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Abstract: Analyzing the statistical behavior of the assets’ returns has shown to be an interesting
approach to perform asset selection. In this work, we explore a stress-strength reliability approach
to perform asset selection based on probabilities of the type P(X < Y) when both X and Y follow a
generalized extreme value (GEV) distribution with three parameters. At first, we derive new analytical
and closed form relations in terms of the extreme value H-function, which have been obtained under
fewer parameter restrictions compared to similar results in the literature. To show the performance
of our results, we include a Monte-Carlo simulation study and we investigate the application of the
reliability measure P(X < Y) in selecting financial assets with returns characterized by the distributions
X and Y . Therefore, rather than the conventional approach of comparing the expected values of X and
Y based on modern portfolio theory, we delve into the metric P(X < Y) as an alternative parameter for
assessing better returns.
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1. Introdution

The work of Markowitz [1] stands as one of the pioneering works on portfolio theory [2] and details
Markowitz’s major contributions to the rising modern portfolio theory. Besides providing criterious
description of Markowitz’s model of portfolio choice [3], the work in [1] traced future research
directions explored by other scientists like the suggestion to replace variance with semi-variance as
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a measure of risk, recommendations on the maximization of the expected logarithmic utility of return,
and the outlining of a market model developed in depth by Sharpe [4].

However, Markowitz’s portfolio selection framework relies on the premise that one can measure
asset’s return variance as emphasized by the statement that “examples of rapidly increasing variances
are of mostly academic interest” [1]. This restriction brings concerns related to the framework
suitability in a scenario where heavy-tailed distributions better model assets return by allowing fast
varying volatilities resulting from extreme events. We can find evidences in literature that financial
data is better modelled by α-stable processes (heavy-tailed alternative to Brownian motion [5]) or by
heavy-tailed time series models [6, 7]. Although in this work we rely on the general hypothesis that
logarithmic returns in financial data follow an α-stable process with parameter 0 < α < 2 [8] (which
implies that variance of return is undefined), without loss of generality, we use results from extreme
value theory (EVT) regarding generalized extreme value (GEV) distribution [9] as an alternative to
α-stable distributions. This approach can be considered valid since the GEV distribution has fat-tailed
behaviour and can be used as a proxy of various fat-tailed distributions.

From an economic point of view, it is well known that extreme share returns on stock markets
can have important implications for financial risk management and several studies have successfully
applied GEV to model financial data [10]. For example, Gettinby et al. [11] characterized the
distribution of extreme returns for a UK share index over the years 1975 to 2000. They considered the
suitability of several distributions, being the weekly maxima and minima of daily return best modelled
by the GEV and the Generalised Logistic distributions. For the UK case, Generalised Logistic was a
better choice overall. On the other hand, GEV has presented a similar modelling capability as well as
presenting some important properties due to EVT. Also, Hussain & Li [12] studied the distribution of
the extreme daily returns of the Shanghai Stock Exchange (SSE) Composite Index. They modelled
the SSE Composite index returns based on the data from 1991 to 2013, which indicated that the
Generalized Logistic distribution is a better fit for the minima series and that the GEV distribution
is a better fit for the maxima series of the returns for the Chinese stock market.

EVT is a branch of probability and statistics that deals with the modeling of extreme events that are
related to maximums and minimums of independent random samples. Applications of this theory are
found in finance [13], natural catastrophes, and equipment failures, among others. The books [6,14–16]
provide extensive coverage that allows for a detailed study of EVT.

Furthermore, EVT provides a theoretical basis and framework to deal with extreme deviations from
the mean of distribution functions (DFs) by restricting the behavior of the DFs in the tails. It focuses
on the study of the possible limiting distributions and their properties for the normalized maximum.

Specifically, let X1, X2, · · · , Xn be a sequence of independent and identically distributed (i.i.d.)
random variables (RVs) with common distribution function F and set Mn = max{X1, · · · , Xn}. The
theory is concerned with properties of F and of the possible non-degenerate distribution functions G
satisfying

lim
n→∞

P
(

Mn − bn

an
≤ x

)
= lim

n→∞
Fn(anx + bn) = G(x), ∀x ∈ C(G), (1.1)

for sequences of constants an > 0 and bn ∈ R (n = 1, 2, · · · ), suitably chosen, where C(G) denotes the
set of continuity points of G.

The possible distribution functions G satisfying (1.1) have been known for some time [17] and have
been extensively studied by several authors from then on. They are also known as max-stable laws (or
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max-stable distributions) and can only be of three well-known types: Fréchet, Weibull or Gumbel.
Goncu et al. [18] used the EVT to model the extreme return behaviour of the Istanbul Stock

Exchange (ISE), Turkey. They considered Gumbel, Fréchet and Weibull distributions for modelling
extreme returns over different investment horizons. Their results indicate that when the Value at Risk
(VaR) is computed with the proposed distributions, backtesting results indicate that the EVT provides
superior risk management in all the sub-intervals considered compared to the VaR estimation under the
assumption of a normal distribution.

For statistical applications, the max-stable distributions can be summarized in a single distribution
function called generalized extreme value (GEV) distribution. Essentially, the GEV distribution has
the cumulative distribution function (CDF) given by

G(x) = exp
{
−(1 + γx)

−1
γ

}
, 1 + γx > 0, γ ∈ R, (1.2)

where γ is the shape parameter.
Our interest in this work is the property of stress-strength probability which, in general terms,

consists of the study of the probability of failure of a system or component based on the comparison
of the applied stress to the strength of the system. Let stress Y and strength X be independent
continuous RVs with probability density function (PDF) fY and CDF FX, respectively. The stress-
strength probability (or reliability) is defined as

R = P(X < Y) =

∫ ∞

−∞

FX(x) fY(x)dx. (1.3)

There are several applications of this theory such as in engineering and manufacturing, aerospace and
defense, automotive industry, energy sector, healthcare, and electronics, among others. See [19] for
more details.

The stress-strength reliability framework is versatile and finds various applications in
economics. Besides this contribution regarding financial data, previous works researched economic
inequality [19,20]. Regarding financial data, the authors explored stress-strength reliability framework
in [21–24].

