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Abstract: The intention along the presented analysis is to explore existence, uniqueness, regularity of
solutions and travelling waves profiles to a Darcy-Forchheimer fluid flow formulated with a non-linear
diffusion. Such formulation is the main novelty of the present study and requires the introduction
of an appropriate mathematical treatment to deal with the introduced degenerate diffusivity. Firstly,
the analysis on existence, regularity and uniqueness is shown upon definition of an appropriate test
function. Afterwards, the problem is formulated within the travelling wave domain and analyzed close
the critical points with the Geometric Perturbation Theory. Based on this theory, exact and asymptotic
travelling wave profiles are obtained. In addition, the Geometric Perturbation Theory is used to provide
evidences of the normal hyperbolicity in the involved manifolds that are used to get the associated
travelling wave solutions. The main finding, which is not trivial in the non-linear diffusion case, is
related with the existence of an exponential profile along the travelling frame. Eventually, a numerical
exercise is introduced to validate the analytical solutions obtained.
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1. Introduction

The proposed analysis discussed along this paper is based on a Darcy-Forchheimer fluid equation
extended with a non-linear diffusion.

The kind of materials presenting pores, that may be filled by a fluid, are typically referred as
porous materials (or simply porous media). In 1856, Henry Darcy set the foundation of flow passing
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through such porous media, when he was working on flow of water through sand beds. His theory
was known as Darcy Law. Later on, it was observed that the Darcy law experienced limitations to
correctly model the inertial and boundary effects at high flow rates. To avoid this phenomena, in 1901
Forchheimer [1] extended the results of Henry Darcy concluding on a type of fluid known as
Darcy-Forchheimer. The study of porous media has noticeable implications for engineers, geologists,
architectures, and has important implications in mathematical modelling. As a set of representative
examples discussing porosity and applications, it is possible to discuss about water in reservoirs, oil
production, heat exchanger and catalytic reactors. In this direction, some important studies about
Darcy-Forchheimer models can be consulted in [2–14].

The Darcy-Forchheimer model is a focus of research currently. In [3], the heat transfer principles of
a Darcy-Forchheimer flow in nanofluids with radiation are studied. Further, in [4], the authors provide
a description of the convective flow of an MHD nanoliquid in an odd-shaped cavity filled with carbon
nanotube-iron. In both cases, the modelling equations were provided in accordance with the well
known Forchheimer model. In [5], a macro-scale momentum equation is presented departing from the
Navier-Stokes equations to derive a free from turbulence model in porous medium. The cited references
have been considered based on the introduced novelty at dealing with porous medium. In all cases, the
driving equation were based on the classical order two diffusion (with gaussian kernel). The Darcy-
Forchheimer model can be described as well with non-linear diffusion principles. In [29], a Darcy law
is employed, supported by a non-linear diffusive formulation, to study the behaviour of nanofluids. In
other cases, the non-linear diffusion has been introduced to account for specific properties to model,
for instance this is the case of coagulation effects in blood vessels [31] or the peristaltic movement in
a kind of Jeffrey fluid [30].

Alternatively, the main novelty introduced in this article is based on the formulation of a Darcy-
Forchheimer fluid with a non-linear diffusion of the Porous Medium type. This kind of diffusion is also
referred as degenerate due to the impossibility to show a maximum principle in a general sound. Some
remarkable assessments related with non-linear diffusion can be consulted in [19, 22] where important
results, involving non-linear diffusion, are introduced (especially topics related with finite propagating
speed and support). Note that the use of non-linear diffusion is well extended in the applied sciences
and responds to the need of selecting an appropriate diffusion to correctly model the phenomena under
study. As an example, non-linear diffusion appears in transverse problems related with the study of
cells chemotasis in biology supported by the Keller and Segel model [25]. More recent studies can be
consulted in [24, 26–28].

One the main objectives pursuit are related with the exploration of exact solution profiles. The
proposed solutions dealt along this study are based on a travelling waves formulation. This kind of
solutions have been explored in numerous studies in different applied sciences, as they permit to model
the involved dynamic along a fixed shape profile moving with constant velocity. Such profile can be
determined by the resolution of an Ordinary Differential Equation. Some interesting applications can
be consulted in studies [15–18].

