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Abstract: In this paper, we study the oscillation of solutions for a fourth-order neutral nonlinear
differential equation, driven by a p-Laplace differential operator of the form

(
r (t) Φp1[w

′′′ (t)]
)′

+ q (t) Φp2 (u (ϑ (t))) = 0,

r (t) > 0, r′ (t) ≥ 0, t ≥ t0 > 0,

The oscillation criteria for these equations have been obtained. Furthermore, some examples are given
to illustrate the criteria.
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1. Introduction

In this article, we study the oscillatory behavior of the fourth-order neutral nonlinear differential
equation of the form 

(
r (t) Φp1[w

′′′ (t)]
)′

+ q (t) Φp2 (u (ϑ (t))) = 0,

r (t) > 0, r′ (t) ≥ 0, t ≥ t0 > 0,
(1.1)

where w (t) := u (t) + a (t) u (τ (t)) and the first term means the p-Laplace type operator (1 < p < ∞).
The main results are obtained under the following conditions:

L1: Φpi[s] = |s|pi−2s, i = 1, 2,
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L2: r ∈ C[t0,∞) and under the condition ∫ ∞

t0

1
r1/(p1−1) (s)

ds = ∞. (1.2)

L3: a, q ∈ C[t0,∞), q (t) > 0, 0 ≤ a (t) < a0 < ∞, τ, ϑ ∈ C[t0,∞), τ (t) ≤ t,
limt→∞ τ (t) = limt→∞ ϑ (t) = ∞

By a solution of (1.1) we mean a function u ∈ C3[tu,∞), tu ≥ t0, which has the property
r (t) (w′′′ (t))p1−1

∈ C1[tu,∞), and satisfies (1.1) on [tu,∞). We assume that (1.1) possesses such a
solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [tu,∞), and
otherwise it is called to be nonoscillatory. (1.1) is said to be oscillatory if all its solutions are
oscillatory.

We point out that delay differential equations have applications in dynamical systems, optimization,
and in the mathematical modeling of engineering problems, such as electrical power systems, control
systems, networks, materials, see [1]. The p-Laplace equations have some significant applications in
elasticity theory and continuum mechanics.

During the past few years, there has been constant interest to study the asymptotic properties for
oscillation of differential equations with p-Laplacian like operator in the canonical case and the
noncanonical case, see [2–4, 11] and the numerical solution of the neutral delay differential equations,
see [5–7]. The oscillatory properties of differential equations are fairly well studied by authors
in [16–27]. We collect some relevant facts and auxiliary results from the existing literature.

Liu et al. [4] studied the oscillation of even-order half-linear functional differential equations with
damping of the form

(
r (t) Φ

(
y(n−1) (t)

))′
+ a (t) Φ

(
y(n−1) (t)

)
+ q (t) Φ (y (g (t))) = 0,

Φ = |s|p−2 s, t ≥ t0 > 0,

where n is even. This time, the authors used comparison method with second order equations.
The authors in [9, 10] have established sufficient conditions for the oscillation of the solutions of

(
r (t)

∣∣∣y(n−1) (t)
∣∣∣p−2

y(n−1) (t)
)′

+
∑ j

i=1 qi (t) g (y (ϑi (t))) = 0,

j ≥ 1, t ≥ t0 > 0,

where n is even and p > 1 is a real number, in the case where ϑi (t) ≥ υ (with r ∈ C1 ((0,∞),R),
qi ∈ C ([0,∞),R) , i = 1, 2, .., j).

We point out that Li et al. [3] using the Riccati transformation together with integral averaging
technique, focuses on the oscillation of equation

(
r (t) |w′′′ (t)|p−2 w′′′ (t)

)′
+

∑ j
i=1 qi (t) |y (δi (t))|p−2 y (δi (t)) = 0,

1 < p < ∞, , t ≥ t0 > 0.