The stress-strength probability for the extreme Fréchet, Weibull, and Gumbel distributions has been
widely studied in the literature. Nadarajah [25] considered the class of extreme value distributions and
derived the corresponding forms for the reliability R in terms of special functions. Confidence limits
for R involving Weibull models were presented in [26]. Kundu & Raqab [27] proposed a modified
maximum likelihood estimator of R and obtained the asymptotic distribution of the modified maximum
likelihood estimators, which was used to construct the confidence interval of R. The previous results
of R for Weibull distribution were generalized by Nojosa & Rathie [28], where R was expressed in
terms of H-functions. Bayesian estimation of R for Fréchet and Weibull distributions has also been
explored [29, 30].

The goal of this paper is to present an asset selection approach based on the probability R = P(X <

Y) when both X and Y present the distributions of returns of two assets. In particular, we seek to derive
an expression of R when X and Y have three-parameter GEV distributions and to propose an estimation
procedure of R by not using transformations in the data and with as fewer parameter restrictions as
possible.
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The paper is organized as follows: In Section 2, we define the H-function, H-function and the three-
parameter GEV distribution. Section 3 deals with the derivation of R when X and Y are independent
GEV RVs. The maximum likelihood estimation for R is presented in Section 4. In Section 5, we present
Monte-Carlo simulations for the estimation of R and also deal with two real situations involving log-
returns of stock prices and different-length carbon fibers. The last section deals with the conclusions
and the Appendix presents the correlation matrices of the data set modeled in Section 5.

2. Preliminaries

In this section, we present definitions and results on which our contributions are based.

2.1. Special functions

Recently, Rathie et al. [31] introduced the extreme-value H-function as:

H(a1, a2, a3, a4, a5, a6) :=
∫ ∞

0
ya6 exp{−a1y − (a2ya3 + a4)a5}dy, (2.1)

where <(a1),<(a2),<(a4) ∈ R+, a3, a5 ∈ C, not both <(a1) and <(a2) can be equal to zero at the
same time,<(a6) > −1 when a1 , 0 or a1 = 0 and sign(a3) = sign(a5),<(a6) < −1 when a1 = 0 and
sign(a3) , sign(a5). In this paper, R, C and< denote the real numbers, complex numbers and the real
part of a complex number, respectively.

In this work, we are interested in the case a6 = 0. Thus, we omit such a parameter from the
representation and denote only:

H(a1, a2, a3, a4, a5) :=
∫ ∞

0
exp{−a1y − (a2ya3 + a4)a5}dy. (2.2)

In the following sections, we prove that all stress-strength probabilities involving three-parameter
GEV distribution with shape parameters of equal sign can be written as H-functions.

Note that (2.1) generalizes some important cases of the H-function (cf. [32]) defined by

Hm,n
p,q

[
z
∣∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

]
=

1
2πi

∫
L

∏m
k=1 Γ(b j + B js)

∏n
j=1 Γ(1 − a j − A js)∏q

k=m+1 Γ(1 − b j − B js)
∏p

j=n+1 Γ(a j + A js)
z−sds, (2.3)

where 0 ≤ m ≤ q, 0 ≤ n ≤ p (not both m and n simultaneously zero), A j > 0 ( j = 1, · · · , p), Bk > 0
(k = 1, · · · , q), a j and bk are complex numbers such that no poles of Γ(bk +Bks) (k = 1, · · · ,m) coincide
with poles of Γ(1− a j −A js) ( j = 1, · · · , n). L is a suitable contour w− i∞ to w + i∞, w ∈ R, separating
the poles of the two types mentioned above. For more details, see [32].

An important special case of this function is obtained by taking a4 = 0, which represents an upper
(or lower) bound for its value depending on the sign of a5. This case is, therefore, an extreme value of
the function and can be written in terms of the H-function as [31]:
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H(a1, a2, a3, 0, a5, a6) =

∫ ∞

0
ya6 exp{−a1y − aa5

2 ya3a5}dy

=
1

a(1+a6)/a3
2 a3a5

H1,1
1,1

[
a1a−1/a3

2

∣∣∣∣ (1 − (1+a6)
a3a5

, 1
a3a5

)
(0, 1)

]
=

1

aa6+1
1

H1,1
1,1

[(
a2

aa3
1

)a5 ∣∣∣∣ (−a6, a3a5)
(0, 1)

]
, (2.4)

when sign(a3) = sign(a5) and:

H(a1, a2, a3, 0, a5, a6) =
1

a(1+a6)/a3
2 |a3a5|

H2,0
0,2

[
a1a−1/a3

2

∣∣∣∣ −

(0, 1), ( (1+a6)
a3a5

, 1
|a3a5 |

)

]
=

1

aa6+1
1

H2,0
0,2

[(
a2

aa3
1

)a5 ∣∣∣∣ −

(0, 1), (1 + a6, |a3a5|)

]
, (2.5)

otherwise.

2.2. Three-parameter GEV distribution

The three-parameter GEV distribution is obtained by taking CDF of the same type of the standard
GEV G defined in (1.2). That means, G(x; µ, σ, γ) = G

(
x−µ
σ

)
. We denote by X ∼ GEV(µ, σ, γ), µ, γ ∈ R

and σ ∈ R+, an RV with CDF given by

G(x; µ, σ, γ) = exp
{
−

[
1 +

γ

σ
(x − µ)

]− 1
γ

}
, 1 +

γ

σ
(x − µ) > 0, (2.6)

where µ is the location parameter, σ is the scale parameter and γ is the shape parameter. The
corresponding probability density function (PDF) is given by

g(x; µ, σ, γ) = G(xi, γi, µ, σ)
1
σ

[
1 +

γ

σ
(x − µ)

]− 1
γ−1

, 1 +
γ

σ
(x − µ) > 0. (2.7)

Figure 1 shows the behavior of g for some parameter choices. Note that the location parameter
shifts the curve, the scale controls dispersion, and the density changes according to the sign of the
shape parameter.
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Figure 1. Plot for the PDF g.

3. Main results

In this section, the reliability of two independent three-parameter GEV RVs is derived in terms of
the H-function. In addition, with suitable parameter restrictions, representations of R as an H-function
and an explicit form are obtained. We consider the case of two independent GEV distributions with
different shape parameters (but of the same sign). Cases of opposite signs of shape parameters are not
normally of interest, as it would indicate that random variables with incompatible support are being
compared. Therefore, these cases are not treated in the present paper.