As discussed, along the presented analysis we provide a non-linear diffusion formulation of a
Darcy-Forchheimer flow so as to account for a diffusion fitting the modelling principles in a Porous
Medium. Once the non-linear diffusion is introduced, solutions are shown to exist, to be regular and
unique. Afterwards, solutions are explored in the travelling wave domain supported by the Geometric
Perturbation Theory. Precise profiles of travelling wave solutions are shown. Such profiles are
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described asymptotically exhibiting an exponential behaviour to the travelling wave frame and in the
proximity of the equilibrium solutions. The existence of an exponential profile is not trivial in the
non-linear diffusion formulation and provide remnants of the classical gaussian order two diffusion.
Finally, a numerical validation exercise is presented for particular values in the involved model
parameters.

2. Model formulation

We start from the classical 2D Darcy-Forchheimer model driven by the following equation:

V = (v1 (y, t) , 0) , divV = 0→
∂v1

∂x
= 0. (2.1)

∂v1

∂t
= −

1
ρ

∂P
∂x

+ ν
∂2v1

∂y2 −

(
σB2

0

ρ
+
φν

K

)
v1 −

F
ρ

v2
1, (2.2)

where ρ the density, P is the pressure field, µ the dynamic viscosity, ν =
µ

ρ
is the kinematic viscosity, F

the nonuniform inertia coefficient of porous medium, φ the porosity and K1 the medium permeability.
Our aim is to provide a new formulation on the involved diffusion by the introduction of a non-

linear term of the Porous Medium Type. This is supported by the fact that such non-linear diffusion
has important properties such us finite propagation (see [19, 22]) that can further fit the modelling
exercise with the physical reality to explore in porous media. Hence, the driving equation is given by:

∂v1

∂t
= −

1
ρ

dP
dx

+ ν
∂2vm

1

∂y2 −

(
σB2

0

ρ
+
φν

K1

)
v1 −

F
ρ

v2
1, (2.3)

where m > 1. Making the differentiation of (2.3) with regards to x, the following holds:

−
1
ρ

d2P
dx2 = 0, −

1
ρ

dP
dx

= K2.

Using this last obtained value for − 1
ρ

dP
dx in (2.3):

∂v1

∂t
= K2 + ν

∂2vm
1

∂y2 −

(
σB2

0

ρ
+
φν

K1

)
v1 −

F
ρ

v2
1, (2.4)

with initial condition:
v1(y, 0) = v0(y) ∈ L1 (R) ∩ L∞ (R) , (2.5)

where v0(y) refers to the initial velocity. For m = 1, the expression (2.4) represents the classical
Darcy-Forchheimer flow model formulated with a linear gaussian diffusion as provided in (2.1).

3. Preliminaries

The degenerate diffusion requires the definition of a weak formulation for (2.4) to support the
analysis of existence and uniqueness in the solutions:
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Definition 1. Consider a test function φ1 ∈ C∞ (R) such that for 0 < τ < t < T, the following weak
formulation to (2.4) holds:

∫
R

v1 (t) φ1 (t) dy =

∫
R

v1 (τ) φ1 (τ) dy +

t∫
τ

∫
R

v1
∂φ1

∂s
dyds + K2

t∫
τ

∫
R

φ1dyds

+ ν

t∫
τ

∫
R

vm
1
∂2φ1

∂y2 dyds −
(
σB2

0

ρ
+
φν

K1

) t∫
τ

∫
R

v1φ1dyds −
F
ρ

t∫
τ

∫
R

v2
1φ1dyds.

(3.1)

Based on (3.1), the following definition holds:

Definition 2. Given a finite spatial location r0, admit a ball Br centered in r0 and with radium r >> r0.
In the proximity of the borders ∂Br the following equation is defined:

v1
∂φ1

∂s
+ K2φ1 + νvm

1
∂2φ1

∂y2 −

(
σB2

0

ρ
+
φν

K1

)
v1φ1 −

F
ρ

v2
1φ1 = 0, (3.2)

with the following boundary and initial conditions:

0 <
∂φ1

∂y
= φ1 << 1, v1 (y, 0) = v0 (y) ∈ L1 (R) ∩ L∞ (R) .

