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Abstract: Estimating the volume of food plays an important role in diet monitoring. However, it is 

difficult to perform this estimation automatically and accurately. A new method based on the 

multi-layer superpixel technique is proposed in this paper to avoid tedious human-computer 

interaction and improve estimation accuracy. Our method includes the following steps: 1) obtain a 

pair of food images along with the depth information using a stereo camera; 2) reconstruct the plate 

plane from the disparity map; 3) warp the input image and the disparity map to form a new direction 

of view parallel to the plate plane; 4) cut the warped image into a series of slices according to the 

depth information and estimate the occluded part of the food; and 5) rescale superpixels for each 

slice and estimate the food volume by accumulating all available slices in the segmented food region. 

Through a combination of image data and disparity map, the influences of noise and visual error in 

existing interactive food volume estimation methods are reduced, and the estimation accuracy is 

improved. Our experiments show that our method is effective, accurate and convenient, providing a 

new tool for promoting a balanced diet and maintaining health. 

Keywords: food volume estimation; multi-layer superpixel; stereo vision; disparity map  

 

1. Introduction 

The World Health Organization (WTO) has classified obesity as a disease. In 2016, more than 
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1.9 billion adults (39%) in the world aged 18 and above were overweight (BMI > 25), among which 

more than 650 million were obese. [1]. Being overweight or obese can have serious adverse health 

effects. Excessive adipose tissue accumulation can lead to many serious chronic diseases, such as 

cardiovascular disease (mainly heart disease and stroke), type 2 diabetes, musculoskeletal disorders 

and some forms of cancer (e.g., endometrial cancer, breast cancer and colon cancer). It has been 

found that obesity may lead to disability and even premature death [2,3]. 

The key to prevent overweight or obesity is to control the daily calorie intake and keep it in 

balance with the daily calorie expenditure. Therefore, self-monitoring of diet is of great importance 

in reducing body fat and preventing obesity. 

A difficult part of diet monitoring is estimating the volume of food. With the recent advances in 

computer vision and artificial intelligence, a variety of image-based dietary assessment methods have 

been proposed [4–9], which can be further divided into model based [10–13], 3D reconstruction 

based [14–18] and learning based [19–20] methods. Despite the effectiveness of these methods, they 

still face many problems. Model-based methods need manual interaction; noise, visual errors, and 

other factors negatively impact the accuracy of 3D reconstruction based methods; and learning based 

methods are plagued by lack of training data. Currently, it is still difficult to estimate the volume of 

food automatically and accurately. However, food size (or portion size) is directly related to the 

calorie/nutrition intake. Thus, the significance of food volume estimation is self-evident. 

In this paper, we propose a new method for estimating food volume. The food and plate are 

separated based on food pictures with depth information obtained by a stereo camera. The view of the 

camera is rotated virtually so that it is parallel to the plate plane. Then, the food coordinates are 

mapped and transformed accordingly. Different methods are adopted to volumetrically slice food 

according to its thickness and other characteristics. The slices are accumulated, and the total volume is 

obtained. The combination of image and depth data greatly reduces the influence of noise and visual 

error which have been significant problems in the conventional food volume estimation method. Our 

method improves food estimation accuracy, helps users estimate the nutrition content, and improves 

self-monitoring of diet in daily life. 

2. Related works 

2.1. Model based method 

For food volume estimation from images, the conventional approach was to determine a food 

template based on feature points, and the volume is estimated from the selected template using 

certain algorithms [4–7]. For example, Zhu et al. [10] designed a model-based method to nest food 

with a specific geometric model, calculated parameter values of the matching geometric model with 

a checkerboard as a scale reference, and inferred the volume of food according to the volume of the 

geometric model. This method requires the food to have certain geometric characteristics. Thus the 

accuracy of this method is higher for food that conforms well to the model. However, due to the large 

varieties of food and cooking methods, it is difficult to prepare a set of models for general forms of 

food. Therefore, this method is not universal in use, but instead it is suitable for food with certain 

geometric shapes. 

Chen et al. [12] improved the selection of reference objects. They proposed using the plate as a 

reference to calculate the size and position of the food relative to the camera, separated the food from 
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its container, and matched the food shape with a library of templates stored in a database. All these 

procedures were performed in a semiautomatic way. Then, fine adjustments were conducted to adapt 

to irregular food shapes. This method greatly improves the accuracy of food volume estimation, but 

the radius of the plate as a scale reference needs a manual measurement. If the plates utilized in a 

dietary study are not standardized, this measurement must be performed for every meal, which 

increases the complexity of operation. 