Theorem 3.1. Let Y and X be independent RVs, respectively, with distribution GEV(µ1, σ1, γ1) and
GEV(µ2, σ2, γ2), µ ∈ R, σ j ∈ R+, γ j ∈ R (γ j , 0), j = 1, 2. Then

• When γ j > 0, j = 1, 2:

R = P(X < Y) = H

(
1,
γ2σ1

σ2γ1
,−γ1, 1 +

γ2

σ2

(
µ1 − µ2 −

σ1

γ1

)
,−

1
γ2

)
, (3.1)

provided that µ1 −
σ1
γ1
≥ µ2 −

σ2
γ2

. When µ1 −
σ1
γ1
≤ µ2 −

σ2
γ2

:

R = P(X < Y) = 1 − H
(
1,
γ1σ2

σ1γ2
,−γ2, 1 +

γ1

σ1

(
µ2 − µ1 −

σ2

γ2

)
,−

1
γ1

)
. (3.2)

• When γ j < 0, j = 1, 2:

R = P(X < Y) = H

(
1,
γ2σ1

σ2γ1
,−γ1, 1 +

γ2

σ2

(
µ1 − µ2 −

σ1

γ1

)
,−

1
γ2

)
, (3.3)

provided that µ1 −
σ1
γ1
≤ µ2 −

σ2
γ2

. When µ1 −
σ1
γ1
≥ µ2 −

σ2
γ2

:

R = P(X < Y) = 1 − H
(
1,
γ1σ2

σ1γ2
,−γ2, 1 +

γ1

σ1

(
µ2 − µ1 −

σ2

γ2

)
,−

1
γ1

)
. (3.4)
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In particular, if µ1 −
σ1
γ1

= µ2 −
σ2
γ2

, we have

R =
γ2

γ1

(
γ2σ1

γ1σ2

)1/γ1

H1,1
1,1

(γ2σ1

γ1σ2

)1/γ1 ∣∣∣∣ (γ1−γ2
γ1

, γ2
γ1

)
(0, 1)

 . (3.5)

Proof. Set µ j ∈ R, σ j, γ j ∈ R+ ( j = 1, 2). Then

R = P(X < Y) =

∫ ∞

−∞

G(x; µ2, σ2, γ2)g(x; µ1, σ1, γ1)dx

=

∫ +∞

M
exp

{
−[1 +

γ2

σ2
(x − µ2)]−

1
γ2 − [1 +

γ1

σ1
(x − µ1)]−

1
γ1

}
[1 +

γ1

σ1
(x − µ1)]−

1
γ1
−1 dx
σ1
, (3.6)

where M = max
{
µ1 −

σ1
γ1
, µ2 −

σ2
γ2

}
. Substituting y =

[
1 +

γ1
σ1

(x − µ1)
]− 1

γ1 and taking M = µ1 −
σ1
γ1

, we
can rewrite (3.6) as

R =

∫ +∞

0
exp

−y −
[
1 +

γ2

σ2

(
µ1 − µ2 −

σ1

γ1

)
+
γ2

σ2

σ1

γ1
y−γ1

]−1/γ2
 dy. (3.7)

Hence, (3.1) follows from (2.1) and (3.7). For the case where γ j > 0, j = 1, 2 and µ1 −
σ1
γ1
≤ µ2 −

σ2
γ2

,
it suffices to notice that P(X < Y) = 1 − P(Y < X) and the result in (3.1) is applied with interchanged
sub-indices. For the cases where γ j < 0, j = 1, 2, the same rationale can be applied, just noticing that in
such cases x mostly takes negative values. The case where γ j = 0, j = 1, 2, can be obtained as a limiting
procedure and shall be explicitly explored later on the present paper. In addition, applying (2.4) with
µ1 −

σ1
γ1

= µ2 −
σ2
γ2

, we obtain (3.5). �

Remark 3.2. In a practical scenario, the estimates (µ̂1, σ̂1, γ̂1, µ̂2, σ̂2, γ̂2) should be obtained. Then, if
sign(γ̂1) = sign(γ̂2), the conditions µ1 −

σ1
γ1
≥ µ2 −

σ2
γ2

or µ1 −
σ1
γ1
≤ µ2 −

σ2
γ2

must be verified and the
corresponding R expression should be used.

Next, we consider some special cases of two independent GEV random variables. We have the
following immediate consequence of Theorem 3.1:

Corollary 3.3. Let Y ∼ GEV(µ1, σ1, γ1) and X ∼ GEV(µ2, σ2, γ2) be independent RVs, with γ1 = γ2 =

γ ∈ R, γ , 0, µ1, µ2 ∈ R, σ1, σ2 ∈ R+ and µ1 − µ2 = σ1
γ
−

σ2
γ

. Then, we have

R = P(X < Y) =

 σ
1/γ
1

σ
1/γ
1 + σ

1/γ
2

 . (3.8)

Lastly, we consider the cases of two independent GEV with γ1 = γ2 = 0.

Theorem 3.4. Let Y and X be independent RVs, respectively, with distribution GEV(µ1, σ1, 0) and
GEV(µ2, σ2, 0), µ j ∈ R, σ j ∈ R+, j = 1, 2. Then

R = exp
{
µ1

σ1

}
H

(
exp

{
µ1

σ1

}
, exp

{
µ2

σ2

}
,
σ1

σ2
, 0, 1

)
(3.9)

= exp
{
µ1 − µ2

σ1

}
σ2

σ1
H1,1

1,1

[
exp

{
µ1 − µ2

σ1

} ∣∣∣∣ (σ1−σ2
σ1

, σ2
σ1

)
(0, 1)

]
.
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Proof. Set µ j ∈ R and σ j ∈ R+ ( j = 1, 2). Then

R = P(X < Y) =

∫ ∞

−∞

G(x; µ2, σ2, 0)g(x; µ1, σ1, 0)dx

=

∫ ∞

−∞

exp
{
− exp

{
−

x − µ2

σ2

}
− exp

{
−

x − µ1

σ1

}}
exp

{
−

x − µ1

σ1

}
dx
σ1
. (3.10)

Substituting y = exp{−x/σ1}, we can rewrite (3.10) as

R = exp
{
µ1

σ1

}∫ +∞

0
exp

{
− exp

{
µ1

σ1

}
y − exp

{
µ2

σ2

}
yσ1/σ2

}
dy. (3.11)

Hence, (3.9) follows from (2.1) and (3.11).
�

We have the immediate consequence of Theorem 3.4.