4. Regularity, existence and uniqueness of the solutions

Firstly, the following theorem enunciates the bounded properties of any solution to (3.1), i.e.
solutions do not show global blow-up behaviour.

Theorem 4.1. Given v0 (y) ∈ L1 (R) ∩ L∞ (R), then any solution to (3.1) is bounded for all (y, t) ∈
Br × (0,T ] with r >> 1.

Proof. Consider an arbitrary ζ ∈ R+, so that the following cut-off function is defined:

ψζ ∈ C∞0 (y, t) , 0 ≤ ψζ ≤ 1,

ψζ = 1 in Br−ζ , ψζ = 0 in R − Br−ζ ,

so that ∣∣∣∣∣∣∂ψζ∂ζ

∣∣∣∣∣∣ =
Aa

ζ
,

being Aa > 0 an arbitrary constant. Now, Multiplying (3.2) by ψζ and integrating in Br × [τ,T ]:

t∫
τ

∫
Br

v1
∂φ1

∂s
ψζdyds + K2

t∫
τ

∫
Br

φ1ψζdyds + ν

t∫
τ

∫
Br

vm
1
∂2φ1

∂y2 ψζdydt

−

(
σB2

0

ρ
+
φν

K1

) t∫
τ

∫
Br

v1φ1ψζdydt −
F
ρ

t∫
τ

∫
Br

v2
1φ1ψζdydt = 0. (4.1)
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Note that for some large r >> r0 > 1 the following holds ( [19, 22]):

t∫
τ

vm
1 dt ≤ C1 (τ) r

2m
m−1 ,

t∫
τ

v1dt ≤ C1 (τ) r
2

m−1 ,

where C1 is a suitable constant depending on the initial distribution. For m = 2:

t∫
τ

v2
1dt ≤ C1 (τ) r4.

Now, it is the intention to assess the integral involving the non-linear diffusion term along the domain
Br. To this end:∫

Br

vm
1
∂2φ1

∂y2 ψζdy ≤
∫
Br

C1 (τ) r
2m

m−1
∂2φ1

∂y2 ψζdy = C1 (τ) r
2m

m−1

((
∂φ1

∂y
ψζ

)
∂Br

−

∫
Br

∂φ1

∂y
∂ψζ

∂y
dy

)
. (4.2)

Admit r >> 1 and that φ1 satisfies ∂φ1
∂y ψζ << 1 over ∂Br. For r < ζ, we have

C1 (τ) r
2m

m−1

∫
Br

∂φ1

∂y
∂ψζ

∂y
dy ≤

∫
Br

C1 (τ) r
2m

m−1
∂φ1

∂y
Aa

ζ
≤ C1(τ) Aa

∫
Br>>1

r
2m

m−1−1∂φ1

∂y
. (4.3)

Then

ν

t∫
τ

∫
Br

vm
1
∂φ1

∂y
∂ψζ

∂y
dydt ≤ −νC1(τ)Aa

t∫
τ

∫
Br

r
2m

m−1−1∂φ1

∂y
dydt. (4.4)

Using the expression (4.4) into (4.1), the following holds:

t∫
τ

∫
Br

v1
∂φ1

∂s
ψζdydt + K2

t∫
τ

∫
Br

φ1ψζdydt ≤
(
σB2

0

ρ
+
φν

K1

) t∫
τ

∫
Br

v1φ1ψζdydt

+
F
ρ

t∫
τ

∫
Br

v2
1φ1ψζdydt + νC1(τ)Aa

t∫
τ

∫
Br

r
2m

m−1−1∂φ1

∂y
dydt. (4.5)

