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Abstract: In this paper, the artificial neural network method is applied to solve the time-fractional
diffusion and diffusion-wave equations. This method combines Taylor series and neural network
method, and uses the terms of different power terms of Taylor series as neurons. An error function
is given to update the weights of the proposed neural network. In addition, in order to balance the
contributions of different error terms in the error function, we propose an adaptive weight adjustment
method. In the end, four numerical examples are given to demonstrate the effectiveness of proposed
method in solving the time-fractional diffusion and diffusion-wave equations.
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1. Introduction

Fractional calculus is an important branch of mathematics. As its theory has been successfully
applied to various fields in recent years, people have gradually found that fractional calculus can
describe some “abnormal” phenomena in natural science and engineering applications. For example,
mechanical behavior of viscoelastic materials [1], plasma motion under high temperature and high
pressure [2], abnormal diffusion of extremely cold atoms or cell protoplasm [3], etc. Time fractional
partial differential equation is an important model. When its fractional order α ∈ (0, 1), it is called
time-fractional diffusion equation; when α ∈ (1, 2), it is called time-fractional diffusion-wave
equation. The time-fractional diffusion equation can describe the abnormal slow diffusion
phenomenon in porous media with fractal structure [4], while the time-fractional diffusion-wave
equation can describe the propagation of mechanical scattered waves in viscoelastic media with
power-law creep characteristics [5].

It is well known that the analytical solution of time-fractional diffusion and diffusion-wave
equations is notoriously difficult to obtain. In order to promote the development and progress of
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science, a great quantity of researchers and scholars have studied the numerical approximation
method of time-fractional diffusion and diffusion-wave equations. In recent years, Gu and his
collaborators have proposed many effective methods to solve the time-fractional diffusion equations,
such as quadratic spline collocation method [6], Lagrange interpolation method [7], parallel-in-time
iterative algorithm [8] and the graded L1 scheme method [9]. For the time-fractional diffusion-wave
equations, many classical numerical methods have been proposed, including finite difference
method [10, 11], element-free Galerkin method [12], wavelets method [13, 14], meshless local
collocation method [15], etc.

Moreover, artificial neural network method is also proposed to solve fractional differential
equations. With the rapid development of machine learning technology, the demand for solving
fractional differential equations by using artificial neural network method has increased by leaps and
bounds, and some excellent results have been achieved. In 2017, Qu [16] applied cosine radial basis
function neural network to solve fractional differential equations with initial value or boundary value
problems for the first time. In 2018, Rostami et al. [17] adopted an iterative algorithm combining
power series and neural network method to approximately seek the solution of high-order linear and
ordinary differential equations. Rizaner et al. [18] proposed a numerical approch for approximately
solving the first-order initial value problem using unsupervised radial basis function network, and
verified the effectiveness with some numerical examples. In 2020, Hadian-Rasanan et al. [20] solved
different types of Lane-Emden equation by constructing a single-layer orthogonal network with a
fractional Legendre function as the activation function of the hidden layer, and used the
Levenberg-Marquardt algorithm to train them. The above literature is to solve fractional ordinary
differential equations by making use of artificial neural network method. However, there are few
literatures on solving time-fractional partial equations by using artificial neural networks. Jafarian et
al. regarded the artificial neural network method with a generalized sigmoid function as the cost
function as the iterative scheme for solving linear fractional ordinary differential equations in [19].
Recently, Qu et al. [21] proposed a neural network method based on cosine basis and sine basis to
solve a class of time-fractional diffusion and diffusion-wave equation with zero boundary conditions.
Deep neural network methods for solving forward and inverse problems of time-fractional diffusion
equations with conformable derivatives were introduced by Ye et al. [22]. In this paper, a new
numerical method is proposed for a class of time-fractional diffusion and diffusion-wave equations
with Dirichlet boundary conditions by combining Taylor series method with artificial neural network.

In this paper, We consider the time-fractional diffusion equation with the following form:
cDα

0,tu(x, t) + c2uxx(x, t) = f (x, t),
u(0, t) = λ(t), u(L, t) = µ(t),
u(x, 0) = φ(x),
0 < α < 1, 0 < x ⩽ P, 0 < t ⩽ Q,

(1.1)

and the time-fractional diffusion-wave equation with the form as follows:
cDα

0,tu(x, t) + c2uxx(x, t) = f (x, t),
u(0, t) = λ(t), u(L, t) = µ(t),
u(x, 0) = φ(x), ut(x, 0) = ψ(x) = 0,
1 < α < 2, 0 < x ⩽ P, 0 < t ⩽ Q.

(1.2)
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For the time-fractional diffusion equation (1.1) and the time-fractional diffusion-wave equation
(1.2), we establish a single-layer neural network model with Taylor series of different power terms as
neurons, and give the error iteration formula and neural network weight update formula. It is worth
mentioning that we have adaptively adjusted the weights of different error terms, which will be shown
in Section 4.

The main contributions of this paper are as below:

• The single layer functional link artificial neural network based on Taylor series is established for
the first time to solve the time-fractional diffusion and diffusion-wave equation with more general
form.
• The error function composed of initial error term, boundary error term and internal error term is

constructed to update the unknown parameters in the neural network. In addition, the adaptive
weight adjustment method is proposed to balance the different error terms.
• Compared with the traditional iterative numerical method, the proposed neural network method

can calculate the solution at any position in the domain without repeating the whole iterative
process.

