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1. Motivations

In [2, Theorem 1], it was inductively and recursively established that the family of differential
equations

(−1)n(r)nF(t) = [ln(1 + t)]n
n∑

i=1

ai(n)(1 + t)iF(i)(t), n ∈ N (1)

has a solution
F(t) = F(t, r) =

[ 1
ln(1 + t)

]r

, r ∈ N, (2)

where a1(n) = 1 and

ai(n) =

n−i∑
ki−1=0

n−i−ki−1∑
ki−2=0

· · ·

n−i−ki−1−···−k2∑
k1=0

i∏
`=2

`k`−1 , 2 ≤ i ≤ n. (3)
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Let

(x)n =

n−1∏
`=0

(x + `) =

x(x + 1)(x + 2) · · · (x + n − 1), n ≥ 1
1, n = 0

and

〈x〉n =

n−1∏
`=0

(x − `) =

x(x − 1)(x − 2) · · · (x − n + 1), n ≥ 1
1, n = 0

be the rising and falling factorials of x ∈ R for n ∈ {0} ∪ N. Let b(r)
n for r ∈ N, generated by[ t

ln(1 + t)

]r

=

∞∑
n=0

b(r)
n

tn

n!
,

stand for the Bernoulli numbers of the second kind with order r. Theorem 2 in [2] reads that, if
n = 0, 1, 2, . . . and N = 1, 2, 3, . . . , then

1. for 0 ≤ n < N + r,

(−1)N(r)Nb(r+N)
n =

min{N−1,n}∑
i=0

n∑
`=max{i,n−r+1}

(
N − i
` − i

)
〈n − ` − r〉N−i〈n〉`aN−i(N)b(r)

n−`;

2. for n ≥ N + r,

(−1)N(r)Nb(r+N)
n =

(min{n,N−1}∑
i=0

n∑
`=max{i,n−r+1}

+

N−1∑
i=0

n−N−r+i∑
`=i

)(
N − i
` − i

)
〈n − ` − r〉N−i〈n〉`aN−i(N)b(r)

n−`.

It is not difficult to see that the expression (3) of the quantity ai(n) is too complicated to be computed
by hand and computer software. Can one find a simple, meaningful, and significant expression for the
quantity ai(n) in (3)?

2. Lemmas

For answering the above question and proving our main results, we need the following lemmas.

Lemma 1. ( [1, p. 134, Theorem A] and [1, p. 139, Theorem C]) For n ≥ k ≥ 0, the Bell polynomials
of the second kind, or say, partial Bell polynomials, denoted by Bn,k(x1, x2, . . . , xn−k+1), are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1, `i∈{0}∪N∑n−k+1
i=1 i`i=n,

∑n−k+1
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

( xi

i!

)`i
.

The Faà di Bruno formula can be described in terms of the Bell polynomials of the second kind Bn,k by

dn

d tn f ◦ h(t) =

n∑
k=0

f (k)(h(t))Bn,k
(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (4)
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Lemma 2. [1, p. 135] For n ≥ k ≥ 0, we have

Bn,k
(
abx1, ab2x2, . . . , abn−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1) (5)

and
Bn,k(0!, 1!, 2!, . . . , (n − k)!) = (−1)n−ks(n, k), (6)

where a and b are any complex numbers and s(n, k) for n ≥ k ≥ 0, which can be generated by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1,

stand for the Stirling numbers of the first kind.

Lemma 3. [26, p. 171, Theorem 12.1] If bα and ak are a collection of constants independent of n, then

an =

n∑
α=0

S (n, α)bα if and only if bn =

n∑
k=0

s(n, k)ak,

where S (n, k) for n ≥ k ≥ 0, which can be generated by

(ex − 1)k

k!
=

∞∑
n=k

S (n, k)
xn

n!
,

stand for the Stirling numbers of the second kind.

3. Main results and their proofs

Now we are in a position to answer the above question and to state and prove our main results.

Theorem 1. For n ≥ 0 and r ∈ R, the function F(t) = F(t, r) defined by (2) satisfies

F(n)(t) =

( 1
1 + t

)n[ n∑
k=0

s(n, k)
〈−r〉k

[ln(1 + t)]k

]
F(t) and

n∑
k=0

S (n, k)(1 + t)kF(k)(t) =
〈−r〉n

[ln(1 + t)]n F(t). (7)

Proof. Let u = u(t) = ln(1 + t) and r ∈ R. Then, by virtue of the Faà di Bruno formula (4) and the
identities (5) and (6) in sequence,

F(n)(t) =

n∑
k=0

(
u−r)(k)Bn,k

( 0!
1 + t

,−
1!

(1 + t)2 , . . . , (−1)n−k (n − k)!
(1 + t)n−k+1

)
=

n∑
k=0

〈−r〉k
ur+k

( 1
1 + t

)n

(−1)n+kBn,k(0!, 1!, . . . , (n − k)!)

=

n∑
k=0

〈−r〉k
[ln(1 + t)]r+k

( 1
1 + t

)n

(−1)n+k(−1)n−ks(n, k)

for n ≥ 0. Thus, the first identity in (7) is proved.
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Applying Lemma 3 to the first equality in (7) leads to

〈−r〉n
[ln(1 + t)]n F(t) =

n∑
k=0

S (n, k)(1 + t)kF(k)(t)

which can be rewritten as the second equality in (7). The required proof is complete. �

Corollary 1. Comparing (1) with two equalities in (7) reveals that

ai(n) = S (n, i), n ≥ i ≥ 0. (8)

This implies that the second identity in (7) is more meaningful, more significant, more computable
than (1).

4. Remarks

In this section, we give several remarks and some explanation about our main results.

Remark 1. Theorem 1 extends the range of r from N to R.

Remark 2. By virtue of the expression (8), all the above mentioned results in the paper [2] can be
reformulated simpler, more meaningfully, and more significantly. For the sake of saving the space and
shortening the length of this paper, we do not rewrite them in details here.

Remark 3. Currently we can see that the method used in this paper is simpler, shorter, nicer, more
meaningful, and more significant than the inductive and recursive method used in [2] and closely
related references therein.

Remark 4. In the papers [5, 8, 24, 25], there are some new results about the Bernoulli numbers of the
second kind.

Remark 5. In the papers [3, 4, 6, 7, 9–18, 20–23, 25, 27], there are similar ideas, methods, techniques,
and purposes to this paper.

Remark 6. This paper is a slightly revised version of the preprint [19].
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