Now, (
σB2

0

ρ
+
φν

K1

) t∫
τ

∫
Br

v1φ1ψζdydt +
F
ρ

t∫
τ

∫
Br

v2
1φ1ψζdydt + νC1(τ)Aa

t∫
τ

∫
Br

r
2m

m−1−1∂φ1

∂y
dydt

≤

(
σB2

0

ρ
+
φν

K1

) ∫
Br

C1 (τ) r
2

m−1φ1ψζdy +
F
ρ

∫
Br

C1 (τ) r4φ1ψζdy + νC1(τ)Aa

∫
Br

r
2m

m−1−1∂φ1

∂y
dy

≤

(
σB2

0

ρ
+
φν

K1

) ∫
Br

C1 (τ) r
2

m−1φ1ψζdy +
F
ρ

∫
Br

C1 (τ) r4φ1ψζdy + νAaC1 (τ)
∫
Br

r
2m

m−1−1
∣∣∣∣∣∂φ∂y

∣∣∣∣∣ dy. (4.6)
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Next, consider a test function φ1 of the form:

φ1 (r, s) = e−ks
(
1 + r2

)−α
. (4.7)

Note that the exponent α is chosen in a way that (4.6) is convergent, therefore:(
σB2

0

ρ
+
φν

K1

) t∫
τ

∫
Br

v1φ1ψζdydt +
F
ρ

t∫
τ

∫
Br

v2
1φ1ψζdydt + νC1(τ)Aa

t∫
τ

∫
Br

r
2m

m−1−1∂φ1

∂y
dydt

≤

(
σB2

0

ρ
+
φν

K1

)
AaC1 (τ)

∫
Br

e−ksr
2

m−1−2αdr +
F
ρ

AaC1 (τ)
∫
Br

e−ksr4−2αdr

+2ανAaC1 (τ)
∫
Br

e−ksr
2m

m−1−1−2αdr. (4.8)

For α = 2m
m−1 and r → ∞, then we have

(
σB2

0

ρ
+
φν

K1

) t∫
τ

∫
Br

v1φ1ψζdydt +
F
ρ

t∫
τ

∫
Br

v2
1φ1ψζdydt + νC1(τ)Aa

t∫
τ

∫
Br

r
2m

m−1−1∂φ1

∂y
dydt ≤ 0. (4.9)

Considering the results in (4.9) and introducing into (4.1), the following holds:

t∫
τ

∫
Br

v1
∂φ1

∂s
ψζdydt + K2

t∫
τ

∫
Br

φ1ψζdydt ≤ 0,

which shows that the integrals at infinity are small given the decreasing behaviour of the associated
test function. Similarly, it is possible to state that integrals are finite for finite value values of r in
τ < s < t < T . Consequently, we conclude on the theorem postulation about the boundness of
solutions in Br × (0,T ] for any T > 0. �

To show the uniqueness in the solutions, the following theorem holds:

Theorem 4.2. Admit v11 (y, t) and v12 (y, t) are two solutions to Eq (2.4), with the same initial data i.e.
v11 (y, 0) = v12 (y, 0) = v0 (y) > 0. Then, solutions are unique, i.e. v11 (y, t) = v12 (y, t).

Proof. To prove the uniqueness of solutions, admit a test function ψ (y, t) ∈ C∞ (QT ) where QT =

R × (0,T ). Firstly, we assume that v11 (y, t) > v12 (y, t) and a weak solution to (2.4) defined as:

∫
R

v11 (t)ψ (t) dy =

∫
R

v (0)ψ (0) dy +

t∫
0

∫
R

v11
∂ψ

∂s
dyds + ν

t∫
0

∫
R

vm
11
∂ψ

∂y2 dyds

+ K2

t∫
0

∫
R

ψdydt −
(
σB2

0

ρ
+
φν

K1

) t∫
0

∫
R

v11ψdydt −
F
ρ

t∫
0

∫
R

v2
11ψdyds

(4.10)

AIMS Mathematics Volume 7, Issue 4, 6898–6914.



6904

and ∫
R

v12 (t)ψ (t) dy =

∫
R

v (0)ψ (0) dy +

t∫
0

∫
R

v12
∂ψ

∂s
dyds + ν

t∫
0

∫
R

vm
12
∂ψ

∂y2 dyds

+ K2

t∫
0

∫
R

ψdydt −
(
σB2

0

ρ
+
φν

K1

) t∫
0

∫
R

v12ψdydt −
F
ρ

t∫
0

∫
R

v2
12ψdyds.