2.2. 3D reconstruction based method 

Another method is to estimate food volume from multiple images in different views [4,14]. The 

mainstream idea is to calculate the parallax diagram based on pixel matching of binocular vision to 

carry out 3D reconstruction and estimate food volume. Most 3D reconstruction processes require an 

external calibration first. However, external calibration may lead to low resolution because, in the 

reconstructed model, each 3D point needs to correspond to a pair of points in the input images, 

which makes the 3D data sparse. To solve this problem, density reconstruction is carried out, in 

which all available pixels are used to build a 3D model. Among all these methods, stereo matching is 

commonly used. This method simplifies the one-to-one pixel matching between images by using the 

epipolar rectification.  

Currently, there are two popular types of 3D reconstruction schemes. One is to build a 3D point 

cloud and then estimate the food volume from the cloud [15–17]. For example, Puri et al. proposed 

constructing the 3D point cloud of food and plates by stereo matching, obtaining food surface 

information through the point cloud, and extracting the food depth information using the RANSAC 

algorithm [15]. Finally, the food volume is estimated from the depth data. The other scheme obtains 

shape information and estimates food volume from multiple images in different perspectives [18]. 

For example, three different images were used with a checkerboard as a reference to obtain the scale 

information. Then, the food volume is estimated from the three perspective images. 

However, these 3D reconstruction methods have four major disadvantages. First, during the 3D 

reconstruction process, considerable noise is present, and this noise significantly impacts the 

estimation of food volume. Second, in the absence of prior knowledge, food is difficult to separate 

from the image background. In addition, contour completion is required in the reconstruction process. 

Although this procedure works well for food with regular geometric shapes, the estimation error 

increases as the irregularity of food shape increases. Finally, the selection of scale reference is 

affected by many factors, and errors are produced when the operator uses improper scale references. 

2.3. Learning based method 

Due to the rapid development of the AI technology, food volume estimation methods based on 

deep learning have been proposed recently [19,20]. Convolutional Neural Networks (CNN) has been 

used in food recognition and volume estimation. An advantage of using deep learning is that the 

scale of the image can be learned from the global cues of the scene without the needs of camera 

calibration and scale reference. Although these methods have achieved reasonable results, it is still 

challenging to use deep learning for food volume estimation, mainly due to the insufficient 3D shape 

information from a single image. In addition, the accuracy of these methods relies heavily on the 

quality and availability of training data, which are difficult to obtain. 
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3. Materials and methods 

3.1. Overview 

We present a food volume estimation method based on stereo vision, multi-layer superpixel 

segmentation, and disparity maps. The estimation process is highlighted in Figure 1. 

 

Figure 1. Algorithm flowchart. 

3.2. Segmentation 

First, the pair of stereo vision images is segmented into superpixels using the Simple Linear 

Iterative Cluster (SLIC) algorithm [21]. The SLIC algorithm performs local clustering of pixels 

based on the k-means technique in a 5-D space (l, a, b, x, y), where (l, a, b) represents the 

lightness scale, hue, and saturation in the CIELAB colour space, and (x, y) represents the 

coordinates of the pixel.  

Each pixel 𝑃𝑖  (𝑙𝑖 , 𝑎𝑖 , 𝑏𝑖 , 𝑥𝑖 , 𝑦 𝑖)  is clustered to the nearest clustering centre 

𝐶𝑘  (𝑙𝑘 , 𝑎𝑘, 𝑏𝑘, 𝑥𝑘 , 𝑦𝑘 ) by computing the distance measure 𝐷𝑘 from 𝑃𝑖 to 𝐶𝑘: 

𝐷𝑘 = 𝑑𝑙𝑎𝑏 +
𝑚

𝑆
𝑑𝑥𝑦                          (1) 

𝑑𝑙𝑎𝑏 = √(𝑙𝑘 − 𝑙𝑖)
2 + (𝑎𝑘 − 𝑎𝑖)

2 + (𝑏𝑘 − 𝑏𝑖)
2      (2) 

𝑑𝑥𝑦 = √(𝑥𝑘 − 𝑥𝑖)
2 + (𝑦𝑘 − 𝑦𝑖)

2                    (3) 

where m is the superpixel compactness control parameter and S is the superpixel grid interval. 