Corollary 3.5. Let Y ∼ GEV(µ1, σ1, 0) and X ∼ GEV(µ2, σ2, 0) be independent RVs, with σ1 = σ2 =

σ ∈ R+. Then, we have

R = P(X < Y) =
exp{µ1/σ}

exp{µ1/σ} + exp{µ2/σ}
. (3.12)

The results presented in Theorems 3.1 and 3.4 are more general than that presented in the literature.
The H-function allows us to write the probability R with as little parameter restrictions as possible.
Table 1 lists related studies and their parameter restrictions.

Table 1. Extreme distributions and related studies of stress-strength probability.

sign(γ) Distribution Reference Parameter restriction
0 Gumbel [25] σ1 = σ2 or σ1 = 2σ2 or σ2/σ1 > 1
1 Fréchet [25] µ1 = µ2 and (γ1 = γ2 or γ2 = 2γ1

or γ2/γ1 = p/q)*
[30] µ1 = µ2 = 0
[29] µ1 = µ2 = 0 and γ1 = γ2

[33] µ1 = µ2 = 0
−1 Weibull (min) [25] µ1 = µ2 and (γ1 = γ2 or γ2 = 2γ1

or γ2/γ1 = p/q)*
[26] µ1 = µ2 = 0 and γ1 = γ2 = γ

[27] µ1 = µ2 = µ and γ1 = γ2 = γ

[28] µ1 = µ2 = 0

*p and q are coprime integers.

Remark 3.6. The particular case of GEV while sign(γ) = −1 (cf. [14]) is called reversed Weibull.
The Weibull distribution studied by the authors cited in Table 1 is obtained as the limit of a normalized
minimum of i.i.d. RVs. That is, the Weibull distribution is obtained by
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lim
n→∞

P
(
min{X1, · · · , Xn} − bn

an
≤ x

)
= lim

n→∞
(1 − (1 − F(anx + bn))n)

= 1 − exp
{
−

( x − µ
σ

)γ}
, x ≥ µ, (3.13)

where X1, · · · , Xn are i.i.d. RVs of F and an and bn are suitable sequences of constants (see
Theorem 2.1.5 in [14]).

3.1. Multicomponent system reliability

Let X1, · · · , Xn be i.i.d. RVs with distribution GEV(µ2, σ2, γ2) and Y be an independent RV with
distribution GEV(µ1, σ1, γ1). Set Mn = max{X1, · · · , Xn}. Then, P(Mn ≤ u) = Gn(u; µ2, σ2, γ2) and we
have

P(X1 < Y, · · · , Xn < Y) = P(Mn ≤ Y) =

∫ ∞

−∞

Gn(u; µ2, σ2, γ2)g(u; µ1, σ1, γ1)du =: In. (3.14)

Closed expressions for (3.14) are presented in the following result. Its proof follows the same steps of
Theorems 3.1 and 3.4 and it will be omitted.

Theorem 3.7. Let X1, · · · , Xn be i.i.d. RVs with distribution GEV(µ2, σ2, γ2) and Y be an independent
RV with distribution GEV(µ1, σ1, γ1). Then

• When γ j > 0, j = 1, 2:

P(X1 < Y, · · · , Xn < Y) = H

(
1,
γ2σ1

σ2γ1
n−γ2 ,−γ1,

[
1 +

γ2

σ2

(
µ1 − µ2 −

σ1

γ1

)]
n−γ2 ,−

1
γ2

)
, (3.15)

provided that µ1 −
σ1
γ1
≥ µ2 −

σ2
γ2

. When µ1 −
σ1
γ1
≤ µ2 −

σ2
γ2

:

P(X1 < Y, · · · , Xn < Y) = 1 − H
(
1,
γ1σ2

σ1γ2
n−γ1 ,−γ2,

[
1 +

γ1

σ1

(
µ2 − µ1 −

σ2

γ2

)]
n−γ1 ,−

1
γ1

)
. (3.16)

• When γ j < 0, j = 1, 2:

P(X1 < Y, · · · , Xn < Y) = H

(
1,
γ2σ1

σ2γ1
n−γ2 ,−γ1,

[
1 +

γ2

σ2

(
µ1 − µ2 −

σ1

γ1

)]
n−γ2 ,−

1
γ2

)
, (3.17)

provided that µ1 −
σ1
γ1
≤ µ2 −

σ2
γ2

. When µ1 −
σ1
γ1
≥ µ2 −

σ2
γ2

:

P(X1 < Y, · · · , Xn < Y) = 1 − H
(
1,
γ1σ2

σ1γ2
n−γ1 ,−γ2,

[
1 +

γ1

σ1

(
µ2 − µ1 −

σ2

γ2

)]
n−γ1 ,−

1
γ1

)
. (3.18)

• When γ1 = γ2 = 0:

P(X1 < Y, · · · , Xn < Y) = exp
{
µ1

σ1

}
H

(
exp

{
µ1

σ1

}
, exp

{
µ2

σ2

}
n,
σ1

σ2
, 0, 1

)
. (3.19)
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Remark 3.8. In a broader k-out-of-n multicomponent reliability context, consider independent RVs
Y, X1, · · · , Xk with Y ∼ GEV(µ1, σ1, γ1) and X j ∼ GEV(µ2, σ2, γ2), for j = 1, · · · , k (X′js are i.i.d.). The
reliability for this kind of model is given by

Rs,k = P(at least s out of (X1, · · · , Xk) exceed Y)

=

k∑
j=s

(
k
j

) ∫ ∞

−∞

(1 −G(u; µ2, σ2, γ2)) j (G(u; µ2, σ2, γ2))k− j g(u; µ1, σ1, γ1)du.

Using a binomial expansion, we obtain

Rs,k =

k∑
j=s

j∑
r=0

(
k
j

) (
j
r

)
(−1) j−r

∫ ∞

−∞

(G(u; µ2, σ2, γ2))k−r g(u; µ1, σ1, γ1)du. (3.20)

Note that the integral terms in (3.20) are particular cases of (3.14) provided that n = k − r. Therefore,

Rs,k =

k∑
j=s

j∑
r=0

(
k
j

) (
j
r

)
(−1) j−rIk−r.

4. Estimation

This section deals with parameter estimation for R = P(X < Y) given two independent GEV RVs.
The literature presents some maximum likelihood estimators for R considering explicit forms of R
obtained by strong parameter restrictions on extreme value distributions (such as [27, 29, 30]). Those
approaches require the estimation of the parameters to be done jointly in the two samples. In our case,
we release any requirements about having the same parameters between different samples, since we
deal with expressions of R in terms of functions H.