(4.11)

Subtracting Eqs (4.10) and (4.11):

∫
R

(v11 − v12) (t)ψ (t) dy =

t∫
0

∫
R

(v11 − v12) (t)
∂ψ

∂s
dyds + ν

t∫
0

∫
R

(
vm

11 − vm
12
) ∂2ψ

∂y2 dyds

−

(
σB2

0

ρ
+
φν

K1

) t∫
0

∫
R

(v11 − v12)ψdyds −
F
ρ

t∫
0

∫
R

(
v2

11 − v2
12

)
ψdyds.

(4.12)

For v11 (y, t) > v12 (y, t) , the following holds:(
vm

11 − vm
12
)
≤ mvm−1

11 (v11 − v12) ≤ mKm−1
3 |v11 − v12| , (4.13)

where K3 = max
(y,t)∈QT

{v11}.

Admit the following choice for the test function ψ (y, t) ∈ C∞ (QT ):

ψ (y, s) = e−ls
(
1 + |y|2

)−α
, (4.14)

where α is such that ∫
R

ψ (y, s) dy < ∞. (4.15)

For simplicity, we can choose a test function under a normalization condition of the form∫
R

ψ (y, s) dy = 1. (4.16)

Along y→ ∞, the integral mass shall be null. Then , for r >> 1:∫
|(|y|−r)|→∞

ψ (y, s) dy = 0. (4.17)

In the asymptotic |y| → ∞, we obtain:
|y|−2α

|y| → 0, (4.18)

then
α >

1
2
. (4.19)

AIMS Mathematics Volume 7, Issue 4, 6898–6914.



6905

Now, we define ∫
R

ψ (y, s) dy = e−ls
∫

R

1(
1 + |y|2

)αdy = e−lsΘ (y) , (4.20)

where
Θ (y) =

∫
y→∞

1(
1 + |y|2

)αdy. (4.21)

The integral (4.20) is finite under the condition for α given in (4.19):

∂2ψ

∂y2 =
4α (α + 1) y2e−ls(

1 + |y|2
)α+2 −

2α(
1 + |y|2

)α+1

≤
4α (α + 1) e−ls(

1 + |y|2
)α ≤ 4α (α + 1)ψ.

Integrating in both sides∫
R

∂2ψ (y, s)
∂y2 dy ≤

∫
R

K4 (α)ψ (y, s) = K4 (α) e−lsΘ (y) , (4.22)

where K4 (α) = 4α (α + 1) .Now, we consider the assessment of each of the integrals involved in (4.12):
t∫
0

∫
R

(v11 − v12) (t)
∂ψ

∂s
dyds

= −

t∫
0

∫
R

l (v11 − v12) (t)ψdyds

=

t∫
0

∫
R

l (v12 − v11) (t)ψdyds

=l sup |v12 − v11|Θ (y)

t∫
0

e−lsds

= sup |v12 − v11|Θ (y)
(
1 − e−lt

)
.

(4.23)

ν

t∫
0

∫
R

(
vm

11 − vm
12
) ∂2ψ

∂y2 dyds

≤ν sup |v11 − v12|Km−1
3 K4 (α)

t∫
0

∫
R

ψ (y, s) dyds

=ν sup |v11 − v12|Km−1
3 K4 (α) Θ (y)

t∫
0

e−lsds

=ν sup |v11 − v12|Km−1
3 K4 (α) Θ (y)

(
1 − e−lt

)
.

(4.24)
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Similarly,

−

(
σB2

0

ρ
+
φν

K1

) t∫
0

∫
R

(v11 − v12)ψdyds ≤
(
σB2

0

ρ
+
φν

K1

)
sup |v11 − v12|Θ (y)

(
1 − e−lt

)
, (4.25)

and

−
F
ρ

t∫
0

∫
R

(
v2

11 − v2
12

)
ψdyds ≤ sup |v11 − v12|K3Θ (y)

(
1 − e−lt

)
. (4.26)

Combining the different expressions for each of the assessed integrals, the following holds:∫
R

(v11 − v12) (t)ψ (t) dy

≤ sup |v11 − v12|Θ (y)
(
1 − e−lt

)
+ν sup |v11 − v12|Km−1

3 K4 (α) Θ (y)
(
1 − e−lt

)
+

(
σB2

0

ρ
+
φν

K1

)
sup |v11 − v12|Θ (y)

(
1 − e−lt

)
+ sup |v11 − v12|K3Θ (y)

(
1 − e−lt

)
.