Then, the Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is 

used to cluster the superpixels into several regions and separate the plate and food. The DBSCAN 

algorithm performs clustering relying on a density-based notation of clusters. It is designed to 

discover clusters of arbitrary shapes [22]. 

3.3. Reconstructing plate plane 

By matching points in stereo images, a disparity map is obtained which contains depth information. 

Next, the Maximum Likelihood Estimation Sample Consensus (MLESAC) algorithm [23] is used to 
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reconstruct the plate plane and calculate the camera orientation relative to the plate plane. The purpose 

of this calculation is to reconstruct an image within which the angle of view becomes parallel to the 

plate plane.  

In order to determine the parameters of the plane (defined by Ax+By+Cz+D = 0, where 

A,B,C,D are parameters) in which the plate resides, an error cost, given by E, is minimized: 

𝐸 = ∑ 𝑝(𝑒𝑖
2)𝑖                           (4) 

where 𝑒𝑖 is the distance from each 3D point in plate region to the plate plane. The error is modelled 

by a mix of Gaussian and uniform distributions: 

 𝑃𝑟(𝑒
2) = (𝛾

1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑒2

2𝜎2
) + (1 − 𝛾)

1

𝜗
)                (5) 

where 0 < 𝛾 <= 1 is the mixing factor, 𝜗 is the size of the search window, and 𝜎 is the standard 

deviation of the Gaussian distribution. Maximizing 𝑃𝑟(𝑒
2) is equivalent to minimizing the negative 

log likelihood: 

 −L = −log (γ
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑒2

2𝜎2
) + (1 − 𝛾)

1

𝜗
)                 (6) 

and 

 𝑝(𝑒𝑖
2) = {−𝐿               𝑒

2 < 𝑇2 
𝑇2                𝑒2 ≥ 𝑇2 

                       (7) 

Equation (7) indicates that all points with  𝑒2 less than 𝑇2 are considered as the points within 

the plate plane, otherwise outside the plate plane. 

3.4. Image warping 

Taking the optical centre O as the origin of coordinates, the X, Y and Z directions are shown in 

Figure 2. Let the line of sight be the positive direction of the Z-axis. These establish the visual 

coordinate system. As shown in Figure 2, the original image I, and the responding disparity map 𝐼𝑑 

as well, are warped from the current view AOB to a new perspective view 𝐴΄𝑂𝐵΄ so that the new 

image 𝐼′ and the warped disparity map Id′ represent the image for which the line of sight is parallel 

to the plate plane F. 

 

Figure 2. Schematic diagram of image warping. 
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Suppose 𝑝(𝑢, 𝑣)𝑇 and 𝑝′(𝑢′, 𝑣′)𝑇 are the projections of space point P(𝑋, 𝑌, 𝑍)𝑇 on image I 

and 𝐼′. Let d and 𝑑’ be the disparity values of point p and 𝑝’ respectively. Based on the stereo 

vison principle, the depth z of space point P is inversely related to the stereo disparity value d of its 

projection point, given by: 

𝑧 =
𝑓 𝑇𝑥

𝑑
=

𝑡

𝑑
           (8) 

where t is the multiplication of focal length f and offset Tx of the stereo camera. Letting H be the 

camera projection matrix, we have: 

    (
𝑢
𝑣
1
) = H(

𝑥
𝑦
𝑧
1

) = (

ℎ11 ℎ12 ℎ13 ℎ14
ℎ21 ℎ22 ℎ23 ℎ24
ℎ31 ℎ32 ℎ33 ℎ34

)(

𝑥
𝑦
𝑧
1

)             

= (

ℎ11 ℎ12 ℎ14
ℎ21 ℎ22 ℎ24
ℎ31 ℎ32 ℎ34

)(
𝑥
𝑦
1
) + (

ℎ13
ℎ23
ℎ33

)
𝑡

𝑑
= 𝐆(

𝑥
𝑦
1
) + (

ℎ13
ℎ23
ℎ33

)
𝑡

𝑑
           (9) 

(
𝑥
𝑦
1
) = 𝐆−1

(

 
 
𝑢 − ℎ13

𝑡

𝑑

𝑣 − ℎ23
𝑡

𝑑

1 − ℎ33
𝑡

𝑑)

 
 