The rest of this paper is arranged as follows. Section 2 briefly introduces the related definition
and important properties of fractional calculus. In Section 3, we present the main idea of our neural
network methods for solving the time-fractional diffusion and diffusion-wave equations (1.1), (1.2). In
Section 4, we propose an adaptive weight adjustment method to adjust the weights of different error
terms in the iteration. After that, four numerical examples are given to illustrate the effectiveness of
the method in Section 5. Finally, we summarize the main work of our paper in Section 6.

2. Preliminaries

This section gives some basic definition and related properties about fractional calculus; for more
details see [23].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 for a function
f (x) ∈ L1((0,Q]) is defined as

RLIα0+( f (x)) =
1
Γ(α)

∫ x

0
(x − t)α−1 f (t) dt,

where Γ(·) denotes the Gamma function.

Definition 2.2. The Caputo fractional derivative of order α > 0 for a function f (x) ∈ AC((0,Q]) with
n ∈ N+ is defined as

cDα
0,x f (x) =

 RLIn−α
0+

(
d
dx

)n
( f (x)), n − 1 < α < n,(

d
dx

)n
f (x), α = n.

Since the derivative of a constant is 0, the following useful property holds in the Caputo sense:

cDα
0,x(xk) =

{
0, k ∈ Z+, k < ⌈α⌉,
Γ(k+1)
Γ(k+1−α) xk−α, k ∈ Z+, k ≥ ⌈α⌉, x > 0.
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Definition 2.3. The Mittag-Leffler function is defined by

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
,

where z, β ∈ C, α > 0, and C is the usual set of complex numbers. Particularly, E1,1(z) = exp(z), that
is, the common exponential function.

In order to facilitate the calculation of the Mittag-Leffler function later, the definition of the extended
sine and cos functions and related properties are given [21, 23]. The calculation code of the Mittag-
Leffler function can be found in [24].

Definition 2.4. The extended sine function S inα,β(x) and cos function Cosα,β(x) are defined as

S inα,β(x) =
∞∑

k=1

(−1)k+1 x2k−1

Γ(α(2k − 1) + β)
, Cosα,β(x) =

∞∑
k=0

(−1)k x2k

Γ(α(2k) + β)
,

where x, β ∈ C, α > 0. According to the Euler formulas, we have

S inα,β(x) =
Eα,β(ix) − Eα,β(−ix)

2i
, Cosα,β(x) =

Eα,β(ix) + Eα,β(−ix)
2

.

In particular, we have S in1,1(x) = sin(x), Cos1,1(x) = cos(x).

Lemma 2.1. For the Caputo fractional derivative of some special functions, we have three useful
results as follows:

cDα
0,t(exp(t)) =c Dα

0,t
(
E1,1(t)

)
= t1−αE1,2−α(t),

cDα
0,t(sin(t)) =c Dα

0,t
(
S in1,1(t)

)
= t−αS in1,1−α(t),

and
cDα

0,t(cos(t)) =c Dα
0,t

(
Cos1,1(t)

)
= t−αCos1,1−α(t).

3. Methodology

With regard to the time-fractional diffusion equation (1.1) and the time-fractional diffusion-wave
equation (1.2), the proposed method is described in detail in this section. In order to solve the above
two problems, we built a single layer neural network with a series of rapidly convergent components
of Taylor series as neurons, as shown in Figure 1.

In simple terms, we construct the k-th test solution in the following form:

uk(x, t) =
N∑

i=0

i∑
j=0

θk
i(i+1)

2 + j+1
Ti j, (3.1)

with the first few Taylor components:
T00(u) = 1,
T10(u) = t,

T01(u) = x,
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Figure 1. Neural network architecture for solving the problem (1.1) and (1.2).

and the higher order components of Taylor series may be expressed as the modalities as below:

Ti j = x jti− j.

Here, N ∈ N+,
(N+1)(N+2)

2 and θk
i(i+1)

2 + j+1
represent the highest power of the series, the number of neurons

and the unknown weights of the neural network in the k-th iteration, respectively.
Since the weights of the neural network are unknown, in the first iteration, the weights are randomly

preseted by a Gaussian distribution. In the subsequent iterations, we renew the weights through the
error function. For the initial boundary value problems like Eqs (1.1) and (1.2), the error function is
composed of the following three terms:

Ek =
1
2

∥∥∥Ek
in

∥∥∥2

F
+

1
2

∥∥∥Ek
ini

∥∥∥2

2
+

1
2

∥∥∥Ek
bou

∥∥∥2

F
, (3.2)

where ∥·∥F is Frobenius matrix norm and ∥·∥2 represents vector 2-norm. Let xm =
(m−1)P
Nm−1 , tn =

(n−1)Q
Nn−1 ,

m = 1, 2, · · · ,Nm, n = 1, 2, · · · ,Nn. The matrix Ek
in is

ek
2,2 ek

2,3 · · · ek
2,Nn

ek
3,2 ek

3,3 · · · ek
3,Nn

...
...