Consider the PDF g(·; µ, σ, γ) defined in (2.7). Take X = (X1, · · · , Xn) as a sample of n observations.
The likelihood function for the GEV(·; µ, σ, γ) is given by:

L(µ, σ, γ; X) =

n∏
i=1

g(Xi; µ, σ, γ)1[1+γ(Xi−µ)/σ>0], (4.1)

where 1A denotes the indicator function on the set A. Note that
∏n

i=1 1[1+γ(Xi−µ)/σ>0] > 0 if and only if
xi ∈ supp g(·; µ, σ, γ) for all i = 1, · · · , n. Here, supp g denotes the support of the function g. Then, if
γ , 0, we are not able to obtain the MLE explicitly, so an additional numeric procedure is required in
the likelihood maximization (see [6] for a more detailed discussion).

Remark 4.1. Set X = (X1, · · · , Xn), a random sample of GEV(µ2, σ2, γ2), and Y = (Y1, · · · ,Ym), a
random sample of GEV(µ1, σ1, γ1), with γ j > 0, j = 1, 2 and µ1 − σ1/γ1 ≥ µ2 − σ2/γ2 (or γ j < 0,
j = 1, 2 and µ1 − σ1/γ1 ≤ µ2 − σ2/γ2). Let µ̂i, σ̂i, γ̂i (i = 1, 2) be the estimates of µi, σi, γi. We are able
to estimate R by the invariance property of MLE, as follows:

R̂ = H

(
1,
γ̂2σ̂1

σ̂2γ̂1
,−γ̂1, 1 +

γ̂2

σ̂2

(
µ̂1 − µ̂2 −

σ̂1

γ̂1

)
,−

1
γ̂2

)
. (4.2)
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Alternatively, whenever γ j > 0, j = 1, 2 and µ1 − σ1/γ1 ≤ µ2 − σ2/γ2 (or γ j < 0, j = 1, 2 and
µ1 − σ1/γ1 ≥ µ2 − σ2/γ2), the same invariance property can be applied, leading to:

R̂ = 1 − H
(
1,
γ̂1σ̂2

σ̂1γ̂2
,−γ̂2, 1 +

γ̂1

σ̂1

(
µ̂2 − µ̂1 −

σ̂2

γ̂2

)
,−

1
γ̂1

)
. (4.3)

This is due to the Theorems 3.1 and 3.4 that describe R in terms of the function H (which is an
integral, hence a continuous and measurable function).

Whenever a single set of realizations of the random variables involved is available, the MLE
approach above is of utmost importance. This is the case, for example, of asset selection, when a
single time series of observed returns is available for each asset.

On the other hand, to illustrate the suitability of the analytical closed-form expressions hereby
derived, a direct simulation approach can be carried out. In such case, several samples of size n can be
drawn from each random variable, which are then used to estimate the empirical value of R and can be
repeated several times. Both approaches will be explored in the next section.

5. Application

5.1. Simulation study

To evaluate the correctness of the closed-form expression for R given in Theorem 3.1, we generate
N Monte-Carlo samples, each of which is size n, of the random variables GEV(µ2, σ2, γ2) and
GEV(µ1, σ1, γ1). In these cases, the values of µ2, σ2, γ2, µ1, σ1, γ1 are pre-specified.

The GEV distribution with negative shape parameter is treated in Tables 2 and 3 where we analyze
the estimates R̂, bias and root mean squared error (RMSE). Table 4 deals with positive shape parameter.

For the simulation, for each line in the Tables 2–4, the following procedure was carried out:

(1) for each Monte-Carlo sample, the estimate R̂ is computed empirically, simply as n−1 ∑
i I(xi < yi),

where I(.) is an indicator function, which is 1 for true arguments and 0 otherwise;

(2) R̂MC is evaluated by taking the sample mean of the Monte-Carlo samples R̂;

(3) the bias is computed as the difference between the value obtained by Theorem 3.1 and R̂MC. The
same follows for the RMSE, which also considers the true value as the analytically obtained one.

As expected, Tables 2 and 3 illustrate that the analytical results obtained match the empirical ones.
This is a clear evidence of the correctness of the new expressions hereby derived. Besides, it is clear
that increasing the sample size n leads to more precise estimations of R, indicating reduced bias and
greater consistency. In Table 4 we observe the same good behavior of the estimator characterized by
low bias and RMSE.
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Table 2. Negative-shape mean, bias and RMSE of R̂MC (N = 100 and n = 100).

µ2 σ2 γ2 µ1 σ1 γ1 R R̂MC Bias RMSE
2.0 1.5 -1.0 0.0 0.5 -0.3 0.1147 0.1151 -0.0004 0.0330
0.0 1.5 -1.0 0.0 0.5 -0.3 0.4350 0.4280 0.0070 0.0502
0.4 1.5 -1.0 0.5 0.5 -0.3 0.4650 0.4591 0.0059 0.0525
2.0 1.0 -1.0 0.0 0.7 -0.3 0.0798 0.0796 0.0002 0.0241
0.0 1.0 -1.0 0.0 0.7 -0.3 0.5298 0.5277 0.0021 0.0466
0.4 1.0 -1.0 0.5 0.7 -0.3 0.5686 0.5669 0.0017 0.0492
2.0 1.5 -1.0 0.0 0.9 -0.3 0.1414 0.1387 0.0027 0.0389
0.0 1.5 -1.0 0.0 0.9 -0.3 0.5092 0.5129 -0.0037 0.0462
0.4 1.5 -1.0 0.5 0.9 -0.3 0.5371 0.5362 0.0009 0.0461
2.0 1.5 -1.0 0.0 0.5 -1.0 0.1015 0.1025 -0.0010 0.0313
0.0 1.5 -1.0 0.0 0.5 -1.0 0.3851 0.3873 -0.0022 0.0463
0.4 1.5 -1.0 0.5 0.5 -1.0 0.4116 0.4159 -0.0043 0.0511
2.0 1.0 -1.0 0.0 0.7 -1.0 0.0590 0.0573 0.0017 0.0270
0.0 1.0 -1.0 0.0 0.7 -1.0 0.4358 0.4275 0.0083 0.0530
0.4 1.0 -1.0 0.5 0.7 -1.0 0.4816 0.4807 0.0009 0.0474
2.0 1.5 -1.0 0.0 0.9 -1.0 0.1104 0.1120 -0.0016 0.0277
0.0 1.5 -1.0 0.0 0.9 -1.0 0.4190 0.4279 -0.0089 0.0474
0.4 1.5 -1.0 0.5 0.9 -1.0 0.4478 0.4500 -0.0022 0.0506
2.0 1.5 -1.5 0.0 0.5 -1.5 0.1237 0.1234 0.0003 0.0302
0.0 1.5 -1.5 0.0 0.5 -1.5 0.3715 0.3701 0.0014 0.0488
0.4 1.5 -1.5 0.5 0.5 -1.5 0.3989 0.4034 -0.0045 0.0472
2.0 1.0 -1.5 0.0 0.7 -1.5 0.0822 0.0797 0.0025 0.0276
0.0 1.0 -1.5 0.0 0.7 -1.5 0.4160 0.4134 0.0026 0.0403
0.4 1.0 -1.5 0.5 0.7 -1.5 0.4739 0.4794 -0.0055 0.0548
2.0 1.5 -1.5 0.0 0.9 -1.5 0.1271 0.1303 -0.0032 0.0325
0.0 1.5 -1.5 0.0 0.9 -1.5 0.3999 0.4068 -0.0069 0.0457
0.4 1.5 -1.5 0.5 0.9 -1.5 0.4329 0.4344 -0.0015 0.0452
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Table 3. Negative-shape mean, bias and RMSE of R̂MC (N = 1000 and n = 1000).