Park et al. [8] have obtained sufficient conditions for oscillation of solutions of
(
r (t)

∣∣∣y(n−1) (t)
∣∣∣p−2

y(n−1) (t)
)′

+ q (t) g (y (δ (t))) = 0,

1 < p < ∞, , t ≥ t0 > 0.
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As we already mentioned in the Introduction, our aim here is complement results in [8–10]. For
this purpose we discussed briefly these results.

In this paper, we obtain some new oscillation criteria for (1.1). The paper is organized as follows.
In the next sections, we will mention some auxiliary lemmas, also, we will use the generalized Riccati
transformation technique to give some sufficient conditions for the oscillation of (1.1), and we will give
some examples to illustrate the main results.

2. Main results

For convenience, we denote

A (t) = q (t) (1 − a0)p2−1 Mp1−p2 (ϑ (t)) ,

B (t) = (p1 − 1) ε
ϑ2 (t) ζϑ′ (t)
r1/(p1−1) (t)

,

φ1 (t) =

∫ ∞

t
A (s) ds,

R1 (t) : = (p1 − 1) µ
t2

2r1/(p1−1) (t)
,

ξ (t) : = q (t) (1 − a0)p2−1 Mp2−p1
1 ε1

(
ϑ (t)

t

)3(p2−1)

,

η (t) : = (1 − a0)p2/p1 Mp2/(p1−2)
2

∫ ∞

t

(
1

r (δ)

∫ ∞

δ

q (s)
ϑp2−1 (s)

sp2−1 ds
)1/(p1−1)

dδ,

ξ∗ (t) =

∫ ∞

t
ξ (s) ds, η∗ (t) =

∫ ∞

t
η (s) ds,

for some µ ∈ (0, 1) and every M1,M2 are positive constants.
Definition 1. A sequence of functions {δn (t)}∞n=0 and {σn (t)}∞n=0 as

δ0 (t) = ξ∗ (t) , and σ0 (t) = η∗ (t) ,
δn (t) = δ0 (t) +

∫ ∞
t

R1 (t) δp1/(p1−1)
n−1 (s) ds, n > 1

σn (t) = σ0 (t) +
∫ ∞

t
σ

p1/(p1−1)
n−1 (s) ds, n > 1.

(2.1)

We see by induction that δn (t) ≤ δn+1 (t) and σn (t) ≤ σn+1 (t) for t ≥ t0, n > 1.
In order to discuss our main results, we need the following lemmas:

Lemma 2.1. [12] If the function w satisfies w(i) (ν) > 0, i = 0, 1, ..., n, and w(n+1) (ν) < 0 eventually.
Then, for every ε1 ∈ (0, 1) , w (ν) /w′ (ν) ≥ ε1ν/n eventually.
Lemma 2.2. [13] Let u (t) be a positive and n-times differentiable function on an interval [T,∞) with
its nth derivative u(n) (t) non-positive on [T,∞) and not identically zero on any interval of the form
[T ′,∞) , T ′ ≥ T and u(n−1) (t) u(n) (t) ≤ 0, t ≥ tu then there exist constants θ, 0 < θ < 1 and ε > 0 such
that

u′ (θt) ≥ εtn−2u(n−1) (t) ,

for all sufficient large t.
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Lemma 2.3 [14] Let u ∈ Cn ([t0,∞) , (0,∞)) . Assume that u(n) (t) is of fixed sign and not identically
zero on [t0,∞) and that there exists a t1 ≥ t0 such that u(n−1) (t) u(n) (t) ≤ 0 for all t ≥ t1. If limt→∞ u (t) ,
0, then for every µ ∈ (0, 1) there exists tµ ≥ t1 such that

u (t) ≥
µ

(n − 1)!
tn−1

∣∣∣u(n−1) (t)
∣∣∣ for t ≥ tµ.

Lemma 2.4. [15] Assume that (1.2) holds and u is an eventually positive solution of (1.1). Then,(
r (t) (w′′′ (t))p1−1

)′
< 0 and there are the following two possible cases eventually:

(G1) w(k) (t) > 0, k = 1, 2, 3,
(G2) w(k) (t) > 0, k = 1, 3, and w′′ (t) < 0.