. . .
...

ek
Nm−1,2 ek

Nm−1,3 · · · ek
Nm−1,Nn

 , (3.3)

with
ek

m,n = cD0,t
αuk(xm, tn) + a2uk

xx(xm, tn) − f (xm, tn), (3.4)
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for 2 ≤ m ≤ Nm − 1, 2 ≤ n ≤ Nn. The vector Ek
ini is

ek
1,1

ek
2,1
...

ek
Nm,1

 , (3.5)

with
ek

m,1 = uk(xm, 0) − φ(xm). (3.6)

The matrix Ek
bou is (

ek
1,1 ek

1,2 · · · ek
1,Nn

ek
Nm,1

ek
Nm,2

· · · eNm,Nk
n

)
, (3.7)

with
ek

1,n = uk(0, tn) − λ(tn), (3.8)

and
ek

Nm,n = uk(P, tn) − µ(tn). (3.9)

As for the internal points, by substituting the k-th test solution (3.1) into Eq (3.4) and making use
of Definition 2.2, we further obtain that

ek
m,n = cD0,t

α
N∑

i=0

i∑
j=0

θk
i(i+1)

2 + j+1
x j

mti− j
n + c2 j( j − 1)

N∑
i=0

i∑
j=0

θk
i(i+1)

2 + j+1
x j−2

m ti− j
n − f (xm, tn)

=
iΓ(i − j + 1)
Γ(i − j + 1 − α)

N∑
i=0

i−1∑
j=0

θk
i(i+1)

2 + j+1
x j

mti− j−α
n

+ c2 j( j − 1)
N∑

i=0

i∑
j=0

θk
i(i+1)

2 + j+1
x j−2

m ti− j
n − f (xm, tn) . (3.10)

Concerning the initial points, we gain the initial error by substituting the k-th test solution (3.1) into
Eq (3.6)

ek
m,1 =

N∑
i=0

θk
(i+1)(i+2)

2
xi

m − φ(xm). (3.11)

With regard to the boundary points, substituting the k-th test solution (3.1) into Eqs (3.8) and (3.9)
we acquire the boundary errors

ek
1,n =

N∑
i=0

θk
i(i+1)

2 +1
ti
n − λ(tn), (3.12)

and

ek
Nm,n =

N∑
i=0

i∑
j=0

θk
i(i+1)

2 + j+1
P jti− j

n − µ(tn). (3.13)

Here, we use the gradient descent method to update the k-th unknown weights θk
i(i+1)

2 + j+1
. For more

details, please refer to [25].
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The weight update formula is as follow:

θk+1
i(i+1)

2 + j+1
= θk

i(i+1)
2 + j+1

+ ∆θk
i(i+1)

2 + j+1
, k = 0, 1, 2, · · · ,K, (3.14)

with

∆θk
i(i+1)

2 + j+1
= −η

∂Ek

∂θk
i(i+1)

2 + j+1

= −η

Nm,Nn∑
m=1,n=1

∂Eek

∂ek
m,n

∂ek
m,n

∂θk
i(i+1)

2 + j+1

= −η

Nm−1,Nn∑
m=2,n=2

1
2∂

{∑Nm−1,Nn
m=2,n=2

(
ek

m,n

)2
}

∂ek
m,n

∂ek
m,n

∂θk
i(i+1)

2 + j+1

− η

Nm∑
m=1

1
2∂

{∑Nm
m=1

(
ek

m,1

)2
}

∂ek
m,1

∂ek
m,1

∂θk
i(i+1)

2 + j+1

− η

Nn∑
n=1

1
2∂

{∑Nn
n=1

(
ek

1,n

)2
}

∂ek
1,n

∂ek
1,n

∂θk
i(i+1)

2 + j+1

− η

Nn∑
n=1

1
2∂

{∑Nn
n=1

(
ek

Nm,n

)2
}

∂ek
Nm,n

∂ek
Nm,n

∂θk
i(i+1)

2 + j+1

= −η

Nm−1,Nn∑
m=2,n=2

(ek
m,n)2 ∂ek

m,n

∂θk
i(i+1)

2 + j+1

− η

Nm∑
m=1

(ek
m,1)2

∂ek
m,1

∂θk
i(i+1)

2 + j+1

− η

Nn∑
n=1

(ek
1,n)2

∂ek
1,n

∂θk
i(i+1)

2 + j+1

− η

Nn∑
n=1

(ek
Nm,n)2

∂ek
Nm,n

∂θk
i(i+1)

2 + j+1

− η

Nm−1,Nn∑
m=2,n=2

(ek
m,n)

×

 iΓ(i − j + 1)
Γ(i − j + 1 − α)

N∑
i=0

i−1∑
j=0

x j
mti− j−α

n + a2 j( j − 1)
N∑

i=0

i∑
j=0

x j−2
m ti− j

n


− η

Nm∑
m=1

(ek
m,1)

N∑
i=0

xi
m − η

Nn∑
n=1

(ek
1,n)

N∑
i=0

ti
n − η

Nn∑
n=1

(ek
Nm,n)

N∑
i=0

i∑
j=0

P jti− j
n .

Here, θ0
i(i+1)

2 + j+1
are some numbers randomly generated by Gaussian distribution, K is an integer

representing the maximum number of iterations, and η is the learning rate of neural network.
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3.1. The time-fractional diffusion-wave equation (1.2)

For the time-fractional wave equation (1.2), we just need to rewrite Eqs (3.10) and (3.14) into

ek
m,n = cD0,t

α
N∑

i=0

i∑
j=0

θk
i(i+1)

2 + j+1
x j

mti− j
n + a2 j( j − 1)

N∑
i=0

i∑
j=0

θk
i(i+1)

2 + j+1
x j−2

m ti− j
n − f (xm, tn)

=
i(i − 1)Γ(i − j + 1)
Γ(i − j + 1 − α)

N∑
i=0

i−2∑
j=0

θk
i(i+1)

2 + j+1
x j

mti− j−α
n

+ a2 j( j − 1)
N∑

i=0

i∑
j=0

θk
i(i+1)

2 + j+1
x j−2

m ti− j
n − f (xm, tn) , (3.15)

and
θk+1

i(i+1)
2 + j+1

= θk
i(i+1)

2 + j+1
+ ∆θk

i(i+1)
2 + j+1

, k = 0, 1, 2, · · · ,K, (3.16)

with

∆θk
i(i+1)

2 + j+1
= −η

∂Ek

∂θk
i(i+1)

2 + j+1

= −η

Nm−1,Nn∑
m=2,n=2

(ek
m,n)

 i(i − 1)Γ(i − j + 1)
Γ(i − j + 1 − α)

N∑
i=0

i−2∑
j=0

x j
mti− j−α

n

+a2 j( j − 1)
N∑

i=0

i∑
j=0

x j−2
m ti− j

n

 − η Nm∑
m=1

(ek
m,1)

N∑
i=0

xi
m

− η

Nn∑
n=1

(ek
1,n)

N∑
i=0

ti
n − η

Nn∑
n=1

(ek
Nm,n)

N∑
i=0

i∑
j=0

P jti− j
n ,

respectively.