Note that |Θ (y)| < ∞. For a sufficiently small t > 0, sup |v11 − v12| → 0, then∫
R

(v11 − v12) (t)ψ (t) dy ≤ 0,

which implies that v11 (t) ≤ v12 (t). This contradicts the initial assumption, therefore the only
compatible condition is to admit v11 (t) = v12 (t) as intended to prove. �

5. Travelling waves regularity and existence

The travelling wave profiles (h) are described as v1 (y, t) = h (η) where η = y − ct ∈ R, c is the
travelling wave speed and h : R→ (0,∞) belongs to L∞ (R) .

The expression (2.3) is then transformed to the travelling wave domain as:

− ch′ = K2 + ν (hm)′′ −
(
σB2

0

ρ
+
φν

K1

)
h −

F
ρ

h2, (5.1)

with h′ (η) < 0. Admit, now, the new variables (see [19] for further justifications):

X = h (η) , Y = (hm (η))′ , (5.2)

so that the following system holds

X′ =
1
m

X1−mY,
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Y ′ = −
c

mν
X1−mY −

K2

ν
+

(
σB2

0

ρν
+
φ

K1

)
X +

F
ρν

X2. (5.3)

The proposed system in analyzed in the proximity of the critical points. To this end, setting X′ = 0 and
Y ′ = 0, yield

X2 +

(
σB2

0

F
+
ρφν

FK1

)
X −

ρK2

F
= 0. (5.4)

The solutions to (5.4) are computed by standards means:

X1 = −
1
2

(
σB2

0

F
+
ρφν

FK1

)
+

1
2

√(
σB2

0

F
+
ρφν

FK1

)2

+
4ρK2

F
, (5.5)

and

X2 = −
1
2

(
σB2

0

F
+
ρφν

FK1

)
−

1
2

√(
σB2

0

F
+
ρφν

FK1

)2

+
4ρK2

F
. (5.6)

Indeed, (X1, 0) and (X2, 0) are the system critical points. Now, the objective is to use the Geometric
Perturbation Theory to characterize the orbits in the proximity of such critical points.

5.1. Geometric Perturbation Theory

Along this section, the singular Geometric Perturbation Theory is employed to show the asymptotic
behaviour of specific defined manifolds close the system critical points. Firstly, admit the following
manifold:

N0 =

{
X,Y / X′ = Y; Y ′ = −

c
mν

X1−mY −
K2

ν
+

(
σB2

0

ρν
+
φ

K1

)
X +

F
ρν

X2
}
, (5.7)

with critical points (X1, 0) and (X2, 0) . A perturbed manifold Nε close to N0 in the critical point (X1, 0)
is defined as:

Nε = {X,Y / X′ = εY; Y ′ = Cε (X − X2)} , (5.8)

where ε denotes a perturbation parameter close to equilibrium (X1, 0) and C is a suitable constant
obtained after root factorization. Firstly, define X3 = X − X2 to apply the Fenichel invariant manifold
theorem [20] as formulated in [21, 23]. For this purpose, it is required to show that N0 is a normally
hyperbolic manifold, i.e. the eigenvalues of N0 in the linearized frame close to the critical point,
and transversal to the tangent space, have non-zero real part. This is shown based on the following
equivalent flow associated to Nε : (

X′3
Y ′

)
=

(
0 ε

Cε 0

) (
X3

Y

)
.