Theorem 2.1. Assume that

lim inf
t→∞

1
φ1 (t)

∫ ∞

t
B (s) φ

p1
(p1−1)
1 (s) ds >

p1 − 1

p
p1

(p1−1)
1

. (2.2)

Then (1.1) is oscillatory.
proof. Assume that u be an eventually positive solution of (1.1). Then, there exists a t1 ≥ t0 such that
u (t) > 0, u (τ (t)) > 0 and u (ϑ (t)) > 0 for t ≥ t1. Since r′ (t) > 0, we have

w (t) > 0, w′ (t) > 0, w′′′ (t) > 0, w(4) (t) < 0 and
(
r (t)

(
w′′′ (t)

)p1−1
)′
≤ 0, (2.3)

for t ≥ t1. From definition of w, we get

u (t) ≥ w (t) − a0u (τ (t)) ≥ w (t) − a0w (τ (t))

≥ (1 − a0) w (t) ,

which with (1.1) gives (
r (t)

(
w′′′ (t)

)p1−1
)′
≤ −q (t) (1 − a0)p2−1 wp2−1 (ϑ (t)) . (2.4)

Define

$ (t) :=
r (t) (w′′′ (t))p1−1

wp1−1 (ζϑ (t))
. (2.5)

for some a constant ζ ∈ (0, 1) . By differentiating and using (2.4), we obtain

$′ (t) ≤
−q (t) (1 − a0)p2−1 wp2−1 (ϑ (t)) .

wp1−1 (ζϑ (t))

− (p1 − 1)
r (t) (w′′′ (t))p1−1 w′ (ζϑ (t)) ζϑ′ (t)

wp1 (ζϑ (t))
.

From Lemma 2.2, there exist constant ε > 0, we have

$′ (t) ≤ −q (t) (1 − a0)p2−1 wp2−p1 (ϑ (t))
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− (p1 − 1)
r (t) (w′′′ (t))p1−1 εϑ2 (t) w′′′ (ϑ (t)) ζϑ′ (t)

wp1 (ζϑ (t))
.

Which is

$′ (t) ≤ −q (t) (1 − a0)p2−1 wp2−p1 (ϑ (t))

− (p1 − 1) ε
r (t)ϑ2 (t) ζϑ′ (t) (w′′′ (t))p1

wp1 (ζϑ (t))
,

by using (2.5) we have

$′ (t) ≤ −q (t) (1 − a0)p2−1 wp2−p1 (ϑ (t)) − (p1 − 1) ε
ϑ2 (t) ζϑ′ (t)
r1/(p1−1) (t)

$p1/(p1−1) (t) . (2.6)

Since w′ (t) > 0, there exist a t2 ≥ t1 and a constant M > 0 such that

w (t) > M.

Then, (2.6), turns to

$′ (t) ≤ −q (t) (1 − a0)p2−1 Mp2−p1 (ϑ (t))

− (p1 − 1) ε
ϑ2 (t) ζϑ′ (t)
r1/(p1−1) (t)

$p1/(p1−1) (t) ,

that is
$′ (t) + A (t) + B (t)$p1/(p1−1) (t) ≤ 0.

Integrating the above inequality from t to l , we get

$ (l) −$ (t) +

∫ l

t
A (s) ds +

∫ l

t
B (s)$p1/(p1−1) (s) ds ≤ 0.

Letting l→ ∞ and using $ > 0 and $′ < 0, we have

$ (t) ≥ φ1 (t) +

∫ ∞

t
B (s)$p1/(p1−1) (s) ds.