4. Adaptive weight adjustment

It is well known that a system of partial differential equations can have infinite solutions without
specifying proper bounds or initial conditions [26]. So is the time-fractional diffusion and
diffusion-wave equation. Therefore, we believe that the gradient of internal error (∇θ̄Ein), the gradient
of initial error (∇θ̄Eini) and the gradient of boundary error (∇θ̄Ebou) should match each other in
magnitude, otherwise the network will eventually tend to learn any solution satisfying the equation
due to the dominant effect of the gradient of internal error, and then, it is easy to fall back to the
wrong prediction. In this section, let us talk over how to balance the interaction between internal error
term (Ein), initial error term (Eini) and boundary error term (Ebou). For simplicity, θ̄ denotes θ i(i+1)

2 + j+1
in this section.

Recall the error function Eq (3.2) and weight update formula Eq (3.14) proposed in Section 3, we
get that

θ̄k+1 = θ̄k − η∇θ̄k Ek

Networks and Heterogeneous Media Volume 18, Issue 3, 1083–1104.
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= θ̄k − η

[
1
2
∇θ̄k

∥∥∥Ek
in

∥∥∥2

F
+

1
2
∇θ̄k

∥∥∥Ek
ini

∥∥∥2

2
+

1
2
∇θ̄k

∥∥∥Ek
bou

∥∥∥2

F

]
. (4.1)

Usually, the internal error term dominates the overall. To balance the interaction between different
terms in this error, a simple method is to weight the initial error term and the boundary error term.
Thus, Eq (3.2) and Eq (3.14) can be rewritten as

Ek =
1
2

∥∥∥Ek
in

∥∥∥2

F
+

1
2
ωk

1

∥∥∥Ek
ini

∥∥∥2

2
+

1
2
ωk

2

∥∥∥Ek
bou

∥∥∥2

F
, (4.2)

and

θ̄k+1 = θ̄k − η∇θ̄k Ek

= θ̄k − η[
1
2
∇θ̄k

∥∥∥Ek
in

∥∥∥2

F
+

1
2
ωk

1∇θ̄k

∥∥∥Ek
ini

∥∥∥2

2
+

1
2
ωk

2∇θ̄k

∥∥∥Ek
bou

∥∥∥2

F
]

= −η

Nm−1,Nn∑
m=2,n=2

(ek
m,n)

 iΓ(i − j + 1)
Γ(i − j + 1 − α)

N∑
i=0

i−1∑
j=0

x j
mti− j−α

n

+c2 j( j − 1)
N∑

i=0

i∑
j=0

x j−2
m ti− j

n

 − ηωk
1

Nm∑
m=1

(ek
m,1)

N∑
i=0

xi
m − ηω

k
2

Nn∑
n=1

(ek
1,n)

N∑
i=0

ti
n

− ηωk
2

Nn∑
n=1

(ek
Nm,n)

N∑
i=0

i∑
j=0

P jti− j
n , (4.3)

respectively, ωk
1, ω

k
2 are the weighted coefficients. This method is similar to the weighted optimization

method, which improves the optimization effect by penalizing the initial error term and boundary error
term.

For the time-fractional diffusion-wave equation (1.2), Eq (3.16) can be rewritten as

θ̄k+1 = θ̄k − η∇θ̄k Ek

= θ̄k − η[
1
2
∇θ̄k

∥∥∥Ek
in

∥∥∥2

F
+

1
2
ωk

1∇θ̄k

∥∥∥Ek
ini

∥∥∥2

2
+

1
2
ωk

2∇θ̄k

∥∥∥Ek
bou

∥∥∥2

F
]

= −η

Nm−1,Nn∑
m=2,n=2

(ek
m,n)

 i(i − 1)Γ(i − j + 1)
Γ(i − j + 1 − α)

N∑
i=0

i−2∑
j=0

x j
mti− j−α

n

+c2 j( j − 1)
N∑

i=0

i∑
j=0

x j−2
m ti− j

n

 − ηωk
1

Nm∑
m=1

(ek
m,1)

N∑
i=0

xi
m

− ηωk
2

Nn∑
n=1

(ek
1,n)

N∑
i=0

ti
n − ηω

k
2

Nn∑
n=1

(ek
Nm,n)

N∑
i=0

i∑
j=0

P jti− j
n . (4.4)

Next, we will discuss how to choose the weighted coefficients ωk
1, ω

k
2. For different models, the

optimal constant can be very different, which means that we cannot find a fixed empirical formula that
can be transferred between different time-fractional diffusion and diffusion-wave equations. Also, the
error function always consists of different parts that are used to constrain the equation. It is
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impractical to manually assign different weights to different terms of the error function. The
traditional parameter adjustment method can neither guarantee the efficiency nor ensure the
optimization to the global optimal value. Therefore, inspired by the learning rate annealing algorithm
in [27], we propose an adaptive weight coefficients adjustment method.