                       (10) 

(

𝑥′
𝑦′

𝑧′
1

) = (

1 0
0 cos 𝛼

0 0
sin 𝛼 0

 0 − sin 𝛼
 0 0

cos 𝛼 0
0 1

)(

𝑥
𝑦
𝑧
1

) = 𝐑𝑥(𝛼)(

𝑥
𝑦
𝑡
𝑑⁄

1

)           (11) 

(
𝑢′
𝑣′
1

) = (

ℎ11 ℎ12 ℎ13 ℎ14
ℎ21 ℎ22 ℎ23 ℎ24
ℎ31 ℎ32 ℎ33 ℎ34

)(

𝑥′
𝑦′

𝑧′
1

) = 𝐇𝐑𝑥(𝛼)(

𝑥
𝑦
𝑡
𝑑⁄

1

)          (12) 

𝑑′ =
𝑡

𝑧′
                              (13) 

The mapping formula can be obtained by substituting (10) into (12). 

Since the space plane corresponding to each pixel point in image I needs to be stretched and 

rotated, its projected area in transformed image I' may expand, resulting in non-pixel parts of the 

transformed image, shown as holes or gaps. Similarly, multiple pixels in image I may correspond 

to the same pixel point in image I' after mapping, resulting in a loss of image information. To avoid 

the loss in the forward warping process, we propose back projection procedure: 1) finding the 

corresponding point in the source image I for each pixel in the target image 𝐼’, and 2) obtaining the 

depth and colour values in 𝐼’. Like the case of forward warping, the back projection can be 

obtained by 
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(
𝑢
𝑣
1
) = 𝐇𝐑𝑥(−𝛼)

(

 

𝑥′
𝑦′
𝑡
𝑑′⁄

1 )

                       (14) 

(
𝑥′
𝑦′
1

) = 𝐆−1

(

 
 
𝑢′ − ℎ13

𝑡

𝑑′

𝑣′ − ℎ23
𝑡

𝑑′

1 − ℎ33
𝑡

𝑑′)

 
 

                      (15) 

In this formula, 𝑑′ is unknown, so forward warping should be performed first to obtain the 

disparity value 𝑑′ of each pixel on the target image: 

𝑑′ =
𝑡

𝑧′
=

𝑡
𝑡

𝑑
cos𝛼−𝑦 sin𝛼

=
𝑡

𝑡

𝑑
cos𝛼−(𝐆−1)2

𝑇

(

 
 
𝑢−ℎ13

𝑡

𝑑

𝑣−ℎ23
𝑡

𝑑

1−ℎ33
𝑡

𝑑)

 
 
sin𝛼

             (16) 

where (𝐆−1)2
𝑇 is the second row of matrix(𝐺−1)𝑇. The calculation in (16) looks complex. We 

propose a simplified one by replacing displacement value 𝑑′ with a function of 𝑑𝑓(distance to plate 

plane F). Define 

𝐏𝑟 = (

ℎ11 ℎ12 ℎ13 ℎ14
ℎ21
𝐴

ℎ22
𝐵

ℎ23
𝐶

ℎ24
𝐷

ℎ31 ℎ32 ℎ33 ℎ34

)                      (17) 

Let A, B, C and D be the parameters of the equation of plate plane F (given by 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 +

𝐷 = 0). We can obtain: 

(

𝑤𝑢
𝑤𝑣
𝑤𝑑𝑟
𝑤

) = (

ℎ11 ℎ12 ℎ13 ℎ14
ℎ21
𝐴

ℎ22
𝐵

ℎ23
𝐶

ℎ24
𝐷

ℎ31 ℎ32 ℎ33 ℎ34

)(

𝑥
𝑦
𝑧
1

) = 𝑃𝑟 (

𝑥
𝑦
𝑧
1

)          (18) 

Here,  

w 𝑑𝑟= Ax + By +Cz +D = 𝑑𝑓 √𝐴2 + 𝐵2 + 𝐶2         (19) 

where 𝑑𝑓 stands for the distance to plate plane F, as shown in Figure 3. 
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Figure 3. Schematic diagram of 𝑑𝑓 . 