µ2 σ2 γ2 µ1 σ1 γ1 R R̂MC Bias RMSE
2.0 1.5 -1.0 0.0 0.5 -0.3 0.1147 0.1147 -0.0000 0.0106
0.0 1.5 -1.0 0.0 0.5 -0.3 0.4350 0.4355 -0.0005 0.0151
0.4 1.5 -1.0 0.5 0.5 -0.3 0.4650 0.4645 0.0005 0.0156
2.0 1.0 -1.0 0.0 0.7 -0.3 0.0798 0.0798 0.0001 0.0084
0.0 1.0 -1.0 0.0 0.7 -0.3 0.5298 0.5299 -0.0001 0.0159
0.4 1.0 -1.0 0.5 0.7 -0.3 0.5686 0.5693 -0.0007 0.0151
2.0 1.5 -1.0 0.0 0.9 -0.3 0.1414 0.1414 -0.0000 0.0112
0.0 1.5 -1.0 0.0 0.9 -0.3 0.5092 0.5096 -0.0004 0.0162
0.4 1.5 -1.0 0.5 0.9 -0.3 0.5371 0.5374 -0.0003 0.0158
2.0 1.5 -1.0 0.0 0.5 -1.0 0.1015 0.1018 -0.0003 0.0098
0.0 1.5 -1.0 0.0 0.5 -1.0 0.3851 0.3852 -0.0001 0.0152
0.4 1.5 -1.0 0.5 0.5 -1.0 0.4116 0.4119 -0.0003 0.0152
2.0 1.0 -1.0 0.0 0.7 -1.0 0.0590 0.0587 0.0003 0.0074
0.0 1.0 -1.0 0.0 0.7 -1.0 0.4358 0.4366 -0.0008 0.0154
0.4 1.0 -1.0 0.5 0.7 -1.0 0.4816 0.4814 0.0002 0.0150
2.0 1.5 -1.0 0.0 0.9 -1.0 0.1104 0.1106 -0.0002 0.0101
0.0 1.5 -1.0 0.0 0.9 -1.0 0.4190 0.4196 -0.0006 0.0157
0.4 1.5 -1.0 0.5 0.9 -1.0 0.4478 0.4471 0.0008 0.0150
2.0 1.5 -1.5 0.0 0.5 -1.5 0.1237 0.1243 -0.0006 0.0103
0.0 1.5 -1.5 0.0 0.5 -1.5 0.3715 0.3722 -0.0007 0.0158
0.4 1.5 -1.5 0.5 0.5 -1.5 0.3989 0.3974 0.0014 0.0154
2.0 1.0 -1.5 0.0 0.7 -1.5 0.0822 0.0822 0.0000 0.0086
0.0 1.0 -1.5 0.0 0.7 -1.5 0.4160 0.4166 -0.0005 0.0160
0.4 1.0 -1.5 0.5 0.7 -1.5 0.4739 0.4736 0.0004 0.0162
2.0 1.5 -1.5 0.0 0.9 -1.5 0.1271 0.1265 0.0007 0.0105
0.0 1.5 -1.5 0.0 0.9 -1.5 0.3999 0.3998 0.0001 0.0155
0.4 1.5 -1.5 0.5 0.9 -1.5 0.4329 0.4323 0.0006 0.0151
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Table 4. Positive-shape mean, bias and RMSE of R̂MC (N = 1000 and n = 100).

µ2 σ2 γ2 µ1 σ1 γ1 R R̂MC Bias RMSE
2.0 1.5 1.0 0.0 0.5 0.3 0.0617 0.0624 -0.0007 0.0244
0.0 1.5 1.0 0.0 0.5 0.3 0.4288 0.4306 -0.0018 0.0497
0.4 1.5 1.0 0.5 0.5 0.3 0.4491 0.4478 0.0012 0.0514
2.0 1.0 1.0 0.0 0.7 0.3 0.0906 0.0891 0.0015 0.0284
0.0 1.0 1.0 0.0 0.7 0.3 0.4443 0.4463 -0.0020 0.0507
0.4 1.0 1.0 0.5 0.7 0.3 0.4717 0.4727 -0.0010 0.0499
2.0 1.5 1.0 0.0 0.9 0.3 0.1299 0.1300 -0.0001 0.0332
0.0 1.5 1.0 0.0 0.9 0.3 0.4419 0.4423 -0.0004 0.0509
0.4 1.5 1.0 0.5 0.9 0.3 0.4611 0.4602 0.0008 0.0497
2.0 1.5 1.0 0.0 0.5 1.0 0.1469 0.1474 -0.0004 0.0359
0.0 1.5 1.0 0.0 0.5 1.0 0.4764 0.4774 -0.0010 0.0486
0.4 1.5 1.0 0.5 0.5 1.0 0.4947 0.4940 0.0007 0.0504
2.0 1.0 1.0 0.0 0.7 1.0 0.1846 0.1847 -0.0001 0.0382
0.0 1.0 1.0 0.0 0.7 1.0 0.4980 0.4985 -0.0006 0.0520
0.4 1.0 1.0 0.5 0.7 1.0 0.5240 0.5235 0.0004 0.0480
2.0 1.5 1.0 0.0 0.9 1.0 0.2144 0.2164 -0.0019 0.0431
0.0 1.5 1.0 0.0 0.9 1.0 0.4951 0.4925 0.0026 0.0497
0.4 1.5 1.0 0.5 0.9 1.0 0.5128 0.5124 0.0004 0.0480
2.0 1.5 1.5 0.0 0.5 1.5 0.1868 0.1883 -0.0015 0.0393
0.0 1.5 1.5 0.0 0.5 1.5 0.4906 0.4894 0.0013 0.0523
0.4 1.5 1.5 0.5 0.5 1.5 0.5076 0.5072 0.0004 0.0495
2.0 1.0 1.5 0.0 0.7 1.5 0.2237 0.2243 -0.0006 0.0414
0.0 1.0 1.5 0.0 0.7 1.5 0.5056 0.5052 0.0004 0.0501
0.4 1.0 1.5 0.5 0.7 1.5 0.5318 0.5310 0.0008 0.0496
2.0 1.5 1.5 0.0 0.9 1.5 0.2461 0.2451 0.0011 0.0444
0.0 1.5 1.5 0.0 0.9 1.5 0.5046 0.5042 0.0004 0.0491
0.4 1.5 1.5 0.5 0.9 1.5 0.5220 0.5226 -0.0006 0.0490