At the (k + 1)th iterations, we calculate the estimated values of ωk
1 and ωk

2 by the formula as below:

ω̂1
k+1 =

|∇θ̄Ein|

|∇θ̄Eini|
, ω̂2

k+1 =
|∇θ̄Ein|

|∇θ̄Ebou|
, (4.5)

where |∇θ̄Ein|, |∇θ̄Eini| and |∇θ̄Ebou| denote the means of |∇θ̄Ein|, |∇θ̄Eini| and |∇θ̄Ebou|.
Then, the weighted coefficients of (k + 1) iterations are updated by the weighted moving average

method:
ωk+1

1 = (1 − ξ)ωk
1 + ξω̂1

k+1, ωk+1
2 = (1 − ξ)ωk

2 + ξω̂2
k+1 (4.6)

with ξ is given as 0.1.
Finally, the algorithm of this paper is summarized as Algorithm 1.

Algorithm 1 Neural network method based on adaptive weight adjustment
1: Initialization: Generate grid points (xm, tn)(m = 1, 2, · · · ,Nm, n = 1, 2, · · · ,Nn) on the rectangular

area [0, P] × [0,Q]. The weights θ0
i(i+1)

2 + j+1
(i = 0, 1, · · · ,N, j = 0, 1, · · · , i) are randomly generated

by Gaussian distribution.
2: while the error function Ek < ϵ (ϵ is a small parameter, which is given as 10−7) or the iteration

time k < K do
3: Compute the error function Ek, k > K (K is maximum number of iterations) and weight variation

∆θk
i(i+1)

2 + j+1
(i = 0, 1, · · · ,N, j = 0, 1, · · · , i).

4: Adjust the weights θk
i(i+1)

2 + j+1
according to the Eq (4.3).

5: Calculate the weighted coefficients ωk
1, ω

k
2 by the Eqs (4.5) and (4.6).

6: end while
7: Save network weights θk

i(i+1)
2 + j+1

, calculate neural network solution uk(x, t) and test other points on

the solution area [0, P] × [0,Q].

5. Numerical illustrations

In this section, we give four examples to illustrate the applicability of our proposed neural network
method in solving time-fractional diffusion equation (1.1) and time-fractional diffusion-wave equation
(1.2). All experiments were performed on a computer with the following configurations: Intel(R)
Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz using MATLAB R2019a.

5.1. The time-fractional diffusion equation (1.1)

Example 1. We consider Eq (1.1) with the conditions: λ(x) = µ(x) = 0, φ(x) = sin(πx
P ) and f (x, t) =

t1−αsin(πx
P )E1,2−α(t)−( cπ

P )2exp(t)sin(πx
P ). The exact solution of the equation may be calculated by means

of Definition 2.4 and Lemma 2.1.
u(x, t) = sin(

πx
P

)exp(t).
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At first, the parameters of the model are set to the following: P = 1, Q = 1, c = 1 and 0 < α < 1.
Then, the parameters of the proposed method we use are as follows: N = 5, m = 5, n = 5, learning
rate µ = 4 × 10−4, and accuracy threshold ϵ = 1 × 10−7. When α = 0.9, Figure 2 represent the
comparisons between the exact solution and the neural network solution, and the number of iterations
is 2000, 5000, 10000, 20000, respectively. We observe that the approximate solution gets better and
better as the number of iterations increases. Then, we check the approximate solution on the grid of
Nm ×Nn = 21× 21 in Figure 3a. The variation of the error value with the number of iterations is shown
in Figure 4. Also, in Figure 3, a comparison of the exact and the approximate solution is given under
α = 0.3, 0.5 and 0.7. In addition, we list the numerical solutions and absolute errors of some specific
test points for α = 0.3, 0.5, 0.7 and 0.9 in Table 1. We can see that we get similar results for different
fractional order α. Eventually, the weights of the neural network are listed in Table 2.

(a) k = 1000 (b) k = 5000

(c) k = 10000 (d) k = 20000

Figure 2. The exact solution and the neural network solution for Example 1 at α = 0.9. Red:
exact solution, blue: neural network solution.
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(a) α = 0.9 (b) α = 0.3

(c) α = 0.5 (d) α = 0.7

Figure 3. The exact solution and the neural network solution on the grid of Nm×Nn = 21×21
for Example 1 at α = 0.9 with k = 20000. Red: exact solution, blue: neural network solution.

Figure 4. Error decreasing trend with regard to iterations for fractional order α = 0.9 and
maximum training time K = 20000.
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Table 1. The numerical solutions and absolute errors for Example 1 at α = 0.3, 0.5, 0.7 and
0.9 when k = 20000.

(x, t)

α 0.3 0.5 0.7 0.9

solution error solution error solution error solution error

(0, 0) 0.0029 0.0029 0.0046 0.0046 0.0031 0.0031 0.0030 0.0030

(0.2, 0.2) 0.6996 0.0184 0.7029 0.0150 0.7034 0.0145 0.7003 0.0176

(0.4, 0.4) 1.4004 0.0184 1.4026 0.0162 1.4084 0.0104 1.4042 0.0147

(0.6, 0.6) 1.7059 0.0270 1.7076 0.0254 1.7087 0.0243 1.7054 0.0275

(0.8, 0.8) 1.2730 0.0351 1.2781 0.0301 1.2695 0.0386 1.2694 0.0387

(1, 1) 0.0025 0.0025 0.0014 0.0014 0.0024 0.0024 0.0032 0.0032

Table 2. The weights of the proposed neural network method for Example 1 at α =
0.3, 0.5, 0.7 and 0.9 when k = 20000.