From (19), we can obtain 

𝑑𝑟 = 𝑑𝑓 (√𝐴2 + 𝐵2 + 𝐶2)/w              (20) 

Similarly, (20) can be modified to obtain the projection formula of the target image: 

(

𝑤′𝑢′
𝑤′𝑣′
𝑤′𝑑′𝑟
𝑤′

)=𝐏𝑑 (

𝑥
𝑦
𝑧
1

)                          (21) 

According to (18) and (21), 

(

𝑤𝑢
𝑤𝑣
𝑤𝑑𝑟
𝑤

)=𝐏𝑟 (

𝑥
𝑦
𝑧
1

) = P𝑟𝐏𝑑
−1(

𝑤′𝑢′
𝑤′𝑣′
𝑤′𝑑′𝑟
𝑤′

) = 𝐓𝑟𝑑 (

𝑤′𝑢′
𝑤′𝑣′
𝑤′𝑑′𝑟
𝑤′

)           (22) 

(
𝑤𝑢
𝑤𝑣
𝑤
) = 𝐇𝑟𝑑 (

𝑤′𝑢′
𝑤′𝑣′
𝑤′

) + 𝑤′𝑑′𝑟𝑒𝑟𝑑                 (23) 

where 𝐻𝑟𝑑 is the matrix of 𝐓𝑟𝑑 without the third row and the third column, and 𝑒𝑟𝑑 is the third 

column of 𝐓𝑟𝑑 without the third row. Since, by (19), 𝑤′𝑑′𝑟= 𝑤𝑑 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷, we can 

obtain: 

𝑑′𝑟=
𝑤

𝑤′
𝑑                              (24) 

3.5. Food slicing 

According to the disparity information, the image is cut sequentially into a series of slices in the 

depth direction, as shown in Figure 4. 
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Figure 4. Slice diagram. 

In order to predict the shape of the occluded part of the food effectively, the food is classified 

into two types determined by a user-determined threshold δ: 1) thin food, such as pizza and green 

beans, in which the maximum height (the distance between the highest point of the food and the plate 

plane) is less than δ, and 2) thick food, such as oranges and hamburgers, in which the maximum 

height is at least δ. We use different completion schemes for these two food types. 

3.5.1. Thin food 

For thin food, few part is occluded. We assume that the depth (in Z direction) of the occluded 

part does not exceed the height (in Y direction) of the food. In this case, we add m slices to the food, 

with 𝑚 =
ℎ

𝑠
, where h is the height of the food and s is the slice thickness. 

3.5.2. Thick food 

 

(a)                      (b) 

Figure 5. Cutting schemes for: (a) food without a flat top, and (b) food with a flat top. 

For thick food, we assume that the food shape is symmetric and the highest point is visible. 

With this assumption, we compute the volume of the visible half and multiply the result by two as 

the estimate of food volume. Two cutting schemes are used according to the form of food top. 

If the top of the food is a single point or multiple points occupying a small area, as shown in 

Figure 5(a), we find the highest point and use it to divide the food into two parts (shown as the 
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purple vertical line in Figure 5(a)). 

On the other hand, if the food has a flat top occupying a large area, as shown in Figure 5(b), we 

compute the centroid of the flat top and use it to divide the food into two parts, shown as the purple 

vertical line in Figure 5(b). 

3.6. Normalization 

Because an object presented in an image appears larger when it is close to the camera, and 

smaller when it is far from the camera, the average superpixel size in each slice represents an 

increasing physical size as the distance of view increases, as illustrated in Figure 6. 

 

Figure 6. Schematic diagram of the normalization of superpixels. 

Therefore, it is necessary to normalize the superpixels so that they represent approximately 

equal physical sizes regardless of the viewing distances. The following normalization formulas are 

utilized based on the depth information: 

∆𝑢

∆𝑥
=
𝑓

𝑧
        N𝑆 = (

𝑊

∆𝑢
)
2
= (

𝑊

𝑓∆𝑥
𝑧)
2
                (25) 

where ∆𝑢 is the width increment of the superpixel, ∆𝑥 is the increment in the X direction in the 3D 

space, f is the focal length of the camera, and z is the Z coordinate value of the superpixel. From the 

above formulas, the number of superpixel divisions NS in each sliced image is related to depth z. Let 

the number of superpixel divisions of the nearest slice layer Lnear be NSnear. From the nearest slice 

layer Lnear to the farthest slice layer Lfar the food is divided into number of Nl slices with depth ∆z 

and the number of superpixel divisions of the i-th slice is given by: 