5.2. Brazil stock market

In order to evaluate the proposed framework, we modeled stock prices log-returns as GEV and
compare them in a reliability sense. For this, we assume that the returns are independent. To meet
independence requirements, we take stock log-returns that are not correlated and correlations are
measured using Pearson, Kendal and Spearman methods.

Denote X1, X2, X3 and X4 the stock price log-returns of BBAS3, ITUB4, VALE3 and VIIA3,
respectively. The data sets are retrieved directly through the software R [34] by the command

quantmod::getSymbols("BBAS3.SA", src = "yahoo", auto.assign = FALSE,

from = ’2022-01-01’, to = ’2023-04-30’, return.class = ’xts’).

The data sets have information in Brazilian currency (R$, BRL).
Summary statistics for the data sets X1, X2, X3 and X4 are presented in Table 5. A boxplot is
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presented in Figure 2 showing the symmetry around zero of the log-returns and that X4 has more
dispersion than the others.

Table 5. Summary statistics for the stock price log-returns X1, X2, X3 and X4.

RV Data Set min 1st Qu. Median Mean 3rd Qu. Max n
X1 BBAS3 -0.1057 -0.0097 0.0019 0.0012 0.0136 0.0736 330
X2 ITUB4 -0.0492 -0.0105 0.0004 0.0006 0.0109 0.0794 330
X3 VALE3 -0.0689 -0.0140 0.0001 -0.0002 0.0128 0.0989 330
X4 VIIA3 -0.1075 -0.0344 -0.006 -0.0030 0.0231 0.1504 330

Figure 2. Boxplot for the stock price log-returns of the data sets BBAS3, ITUB4, VALE3
and VIIA3.

Maximum likelihood (ML) estimates and Kolmogorov-Smirnov (KS) p-values are given in Table 6.
Figure 3 shows histograms and the fit of the GEV model to X1, X2, X3 and X4. For each data set, the
empirical CDF (ECDF) is compared to the theoretical model in Figure 4.

Although the p-value of the Kolmogorov-Smirnov test is small for the BBAS3 (X1), the graphical
analysis does not invalidate the good fit of the distribution to the data.

Table 6. ML estimates, log-likelihood (llmax) and KS p-values for the GEV models.

RV Data set µ̂ σ̂ γ̂ −llmax KS p-value
X1 BBAS3 -0.0063 0.0219 -0.2535 -803.9168 0.0147
X2 ITUB4 -0.0064 0.0165 -0.1545 -870.9392 0.4299
X3 VALE3 -0.0095 0.0222 -0.1631 -774.0895 0.2331
X4 VIIA3 -0.0217 0.0396 -0.1170 -567.6979 0.6996
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Figure 3. Histograms and fitted GEV densities for the stock prices log-returns.

Figure 4. Fitted ECDF for GEV models.

Aiming at estimating probabilities of the type R = P(X < Y) via Theorems 3.1–3.4, we need X and
Y to be independent RVs. In this sense, we analyzed the dependency structures of X1, · · · , X4 using
the Pearson, Kendal and Spearman correlation matrices, and the results are presented in the Appendix.
The pairs chosen to be compared are X3 − X2, X3 − X4 and X3 − X1.

Reliability measures of the type R = P(X < Y) appear in a decision process of an investor. In
summary, when X and Y represent profit RVs and R < 1/2, it is advisable that the investor chooses
the variable X. If R > 1/2, the opposite occurs. The case R = 1/2 is inconclusive. Thus, knowing
how to evaluate R accurately is important to support the decision process. In this sense, Table 7
presents the estimates of P(X3 < X1), P(X3 < X2) and P(X3 < X4) and the 95% bootstrap confidence
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intervals (CI). For all subsequent Tables, R̂ is the estimate obtained by first fitting the dataset to a GEV
distribution and using the results from Remark 4.1 (invariance property of MLE of the parameters
and the analytical expression obtained for R). Also, R̂NP is a non-parametric estimation of R, which
considers a similar approach as in the simulation study (uses an indicator function to compare samples
from the two distributions). Finally, R̂Boot is the mean value of the bootstrap estimation of R using the
non-parametric approach and the CI reported is for such mean.

Table 7. Stress-strength probability estimates and bootstrap CI.

R = P(X < Y) R̂ R̂NP R̂Boot 95% CI
P(X3 < X1) 0.5283 0.5242 0.5277 (0.4883; 0.5676)
P(X3 < X2) 0.5174 0.5242 0.5181 (0.4766; 0.5569)
P(X3 < X4) 0.4506 0.4364 0.4500 (0.4055; 0.4944)

The estimates of R indicate that, within the analyzed time period, VALE3 would be preferred over
BBAS3 and ITUB4, while VIIA3 would be preferred over VALE3. On the other hand, the bootstrap
CI estimates indicate that only the case P(X3 < X4) was conclusive since 0.5 does not belong to the
estimated confidence interval.

It is important to compare different distributions as candidate models for the log-returns modelling.
Considering previous results in the literature [11], we compared the performance of the GEV and
generalized logistic distributions as models for daily returns, as presented in Table 8.

Table 8. Log-likelihood comparison between different candidate random variables.