This implies
$ (t)
φ1 (t)

≥ 1 +
1

φ1 (t)

∫ ∞

t
B (s) φp1/(p1−1)

1 (s)
(
$ (s)
φ1 (s)

)p1/(p1−1)

ds. (2.7)

Let λ = inft≥T $ (t) /φ1 (t) then obviously λ ≥ 1. Thus, from (2.2) and (2.7) we see that

λ ≥ 1 + (p1 − 1)
(
λ

p1

)p1/(p1−1)

or
λ

p1
≥

1
p1

+
(p1 − 1)

p1

(
λ

p1

)p1/(p1−1)

,

which contradicts the admissible value of λ ≥ 1 and (p1 − 1) > 0.
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Therefore, the proof is complete.
Theorem 2.2. Assume that

lim inf
t→∞

1
ξ∗ (t)

∫ ∞

t
R1 (s) ξp1/(p1−1)

∗ (s) ds >
(p1 − 1)

pp1/(p1−1)
1

(2.8)

and
lim inf

t→∞

1
η∗ (t)

∫ ∞

t0
η2
∗ (s) ds >

1
4
. (2.9)

Then (1.1) is oscillatory.
proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,∞). Without loss of
generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1 ≥ t0 such that
u (t) > 0, u (τ (t)) > 0 and u (ϑ (t)) > 0 for t ≥ t1. From Lemma 2.4 there is two cases (G1) and (G2).

For case (G1). Define

ω (t) :=
r (t) (w′′′ (t))p1−1

wp1−1 (t)
.

By differentiating ω and using (2.4), we obtain

ω′ (t) ≤ −q (t) (1 − a0)p2−1 wp2−1 (ϑ (t))
wp1−1 (t)

− (p1 − 1)
r (t) (w′′′ (t))p1−1

wp1 (t)
w′ (t) . (2.10)

From Lemma 2.1, we get
w′ (t)
w (t)

≤
3
ε1t

.

Integrating again from t to ϑ (t), we find

w (ϑ (t))
w (t)

≥ ε1
ϑ3 (t)

t3 . (2.11)

It follows from Lemma 2.3 that
w′ (t) ≥

µ1

2
t2w′′′ (t) , (2.12)

for all µ1 ∈ (0, 1) and every sufficiently large t. Since w′ (t) > 0, there exist a t2 ≥ t1 and a constant
M > 0 such that

w (t) > M, (2.13)

for t ≥ t2. Thus, by (2.10), (2.11), (2.12) and (2.13), we get

ω′ (t) + q (t) (1 − a0)p2−1 Mp2−p1
1 ε1

(
ϑ (t)

t

)3(p2−1)

+
(p1 − 1) µt2

2r1/(p1−1) (t)
ωp1/(p1−1) (t) ≤ 0,

that is
ω′ (t) + ξ (t) + R1 (t)ωp1/(p1−1) (t) ≤ 0. (2.14)

Integrating (2.14) from t to l , we get

ω (l) − ω (t) +

∫ l

t
ξ (s) ds +

∫ l

t
R1 (s)ωp1/(p1−1) (s) ds ≤ 0.
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Letting l→ ∞ and using ω > 0 and ω′ < 0, we have

ω (t) ≥ ξ∗ (t) +

∫ ∞

t
R1 (s)ωp1/(p1−1) (s) ds. (2.15)

This implies
ω (t)
ξ∗ (t)

≥ 1 +
1

ξ∗ (t)

∫ ∞

t
R1 (s) ξ

p1/(p1−1)
∗ (s)

(
ω (s)
ξ∗ (s)

)p1/(p1−1)

ds. (2.16)

Let λ = inft≥T ω (t) /ξ∗ (t) then obviously λ ≥ 1. Thus, from (2.8) and (2.16) we see that

λ ≥ 1 + (p1 − 1)
(
λ

p1

)p1/(p1−1)

or
λ

p1
≥

1
p1

+
(p1 − 1)

p1

(
λ

p1

)p1/(p1−1)

,

which contradicts the admissible value of λ ≥ 1 and (p1 − 1) > 0.
For case (G2) . Integrating (2.4) from t to m, we obtain

r (m)
(
w′′′ (m)