𝑁𝑆𝑖
𝑁𝑆𝑛𝑒𝑎𝑟

= (
𝑧𝑖
𝑧𝑛𝑒𝑎𝑟

)
2

= (
𝑧𝑛𝑒𝑎𝑟 + 𝑖 ∆𝑧

𝑧𝑛𝑒𝑎𝑟
)
2

= (1 + 𝑖
∆𝑧

𝑧𝑛𝑒𝑎𝑟
)
2

= (1 + 𝑖
𝑧𝑓𝑎𝑟 − 𝑧𝑛𝑒𝑎𝑟
𝑧𝑛𝑒𝑎𝑟𝑁𝑙

)
2

 

= (1 + 𝑖

𝑓 𝑇𝑥
𝑑𝑓𝑎𝑟

−
𝑓 𝑇𝑥
𝑑𝑛𝑒𝑎𝑟

𝑓 𝑇𝑥
𝑑𝑛𝑒𝑎𝑟

𝑁𝑙

)

2

= (1 + 𝑖
𝑑𝑛𝑒𝑎𝑟−𝑑𝑓𝑎𝑟

𝑑𝑓𝑎𝑟𝑁𝑙
)
2

             (26) 
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𝑁𝑆𝑖 = 𝑁𝑆𝑛𝑒𝑎𝑟 (1 + 𝑖
𝑑𝑛𝑒𝑎𝑟−𝑑𝑓𝑎𝑟

𝑑𝑓𝑎𝑟𝑁𝑙
)
2

                  (27) 

3.7. Volume estimation 

After normalizing the superpixels in all slices, the area of each slice is calculated. Since the 

thickness of each slice is small, the slice volume can be approximated as the product of the slice area 

and the slice thickness. Finally, the food volume is estimated as the sum of all slice volumes. 

4. Results 

4.1. Raw image acquisition 

We implemented the algorithms of our superpixel method in MATLAB®. Seven realistically 

shaped food replicas of known volumes (measured using water displacement) were used as the test 

objects. Each food was placed on a plate before a shot was taken by an Aiptek iDV stereo camera in 

an indoor environment illuminated by natural light. The results are shown in Figure 7. The distance 

between the food and the camera was approximately 1 m. The stereo image pair was separated into a 

left-eye image and a right-eye image. The corresponding disparity map was obtained by stereo vision 

matching. 

 

Figure 7. Raw images. 

4.2. Segmentation 

 

Figure 8. Segmentation results. 
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The results of food and plate segmentation by the SLIC and DBSCAN algorithms are shown in 

Figure 8. 

4.3. Reconstructing plate plane 

The plate plane, given by Ax + By +Cz +D = 0, was determined by the MLESAC algorithm. The 

resulting parameter values and the output images (where the plate plane is colored in red) are shown 

in Table 1 and Figure 9, respectively. 

Table 1. Plane parameters of reconstructed plate plane. 

Food Plane parameters[𝐴, 𝐵, 𝐶, 𝐷] 

egg [–0.02534, 0.90135, 0.43234, –0.90558] 

orange [0.12549, –0.936669, –0.32698, 0.60524] 

chicken leg [0.05850, –0.90413, –0.42323, 0.76347] 

bread [0.04248, –0.89979, –0.43425, 0.80871] 

grapefruit [–0.09693, 0.91111, 0.40060, –0.70904] 

cake [0.07609, –0.90506, –0.41841, 0.74542] 

peach [–0.07205, 0.90717, 0.41454, –0.74395] 

 

 

Figure 9. Results of reconstructed plate plane. 

4.4. Image warping 

 

Figure 10. Results of image warping. 
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The forward warping/back projection procedure was used to obtain a new sight of view 

paralleling to the plate plane. The results of the image warping are shown in Figure 10. 

4.5. Food slicing 

The food after forward warping/back projection was sliced according to threshold δ. As stated in 

Section 3.5, different methods were used, determined by the food thickness. The results are shown in 

Figure 11. The first (top part) and second (bottom part) sets of pictures are the example results of 

thick and thin foods, respectively. 

 

 

Figure 11. Results of food slicing. 

4.6. Normalization 

Each superpixel is normalized according to depth information to equalize physical size 

regardless of the viewing distance. The normalized result is shown in Figure 12. 
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Figure 12. Results of superpixel normalization. 