Fractional order θk
i(i+1)

2 + j+1
, k = 20000

0.3

0.0029 –0.0344 2.9583 –0.0048 3.4271 0.3197 0.0755

2.1478 –1.7237 –3.7582 0.1448 0.4967 –1.4288 –4.5874

–2.9112 –0.1865 0.1164 –0.4064 –1.0538 3.0193 3.3892

0.5

0.0046 0.0168 2.9111 –0.2540 3.5760 0.5170 0.3759

2.0230 –2.0247 –4.1744 0.1251 0.5603 –1.1722 –4.4873

–2.4350 –0.2712 0.0068 –0.2784 –1.2850 3.0901 3.1768

0.7

0.0031 –0.0509 2.9372 0.2153 3.5563 0.4696 –0.2334

1.6944 –1.8766 –4.1846 –0.0421 0.8784 –0.7943 –4.6371

–2.4028 0.1078 0.0842 –0.8617 –1.0688 3.0298 3.1788

0.9

0.0030 –0.0381 2.9011 0.1165 3.5459 0.6432 –0.0392

1.8245 –2.1044 –4.4339 –0.1421 0.8739 –0.9409 –4.2895

–2.2707 0.0989 –0.0227 –0.6420 –1.1731 2.9353 3.1575

Example 2. In this example, we consider Eq (1.1) with the conditions as follows:
λ(t) = 0, µ(t) = P2t3,

φ(x) = 0,
f (x, t) = Γ(4)

Γ(4−α) t
3−αx2 + 2c2t3,
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in this situation, the exact solution is

u(x, t) = x2t3.

Let P = 1, Q = 1, c = 1 and 0 < α < 1. In our proposed neural network method, the parameters are
as follows: N = 7, Nm = 5, Nn = 5. We set the learning rate η and accuracy threshold ϵ to 1× 10−4 and
1 × 10−7, respectively. Through 20000 iterations, we obtain the neural network solution of Example 2
for different fractional orders α = 0.3, 0.5, 0.7 and 0.9. Figure 5 give a comparison of neural network
solutions and exact solutions for different fractional orders. In Table 3, we list the numerical solutions
and absolute errors of several test points under different α. Next, we subdivided the computational grid
into Nm × Nn = 21 × 21 and tested our neural network solution on Figure 6. In Figure 7, we plot the
variation of the error for different fractional order. Finally, the weights of neurons after iteration are
listed in Table 4.

(a) α = 0.3 (b) α = 0.5

(c) α = 0.7 (d) α = 0.9

Figure 5. The exact solution and the approximate solution for Example 2 with k = 20000.
Red: exact solution, blue: neural network solution.
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(a) α = 0.3 (b) α = 0.5

(c) α = 0.7 (d) α = 0.9

Figure 6. The exact solution and the neural network solution on the gird of Nm×Nn = 21×21
for Example 2 with k = 20000. Red: exact solution, blue: neural network solution.

Table 3. The numerical solutions and absolute errors for Example 2 at α = 0.3, 0.5, 0.7 and
0.9 when k = 20000.

(x, t)

α 0.3 0.5 0.7 0.9

solution error solution error solution error solution error

(0, 0) –0.0016 0.0016 –0.0025 0.0025 –0.0023 0.0023 –0.0001 0.0001

(0.2, 0.2) 0.0061 0.0058 0.0035 0.0032 –0.0064 0.0067 –0.0076 0.0080

(0.4, 0.4) 0.0188 0.0085 0.0088 0.0014 0.0014 0.0088 0.0001 0.0101

(0.6, 0.6) 0.0816 0.0039 0.0656 0.0122 0.0740 0.0037 0.0705 0.0073

(0.8, 0.8) 0.3148 0.0128 0.3071 0.0206 0.3260 0.0017 0.3144 0.0133

(1, 1) 1.0011 0.0011 1.0055 0.0055 1.0020 0.0020 1.0026 0.0026
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(a) α = 0.3 (b) α = 0.5

(c) α = 0.7 (d) α = 0.9

Figure 7. Error decreasing trend with regard to iterations where maximum training time
K = 20000.

Table 4. The weights of the proposed neural network method for Example 2 at α =
0.3, 0.5, 0.7 and 0.9 when k = 20000.

Fractional order θk
i(i+1)

2 + j+1
, k = 20000

0.3

–0.0016 –0.0002 0.0571 0.1500 –0.0567 –0.2120 –0.2402 0.0174 0.0459 0.1907 0.2427 –0.2256

0.4118 0.1506 0.1091 –0.4905 0.1521 0.3623 0.3238 –0.5528 –0.3150 0.0692 0.2436 0.3069

–0.0435 –0.1723 0.0865 0.3350 0.2728 –0.1388 –0.1348 –0.1450 0.2798 –0.1127 0.1988 –0.1630

0.5

–0.0025 0.0238 0.0540 0.0662 –0.2532 –0.1620 –0.1016 0.1590 0.4392 0.1513 –0.3655 –0.0698

–0.1684 –0.0452 0.0068 0.3707 0.2070 0.1868 0.5117 –0.4333 0.0094 0.1612 0.1791 0.2668

0.1049 –0.2033 0.3859 –0.2370 –0.1491 –0.2049 0.2384 –0.3002 –0.0007 0.1888 –0.1895 0.1808

0.7

–0.0023 –0.0265 0.0230 0.1398 –0.2252 –0.0691 –0.0352 0.0130 –0.0024 0.2792 –0.1484 0.3733