)p1−1
− r (t)

(
w′′′ (t)

)p1−1
≤ −

∫ m

t
q (s) (1 − a0)p2−1 wp2−1 (ϑ (s)) ds. (2.17)

From Lemma 2.1, we get that

w (t) ≥ ε1tw′ (t) and hence w (ϑ (t)) ≥ ε1
ϑ (t)

t
w (t) . (2.18)

For (2.17), letting m→ ∞ and using (2.18), we see that

r (t)
(
w′′′ (t)

)p1−1
≥ ε1 (1 − a0)p2−1 wp2−1 (t)

∫ ∞

t
q (s)

ϑp2−1 (s)
sp2−1 ds.

Integrating this inequality again from t to∞, we get

w′′ (t) ≤ −ε1 (1 − a0)p2/p1 wp2/p1 (t)
∫ ∞

t

(
1

r (δ)

∫ ∞

δ

q (s)
ϑp2−1 (s)

sp2−1 ds
)1/(p1−1)

dδ, (2.19)

for all ε1 ∈ (0, 1). Define

y (t) =
w′ (t)
w (t)

.

By differentiating y and using (2.13) and (2.19), we find

y′ (t) =
w′′ (t)
w (t)

−

(
w′ (t)
w (t)

)2

≤ −y2 (t) − (1 − a0)p2/p1 M(p2/p1)−1
∫ ∞

t

(
1

r (δ)

∫ ∞

δ

q (s)
ϑp2−1 (s)

sp2−1 ds
)1/(p1−1)

dδ, (2.20)
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hence
y′ (t) + η (t) + y2 (t) ≤ 0. (2.21)

The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is
complete.
Theorem 2.3. Let δn (t) and σn (t) be defined as in (2.1). If

lim sup
t→∞

(
µ1t3

6r1/(p1−1) (t)

)p1−1

δn (t) > 1 (2.22)

and
lim sup

t→∞
λtσn (t) > 1, (2.23)

for some n, then (1.1)is oscillatory.
proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,∞). Without loss of
generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1 ≥ t0 such that
u (t) > 0, u (τ (t)) > 0 and u (ϑ (t)) > 0 for t ≥ t1. From Lemma 2.4 there is two cases.

In the case (G1), proceeding as in the proof of Theorem 2.2, we get that (2.12) holds. It follows
from Lemma 2.3 that

w (t) ≥
µ1

6
t3w′′′ (t) . (2.24)

From definition of ω (t) and (2.24), we have

1
ω (t)

=
1

r (t)

(
w (t)

w′′′ (t)

)p1−1

≥
1

r (t)

(
µ1

6
t3
)p1−1

.

Thus,

ω (t)
(

µ1t3

6r1/(p1−1) (t)

)p1−1

≤ 1.

Therefore,

lim sup
t→∞

ω (t)
(

µ1t3

6r1/(p1−1) (t)

)p1−1

≤ 1,

which contradicts (2.22).
The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is

complete.
Corollary 2.1. Let δn (t) and σn (t) be defined as in (2.1). If∫ ∞

t0
ξ (t) exp

(∫ t

t0
R1 (s) δ1/(p1−1)

n (s) ds
)

dt = ∞ (2.25)

and ∫ ∞

t0
η (t) exp

(∫ t

t0
σ1/(p1−1)

n (s) ds
)

dt = ∞, (2.26)

for some n, then (1.1) is oscillatory.
proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,∞). Without loss of
generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1 ≥ t0 such that
u (t) > 0, u (τ (t)) > 0 and u (ϑ (t)) > 0 for t ≥ t1. From Lemma 2.4 there is two cases (G1) and (G2).
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In the case (G1), proceeding as in the proof of Theorem 2, we get that (2.15) holds. It follows from
(2.15) that ω (t) ≥ δ0 (t). Moreover, by induction we can also see that ω (t) ≥ δn (t) for t ≥ t0, n > 1.
Since the sequence {δn (t)}∞n=0 monotone increasing and bounded above, it converges to δ (t). Thus, by
using Lebesgue’s monotone convergence theorem, we see that