4.7. Volume estimation 

Our experimental results are shown in Table 2. The food volumes (in cubic centimetres) obtained 

by averaging multiple water displacement measurements and by the proposed estimation method are 

denoted by V0 and V, respectively. The error rate ζ, calculated by ζ =
|𝑉−𝑉0|

𝑉0
× 100%, is also listed 

in Table 2. 

Table 2. Results of volume estimation and error rate. 

Food type V0 V  ζ 

egg 20.67 20.79 0.58% 

orange 151.67 152.61 0.62% 

chicken leg 64.00 85.89 34.20% 

bread 307.67 344.05 11.82% 

grapefruit 272.00 255.13 6.20% 

cake 93.67 82.43 12.00% 

peach 151.67 128.94 14.99% 

4.8. Accuracy analysis 

It can be seen from the error rates that, in most cases, the food volume estimation accuracy by 

our method is generally high (except for the chicken leg) even only a pair of images was used in each 

estimation. For regularly shaped foods with high symmetry, such as eggs and oranges, more accurate 

results were obtained. On the other hand, for asymmetrical and thicker foods, such as chicken legs, 

the volume estimation error was generally larger. 

4.9. Comparison 

So far, model-based food volume estimation method and other manual interactive method have 
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the highest accuracy. We compared two existing methods by Chen et al. [12] and Yang et al. [9] 

against water displacement measurements as the gold standard. As shown in Table 3, Chen’s method 

has the highest accuracy, but this algorithm requires manually selecting and manipulating 

three-dimensional objects, which are tedious and difficult to use in practice. When compared with 

Yang’s method which uses the smart phone, our algorithm is more accurate (except for the chicken 

leg) and does not require manual procedures. 

Table 3. Comparison of the error rates with other methods. 

Food type 
Error rate 

ours Yang’s[9] Chen’s[12] 

egg 0.58% 41.10% - 

Chicken leg 34.20% 12.18% 0.85% 

grapefruit 6.20% - 1.78% 

cake 12.00% 14.91% - 

peach 14.99% 17.56% 1.46% 

5. Discussion 

5.1. Missing data problem 

As described in Section 3.4, a forward warping procedure is required to obtain the food depth 

information once the camera’s orientation becomes parallel to the plate plane. In this step, holes will 

likely appear due to missing data in certain locations. This problem is exemplified in Figure 13. 

 

Figure 13. Results of forward warping. 

Our solution is to assume that the depth information is continuous and fill the holes according to 

this assumption. Suppose that there is a lack of depth value at point A (i.e., a hole), neighbouring 

points of point A with depth values are selected, and the average value is assigned to point A as its 

depth value. If the neighbours are absent from depth values and point A is judged to be a food point, 

the depth values of the points closest to Point A are utilized to construct its depth value by 

interpolation. However, in non-smooth regions of food, the continuous assumption is invalid, which 

leads to a certain error. 
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5.2. Rounding error in coordinate data 

In the process of coordinate mapping, it is best to use real-valued numbers to represent pixel 

image coordinates because these coordinates contain depth information. If integers are used to 

represent coordinates, the rounding error must be considered. Similarly, in the process of superpixel 

normalization, it is necessary to compute the area corresponding to each superpixel. In this case, if 

integers are used to represent coordinates after a rotation, the rounding operation also causes error in 

the estimation result. 

6. Conclusions 

In this paper, a food volume estimation method based on multi-layer superpixel segmentation is 

proposed. A food image with depth information is obtained by using a stereo camera. The superpixel 

segmentation method is utilized to separate the food and the plate and then reconstruct the plate 

plane based on the parameters of the stereo camera and the scale calibration information of the plate. 

Next, we computationally alter the orientation of the camera (so that it is parallel to the plate plane) 

and forward warp the input images to obtain new disparities. We then perform a back projection to 

obtain a converted image and disparity map. Subsequently, the image is divided into a series of slices 

according to the food thickness, each slice is represented by superpixels, and the superpixels from 

different slices are normalized. Finally, we accumulate the volumes of all slices to obtain the total 

volume of the food. 

Compared with the traditional method, our method can adapt to foods of various shapes, not 

restricted by geometric constraints. Thus, our method has good applicability in the real-world setting. 

In addition, our method greatly reduces the needs of human involvements, therefore it is more 

convenient to use. Moreover, our method can separate food from plate, allowing more specific use of 

the depth information to calculate food volume. 
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