0.4558 0.2513 –0.4968 –0.1691 0.1646 0.0865 –0.1089 0.0741 0.1482 0.0129 0.1104 –0.1779

0.0332 0.0814 –0.3102 0.2354 0.2346 –0.3240 0.4362 –0.2617 0.4132 –0.2044 0.1158 –0.1176

0.9

–0.0001 –0.0464 0.0058 0.0056 –0.0356 0.0137 0.0867 –0.1687 0.2562 –0.1507 –0.0945 0.3658

0.4054 –0.3842 0.3073 0.2090 –0.2674 –0.0495 0.5397 0.0868 –0.1517 –0.0252 –0.2444 0.1457

–0.1503 –0.0782 –0.1682 –0.1482 –0.1317 0.4388 –0.0699 0.4540 –0.1167 –0.2030 0.2436 0.1234
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Example 3. Let P = 1, Q = 1, c = 1 and 1 < α < 2, we consider Eq (1.2) with λ(t) = 0, µ(t) = P2t3,
φ(x) = 0, ψ(x) = 0 and f (x, t) = Γ(4)

Γ(4−α) t
3−αx2 + 2c2t3. Through calculation, we can gain the exact

solution u(x, t) = x2t3.

In our proposrd method, we set N = 7 and sample gird Nm × Nn = 5 × 5. The learning rate η and
accuracy threshold ϵ are set to 1 × 10−4 and 1 × 10−7, respectively. With 20000 iterations, we acquire
a good neural network solution. Figure 8 show a comparison of the neural network solution and the
exact solution on sampling grid, their comparison on denser grid Nm × Nn = 21× 21 and the change of
the error value with the number of iterations, respectively. In Table 5, we list the numerical solutions
and absolute errors of several test points for α = 1.9. Also, Table 6 lists the weights of the proposed
neural network in this example. The results illustrate that the proposed neural network method is also
very effective for seeking the solution of the time-fractional diffusion-wave equations. (On account of
too many graphs, we only list the situation of α = 1.9 here.)

(a) (b) (c)

Figure 8. The exact solution and the neural network solution for Example 3 at α = 1.9 with
k = 20000. (a) Comparison of the neural network solution and the exact solution on sampling
grid. (b) comparison on denser grid Nm×Nn = 21×21. (c) the change of the error value with
the number of iterations. Red: exact solution, blue: neural network solution.

Table 5. The numerical solutions and absolute errors for Example 3 at α = 1.9 when k =
20000.

Test point Numerical solution Absolute error Test point Numerical solution Absolute error

(0, 0) 0.0015 0.0015 (0.5, 0.5) 0.0317 0.0004

(0.1, 0.1) 0.0013 0.0013 (0.6, 0.6) 0.0773 0.0004

(0.2, 0.2) 0.0011 0.0008 (0.7, 0.7) 0.1651 0.0030

(0.3, 0.3) 0.0028 0.0004 (0.8, 0.8) 0.3209 0.0068

(0.4, 0.4) 0.0106 0.0004 (1, 1) 1.0015 0.0015
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Table 6. The weights of the proposed neural network method for Example 3 at α = 1.9 with
k = 20000.

Fractional order θk
i(i+1)

2 + j+1
, k = 20000

1.9

0.0015 0.0231 –0.0217 –0.0077 0.01778 –0.0464

–0.2435 0.4708 –0.4991 0.2667 0.3001 –0.3739

0.0398 0.5381 –0.0875 0.0560 0.1424 0.2924

0.3189 –0.3403 –0.1458 –0.2037 –0.0313 0.4367

0.2250 0.0753 –0.1526 –0.2626 0.07791 –0.0908

0.2382 –0.4721 0.3075 –0.5056 0.3633 0.2947

Example 4. In this example, we consider Eq (1.2) with the conditions as follows:
λ(t) = µ(t) = 0,
φ(x) = sin(πx

P ),

f (x, t) = sin
(
πx
P

)
cos1,1−α(t) −

(
cπ
P

)2
sin

(
πx
P

)
cos(t),

in this situation, the exact solution is

u(x, t) = sin(
πx
P

)cos(t).

Let P = 1, Q = 1, c = 1 and 1 < α < 2, other parameters are listed as follows: N = 5, Nm = Nn = 5,
η = 6 × 10−5 and ϵ = 1 × 10−7. Similar to Example 3, we only show the case of α = 1.5 by 40000
iterations. In Figure 9, we show the comparison of the neural network solution and the exact solution
on sampling grid Nm × Nn = 5 × 5, their comparison on denser grid Nm × Nn = 21 × 21 and the change
of error value with the number of iterations, respectively. In addition, we list the numerical solutions
and absolute errors of several test points in Table 7. The weights of the neural network in this example
are listed in Table 8.

(a) (b) (c)

Figure 9. The exact solution and the neural network solution for Example 4 at α = 1.5 with
k = 40000. (a)Comparison of the neural network solution and the exact solution on sampling
grid. (b)comparison on denser grid Nm ×Nn = 21× 21. (c) the change of the error value with
the number of iterations. Red: exact solution, blue: neural network solution.
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Table 7. The numerical solutions and absolute errors for Example 4 at α = 1.5 when k =
40000.

Test point Numerical solution Absolute error Test point Numerical solution Absolute error

(0, 0) -0.0028 0.0028 (0.5, 0.5) 0.8497 0.0279

(0.1, 0.1) 0.3185 0.0110 (0.6, 0.6) 0.7633 0.0216

(0.2, 0.2) 0.5758 0.0002 (0.7, 0.7) 0.6026 0.0161

(0.3, 0.3) 0.7558 0.0171 (0.8, 0.8) 0.3929 0.0166

(0.4, 0.4) 0.8484 0.0276 (1, 1) -0.0011 0.0011

Table 8. The weights of the proposed neural network method for Example 4 at α = 1.5 with
k = 40000.