δ (t) = lim
n→∞

δn (t) =

∫ ∞

t
R1 (t) δp1/(p1−1) (s) ds + δ0 (t)

and
δ′ (t) = −R1 (t) δp1/(p1−1) (t) − ξ (t) . (2.27)

Since δn (t) ≤ δ (t), it follows from (2.27) that

δ′ (t) ≤ −R1 (t) δ1/(p1−1)
n (t) δ (t) − ξ (t) .

Hence, we get

δ (t) ≤ exp
(
−

∫ t

T
R1 (s) δ1/(p1−1)

n (s) ds
) (
δ (T ) −

∫ t

T
ξ (s) exp

(∫ s

T
R1 (δ) δ1/(p1−1)

n (δ) dδ
)

ds
)
.

This implies ∫ t

T
ξ (s) exp

(∫ s

T
R1 (δ) δ1/(p1−1)

n (δ) dδ
)

ds ≤ δ (T ) < ∞,

which contradicts (2.25). The proof of the case where (G2) holds is the same as that of case (G1).
Therefore, the proof is complete.
Example 2.1. Consider the differential equation(

u (t) +
1
2

u
( t
2

))(4)

+
q0

t4 u
( t
3

)
= 0, (2.28)

where q0 > 0 is a constant. Let p1 = p2 = 2, r (t) = 1, a (t) = 1/2, τ (t) = t/2, ϑ (t) = t/3 and
q (t) = q0/t4. Hence, it is easy to see that

A (t) = q (t) (1 − a0)(p2−1) Mp2−p1 (ϑ (t)) =
q0

2t4 ,

B (t) = (p1 − 1) ε
ϑ2 (t) ζϑ′ (t)
r1/(p1−1) (t)

=
εt2

27

and
φ1 (t) =

q0

6t3 ,

also, for some ε > 0, we find

lim inf
t→∞

1
φ1 (t)

∫ ∞

t
B (s) φp1/(p1−1)

1 (s) ds >
(p1 − 1)

pp1/(p1−1)
1

.

lim inf
t→∞

6εq0t3

972

∫ ∞

t

ds
s4 >

1
4

q0 > 121.5ε.
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Hence, by Theorem 2.1, every solution of Eq (2.28) is oscillatory if q0 > 121.5ε.
Example 2.2. Consider a differential equation

(u (t) + a0u (τ0t))(n) +
q0

tn u (ϑ0t) = 0, (2.29)

where q0 > 0 is a constant. Note that p = 2, t0 = 1, r (t) = 1, a (t) = a0, τ (t) = τ0t, ϑ (t) = ϑ0t and
q (t) = q0/tn.

Easily, we see that condition (2.8) holds and condition (2.9) satisfied.
Hence, by Theorem 2.2, every solution of Eq (2.29) is oscillatory.

Remark 2.1. Finally, we point out that continuing this line of work, we can have oscillatory results for
a fourth order equation of the type:

(
r (t) |y′′′ (t)|p1−2 y′′′ (t)

)′
+ a (t) f (y′′′ (t)) +

∑ j
i=1 qi (t) |y (σi (t))|p2−2 y (σi (t)) = 0,

t ≥ t0, σi (t) ≤ t, j ≥ 1, , 1 < p2 ≤ p1 < ∞.

3. Conclusion

The paper is devoted to the study of oscillation of fourth-order differential equations with
p-Laplacian like operators. New oscillation criteria are established by using a Riccati transformations,
and they essentially improves the related contributions to the subject.
Further, in the future work we get some Hille and Nehari type and Philos type oscillation criteria of
(1.1) under the condition

∫ ∞
υ0

1
r1/(p1−1)(s)

ds < ∞.
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