The associated eigenvalues are both real
(
±
√

Cε
)
. This permits to conclude that N0 is a hyperbolic

manifold. Now, we shall show that the manifold Nε is locally invariant under the flow (5.3), so that
the manifold N0 can be described by the asymptotic approach Nε . Based on this, admit the following
functions:

ψ1 = εY, ψ2 = BεX3,
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which are Ci (R × [0, δ]), i > 0, in the proximity of the critical point (X1, 0) . In this case, δ is determined
based on the following flows that are considered to be measurable a.e. in R :∥∥∥ψN0

2 − ψ
Nε

2

∥∥∥ ≤ Cε ‖X3‖ ≤ δε.

Since the solutions are bounded and measurable, δ = C ‖X3‖ is finite. As a consequence, the distance
between the manifolds is sufficiently small to hold the normal hyperbolic condition for δ ∈ (0,∞) and
ε → 0 close to the critical point (X1, 0).

Now, consider the perturbed manifold Nγ close to N0 in the critical point (X2, 0):

Nγ = {X,Y / X′ = γY; Y ′ = Dγ (X − X1)} , (5.9)

where γ denotes a perturbation parameter close to equilibrium (X2, 0) and D is a suitable constant
which is found after root factorization. Now, admit X4 = X − X2 to apply the Fenichel invariant
manifold theorem in the same way as for the critical point (X1, 0). The equivalent flow associated to
Nγ is given by: (

X′4
Y ′

)
=

(
0 γ

Dγ 0

) (
X4

Y

)
.

The associated eigenvalues are both real
(
±
√

Dγ
)

which show that N0 is a hyperbolic manifold close
(X2, 0). Now, it is required to show that the manifold Nγ is locally invariant under the flow (5.3), so
that the manifold Nγ behaves asymptotically as N0. To show this last condition, consider the functions:

ψ3 = γY, ψ4 = DγX4,

which are Ci (R × [0, δ]), i > 0, in the proximity of the critical point (X2, 0) . In this case, δ is determined
based on the following flows that are considered to be measurable a.e. in R :∥∥∥ψN0

4 − ψ
Nε

4

∥∥∥ ≤ Dγ ‖X4‖ ≤ δγ.

Again, as the solutions are bounded and measurable, δ = D ‖X4‖ is finite. Consequently, the distance
between the manifolds keeps the normal hyperbolic condition for δ ∈ (0,∞) and γ sufficiently small
close the critical point (X2, 0).

5.2. Travelling wave profiles

Based on the normal hyperbolic condition in the manifold N0 under the flow (5.3), asymptotic
travelling wave profiles can be obtained.

For this purpose, consider firstly the flow (5.3) to obtain the following family of trajectories in the
phase plane (X,Y):

dY
dX

=
m

X1−mY

[
−

c
mν

X1−mY −
K2

ν
+

(
σB2

0

ρν
+
φ

K1

)
X +

F
ρν

X2
]

= H (X,Y) . (5.10)

Based on the continuity of H(X,Y) and the changing sign for X sufficiently small and X sufficiently
big, it is possible to conclude on the existence of a critical trajectory of the form:
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−
c

mν
X1−mY −

K2

ν
+

(
σB2

0

ρν
+
φ

K1

)
X +

F
ρν

X2 = 0, (5.11)

which implies that

X′ =
F
ρc

X2 +

(
σB2

0

ρc
+
φν

K1c

)
X −

K2

c
. (5.12)

Solving (5.12) by using standard separation of variables, the following holds:

X =
−b + a

(
1 + e

2aF
ρc η

)
1 − e

2aF
ρc η

, (5.13)

where

a =

√
ρK2

F
+

1
4

(
σB2

0

F
+
φρν

K1F

)2

and

b =
1
2

(
σB2

0

F
+
φρν

K1F

)
.

Finally and after using (5.2):

h (η) =
−b + a

(
1 + e

2aF
ρc η

)
1 − e

2aF
ρc η

, (5.14)

which implies that

v1 (y, t) =
−b + a

(
1 + e

2aF
ρc (y−ct)

)
1 − e

2aF
ρc (y−ct)

.

As it can been seen, the existence of an exponential profile along the travelling wave frame holds. This
is not a trivial result for the non-linear diffusion case and reflects the existence of an exponential flow
profile as solution to (2.3).