RV Data set GEV Generalized Logistic
X1 BBAS3 -803.92 - 833.43
X2 ITUB4 -870.94 - 882.01
X3 VALE3 -774.09 - 787.81
X4 VIIA3 -567.70 - 569.60

It is possible to see that both GEV and generalized logistic provided quite similar modelling
capabilities (about the same log-likelihood values). Since the two distributions considered have three
parameters, there is no need to consider information criteria.

5.2.1. Considering weekly maximum log-returns

Instead of considering the log-returns for the closing prices, as in the previous analyses, one may
study how the weekly maximums (or minimums) behave. This has a direct economic interpretation: a
proxy for greater profits (or greater losses, i.e., shortfalls and values-at-risk) and has been explored in
the literature [11, 12, 18].

Following previous studies [12], it is of interest to explore the modelling scenario where the
maximum returns are considered GEV random variables. Table 9 show the GEV ML estimates for
such case.
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Table 9. ML estimates, log-likelihood (llmax) and KS p-values for weekly maximum log-
returns and their GEV modelling.

RV Data set µ̂ σ̂ γ̂ −llmax KS p-value
X1 BBAS3 -0.0128 0.0393 -0.1157 -116.3016 0.8076
X2 ITUB4 -0.091 0.0397 -0.4319 -126.5530 0.8292
X3 VALE3 -0.0197 0.0426 -0.2003 -114.0183 0.9365
X4 VIIA3 -0.0464 0.0750 -0.1339 -72.9854 0.5378

Table 9 indicates that the GEV random variable is adequate for every case considered, which is
expected as the EVT predicts such convergence. Now that the parameters have been obtained, Table 10
presents the reliability calculations.

Table 10. Stress-strength probability estimates and bootstrap CI for weekly maximums.

R = P(X < Y) R̂ R̂NP R̂Boot 95% CI
P(X3 < X1) 0.5453 0.5522 0.5413 (0.4483; 0.6334)
P(X3 < X2) 0.5409 0.5522 0.5483 (0.4421; 0.6358)
P(X3 < X4) 0.4364 0.4328 0.4350 (0.3379; 0.5350)

Since R = 0.5 is within the confidence intervals, the metric becomes inconclusive. It is possible to
notice, on the other hand, that if R̂ is considered as a metric by itself, it would precisely reflect the high
volatility of VIIA3, which suffered severe instability and losses during the time window analyzed.

Besides the direct application to financial assets selection, some engineering applications can also
benefit from the new relations hereby defined. One application is illustrated in the next subsection.

5.3. Carbon fibers

Stress-strength reliability can be also applied to the modelling and comparison of carbon fibers of
lengths 10 and 20 mm. The data represent the strength data measured in GPa (gigapascal), for single
carbon fibers tested under tension. The data are frequently used in the literature and are also presented
below (e.g., [28]).

Carbon fibers of length 20 mm:

X = (1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.977, 2.006, 2.021,
2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301,
2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570,
2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821,
2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585).

Carbon fibers of length 10 mm:

Y = (1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522,
2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928,
2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272,
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3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871,
3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020).

Table 11 and Figure 5 show the summary statistics of X and Y in which it is possible to observe that
Y (carbon fibers of length 10 mm) tend to have greater strength values than X (carbon fibers of length
20 mm).

Table 11. Summary statistics for the carbon fibers of length 20 mm (X) and 10 mm (Y).

RV Data set Min. 1st Qu. Median Mean 3rd Qu. Max. n
X Carbon fibers of 20 mm 1.312 2.098 2.478 2.451 2.773 3.585 69
Y Carbon fibers of 10 mm 1.901 2.554 2.996 3.059 3.421 5.020 63

Figure 5. Boxplot for the carbon fibers of length 20 mm (X) and 10 mm (Y).

ML estimates and KS p-values for the GEV model are presented in Table 12 and the good fit can be
observed in Figure 6.

Table 12. ML estimates and Kolmogorov-Smirnov (KS) p-values for the GEV model.

Data set µ̂ σ̂ γ̂ KS p-value
X 2.2781 0.4956 -0.2851 0.9978
Y 2.7904 0.5245 -0.0747 0.8216
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Figure 6. Histogram, ECDF and fitted GEV model for carbon fibers.

The estimates of stress-strength reliability and bootstrap 95% CI are R̂ = 0.774 and (0.699, 0.851),
respectively. It is easy to conclude that since P(X < Y) > 1/2 and 0.5 is not within the CI, that X < Y
statistically, i.e., the fibers with length of 10 mm have statistically greater strength values than the ones
of length of 20 mm.

6. Conclusions

Despite its significant limitations, Markowitz’s modern portfolio theory is still relied upon by many
practitioners because of its user-friendly simplicity. This way, studying alternative approaches that are
also of straightforward comprehension is of utmost importance.

In this paper, we studied the stress-strength reliability R = P(X < Y) when both X and Y follow
three-parameter GEV distributions. In summary, when X and Y represent return RVs and R < 1/2,
it is advisable that the investor chooses the variable X. If R > 1/2, the opposite occurs. The case
R = 1/2 is inconclusive. Thus, exact expressions for R have been obtained in terms of the extreme-
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value H-function with minimal parameter restrictions. With additional restrictions, it was shown that R
can be calculated in terms of H-functions and even in terms of standard functions (such as exponential
functions).

Monte-Carlo simulations attested to the performance of the analytical closed-form expressions
hereby derived. By applying our methodology to real-world financial data, we could orient a stock
selection procedure by calculating P(X < Y) when both X and Y represent stock returns. Besides, an
engineering application was also described, where carbon fibers tested under tension were modelled in
a stress-strength reliability sense.

Appendix

In this appendix, we present the correlation matrices of the data sets (log-returns) modeled in
Section 5. Thus, Tables 13–15 give the correlations of Pearson, Spearman and Kendal, respectively.

Table 13. Pearson correlation matrix.

X1 X2 X3 X4

X1 1.00 0.61 0.10 0.29
X2 1.00 0.15 0.31
X3 1.00 0.03
X4 1.00

Table 14. Spearman rank correlation matrix.

X1 X2 X3 X4

X1 1.00 0.63 0.15 0.31
X2 1.00 0.22 0.34
X3 1.00 0.06
X4 1.00

Table 15. Kendall rank correlation matrix.

X1 X2 X3 X4

X1 1.00 0.45 0.10 0.21
X2 1.00 0.15 0.24
X3 1.00 0.04
X4 1.00
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