang. 

et al. 

[42] 

Lu et. 

al. [43]

FQ-BERT 

[57] 

VAQF 

[58] 

Qi et al. 

[69]  

Peng et 

al. [66]  

Qi et al. 

[70]  

Max 0.826% 0.964% 0% / 3.08% 4% 1.37% 0.31% / 

Min 0.826% 0.819% 0% / 0.81% 4% 1.37% 0.31% / 

Average 0.826% 0.898% 0% / 1.94% 4% 1.37% 0.31% / 
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Figure 17. SpAtten architecture overview. All of the modules are fully pipelined to achieve 
high performance [72]. 

5. Conclusions and discussion 

5.1. Conclusions 

Transformators play an increasingly important role in NLP, and their performance is becoming 
increasingly powerful. The powerful performance of the Transformer is a consequence of its size and 
the surge in computing power. At the same time, an efficient and low-power consumption hardware 
platform is needed to support the trend of electronic devices being deployed to mobile and embedded 
devices, as well as the limitation of resources and computing capabilities of mobile devices. This paper 
provides a comprehensive and detailed review of the compression and hardware acceleration of Self-
Attention and Transformer from the perspective of hardware-friendly algorithms and hardware 
deployment. As far as Self-Attention is concerned, we have discussed all the hardware architectures in 
recent years, and we have discussed its data flow analysis and architecture analysis in detail. The 
following are the four compression algorithms we propose for the Transformer: Tensor Decomposition, 
Data Quantization, Network Sparsification, and Neural Architecture Search, as well as the respective 
hardware-friendly compression algorithm and the Transformer's hardware architecture when combined 
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with the above algorithms.  

5.2. Discussion 

The application scenarios of Transformer appear more in mobile devices with demanding edge 
computing requirements, such as real-time translation using smart devices, text processing, etc. 
Existing research is more on the deployment and implementation of high performance computing 
devices, and few types of research directly compare and optimize with mobile devices such as ARM 
and Jetson. We believe that the iteration of edge devices such as Zynq, Pynq, and MPSoC provides the 
possibility of high-performance edge realization for related research. The related challenges lie in three 
points: 1) Further compression and Quantization of the model to adapt to the limited resources of edge 
devices; 2) Efficient memory storage format and access strategy to improve resource utilization; 3) 
More efficient architecture to reduce the system’s power consumption. Based on the above research, it 
can effectively reduce data network communication's time and resource consumption and bring users 
a better offline real-time experience. 

Further research at the terminal is also required. With the development of technology, more and 
more hardware devices can be deployed to run Transformer after further updating, such as FPGA 
(ZCU102, Alveo200, etc.). Models with different sizes or constraints can be deployed to many devices 
with different hardware resources. However, in the past work, the designer did not choose the most 
suitable hardware device for the model, which may lead to insufficient resource utilization. This puts 
forward higher requirements and challenges for designers’ Algorithm and Hardware Co-design 
capabilities in the future, as well as higher requirements for the compatibility of development tools. In 
the future, designers may need to complete the optimization of the model, the Quantization of the 
software, and the hardware structure design simultaneously. We believe that the continued 
development of HLS as a tool can bridge this gap. HLS uses a high-level abstract programming 
language that provides the following benefits, 1) it conforms to the development habits of software 
developers, 2) it reduces the learning cost of hardware developers, and 3) it can be compatible with the 
development needs of both software and hardware. 

Further, using GPU, FPGA, or ASIC for acceleration has exposed many shortcomings. For 
example, frequent data exchange leads to unacceptable communication overhead, and in the face of 
irregular data, DSP usage efficiency is low. While we can mitigate this problem by implementing a 
CPU kernel with an FPGA, it is not economical to sacrifice FPGA throughput for flexibility. We believe 
that deploying DSA on-chip for efficient data exchange and scheduling is highly important for 
optimizing model acceleration. Although we now have platforms like Zynq and MPSoC, their CPU 
performance still cannot meet higher demands. HARP and Versal ACAP may be candidates. They 
effectively solve the high frequency and high bandwidth CPU connection PL module and also have 
corresponding toolchain support. The benefits they bring are that 1) more hardware resources can be 
saved for processing irregular operations instead of routing; 2) simplified layout and routing can 
increase the operating frequency of the system.  
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