Now, the intention is to show that the defined supporting manifolds Nε and Nγ preserve the
exponential behaviour close to the critical points. For this purpose, consider the expression (5.8)
(idem can be shown for Nγ as per (5.9)) so that:

dY
dX

=
D (X − X2)

Y
. (5.15)

Solving (5.8) by using separation of variables, the following holds:

Y = D (X − X2) .

From (5.8), the above equation becomes

Y = D (X − X2) . (5.16)

Using (5.8) into (5.15):
X′ = Dε (X − X2) . (5.17)
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Upon resolution:

X = X2 + eDεη.

From (5.2),

h (η) = X2 + eDεη,

v1 (y, t) = X2 + eDε(y−ct).

This last expression permits to show the conservation of the exponential profile close the critical points
defined by the asymptotic manifolds Nε and Nγ.

6. Numerical validation of the analytical solution

The aim along the present chapter is to set a numerical procedure for the expression (5.1) and to
compare with the analytical asymptotic solution obtained in expression (5.14) for different values in the
travelling wave speed. To this end, an implicit Runge-Kutta algorithm with interpolant extension has
been proposed based on the MATLAB software and a scheme proposed in [17]. The initial condition
has been assumed as a step function, v0(y) = H(−y) such that v0(y → −∞) = 1 and v0(y → −∞) =

0. These two conditions permit to study the heteroclinic connection between a positive state at −∞
evolving towards a null state at +∞. Note that to solve the Runge-Kutta algorithm, considering the
heteroclinic connection, it is required to add pseudo-boundary conditions in the travelling wave domain
given by h(η→ −∞) = 1 and h(η→ −∞) = 0. Hence and to avoid such boundary influence, the spatial
travelling wave domain is considered sufficiently large, i.e. η ∈ (−500, 500). The domain is split in 105

nodes with an absolute converging error of 10−5.
The results are presented for different values in the travelling wave speed c (see Figures 1–3) to

account for a general picture of solutions. The numerical exercise is performed only for validating the
obtained analytical solution. Then the correctness of the analytical profile is checked for dedicated
values in the involved model parameters. For the sake of simplicity:

K2 = 0, m = 2, σ = B0 = ρ = φ = ν = K1 = F = 1, (6.1)

while the travelling wave speed c is a free parameter that can be adjusted in accordance with certain
criteria in the involved analytical and exact numerical profiles.

As it can be observed, the structure of solutions follows a similar evolution along the asymptotic
travelling wave tail. In addition and in the searching of an optimal travelling wave profile, the following
principles have been followed:

Minimum distance between the exponential blends upon arrival to the null condition and, in the
asymptotic (beyond η = 1), a maximum distance of 10−4 between both profiles.

The last two conditions are met for a travelling wave c = 16.353 that can be considered as the most
appropriate to account for minimum global errors.

Based on the exposed figures, it is possible to conclude that the there exists an optimal travelling
speed for which the analytical solution in (5.14) evolve close to the actual solution.
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Figure 1. Travelling wave profiles. The blue line represents the exact solution to (5.1) while
the red line is the asymptotic approximation in (5.14). Note that for η >> 1, both tails are
close. c = 2 (left). c = 8 (right).

Figure 2. Note that for increasing values in the travelling wave speed, solutions stay closer
since the beginning. Idem for c = 10 (left). c = 15 (right).

Figure 3. Note that the increase of the travelling wave speed up to c = 100 implies higher
distance between solutions upon arrival to the null state. Idem for c = 16.353 (left). c = 100
(right).
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7. Conclusions

First of all, assessments on existence, regularity and uniqueness of the solutions have been provided.
Afterwards, the problem (2.3) has been studied based on purely analytical techniques applicable to
understand the asymptotic behaviour of solutions. The analysis in the travelling wave domain has been
complemented with by the Geometric Perturbation Theory to search for asymptotic solutions close
the critical points. Even further, specific solution profiles have been shown analytically for the whole
manifold evolution N0 (5.7) and in the proximity of the critical points. The main finding is related
with the existence of an asymptotic exponential behaviour along the travelling wave frame. Finally, a
numerical exercise has been provided to validate the analytical solution (5.14) via exact simulation of
the model (5.1).
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