Fractional order θk
i(i+1)

2 + j+1
, k = 40000

1.5

-0.0028 0.0963 3.3865 -0.2123 -0.8028 -1.4247 0.0071

-0.2903 0.3029 -2.5919 0.1321 -0.3393 0.4284 0.6957

-1.0843 -0.0163 -0.1139 0.2444 0.2087 -0.3435 1.7188

6. Conclusion

In this paper, different power terms of Taylor polynomial are used as neurons of the proposed
artificial neural network to solve the time-fractional diffusion and diffusion-wave equations. The initial
weight of the neural network is given randomly according to the Gaussian distribution, and what is
more the weight in each iteration is updated by the error function. In order to balance the contribution of
initial error term, boundary error term and internal error term in the error function, we weight different
error terms, and give an adaptive weight adjustment algorithm. The trained network is found to be
effective by testing other points within the solution region. In addition, the value of the error function
decreases as the number of iterations increases. This illustrates that our method is very effective for
solving time-fractional diffusion and diffusion-wave equations. In the future work, we will consider
to extend our methods for solving other time-fractional partial differential equations, such as the time-
fractional mixed diffusion and diffusion-wave equations [28], time-fractional diffusion equations with
a time-invariant type variable order [29] and the generalized time space fractional diffusion equations
with variable coefficients [30].
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systems with Lévy flights: a fractional diffusion approach, Phys. Rev. Lett., 91 (2003), 018302.
https://doi.org/10.1103/PhysRevLett.91.018302

3. A. Dechant, E. Lutz, Anomalous spatial diffusion and multifractality in optical lattices, Phys.
Rev. Lett., 108 (2012), 230601. https://doi.org/10.1103/PhysRevLett.108.230601

4. M. Giona, H. E. Roman, Fractional diffusion equation for transport phenomena in random media,
Phys. A, 185 (1992), 87–97. https://doi.org/10.1016/0378-4371(92)90441-R

5. F. Mainardi, Fractional diffusive waves in viscoelastic solids, In: J. I. Wegner, F. R. Norwood,
eds.,Nonlinear Waves in Solids., Fairfield: ASME/AMR, 1995, 93–97.

6. W. H. Luo, T. Z. Huang, G. C. Wu, X. M. Gu, Quadratic spline collocation method
for the time fractional subdiffusion equation, Appl. Math. Comput., 276 (2016), 252–265.
https://doi.org/10.1016/j.amc.2015.12.020

7. W. H. Luo, C. Li, T. Z. Huang, X. M. Gu, G. C. Wu, A high-order accurate numerical scheme
for the Caputo derivative with applications to fractional diffusion problems, Numer. Funct. Anal.
Optim., 39 (2018), 600–622. https://doi.org/10.1080/01630563.2017.1402346

8. X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-
differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576.
https://doi.org/10.1016/j.jcp.2020.109576

9. Y. L. Zhao, X. M. Gu, A. Ostermann, A preconditioning technique for an all-at-once system
from Volterra subdiffusion equations with graded time steps, J. Sci. Comput., 88 (2021), 11.
https://doi.org/10.1007/s10915-021-01527-7

10. Z. Liu, A. Cheng, X. Li, A novel finite difference discrete scheme for the
time fractional diffusion-wave equation, Appl. Numer. Math., 134 (2018), 17–30.
https://doi.org/10.1016/j.apnum.2018.07.001

Networks and Heterogeneous Media Volume 18, Issue 3, 1083–1104.

http://dx.doi.org/https://doi.org/10.1115/1.3101682
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.91.018302
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.108.230601
http://dx.doi.org/https://doi.org/10.1016/0378-4371(92)90441-R
http://dx.doi.org/https://doi.org/10.1016/j.amc.2015.12.020
http://dx.doi.org/https://doi.org/10.1080/01630563.2017.1402346
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109576
http://dx.doi.org/https://doi.org/10.1007/s10915-021-01527-7
http://dx.doi.org/https://doi.org/10.1016/j.apnum.2018.07.001


1103

11. R. Du, Y. Yan, Z. Liang, A high-order scheme to approximate the Caputo fractional derivative
and its application to solve the fractional diffusion wave equation, J. Comput. Phys., 376 (2019),
1312–1330. https://doi.org/10.1016/j.jcp.2018.10.011

12. X. Li, S. Li, A fast element-free Galerkin method for the fractional diffusion-wave equation,
Appl. Math. Lett., 122 (2021), 107529. https://doi.org/10.1016/j.aml.2021.107529

13. M. H. Heydari, M. R. Hooshmandasl, F. M. M. Ghaini, C. Cattani, Wavelets method
for the time fractional diffusion-wave equation, Phys. Lett. A, 379 (2015), 71–76.
https://doi.org/10.1016/j.physleta.2014.11.012

14. M. H. Heydari, Z. Avazzadeh, M. F. Haromi, A wavelet approach for solving multi-term variable-
order time fractional diffusion-wave equation, Appl. Math. Comput., 341 (2019), 215–228.
https://doi.org/10.1016/j.amc.2018.08.034

15. A. Kumar, A. Bhardwaj, B. V. R. Kumar, A meshless local collocation method for
time fractional diffusion wave equation, Comput. Math. Appl., 78 (2019), 1851–1861.
https://doi.org/10.1016/j.camwa.2019.03.027

16. H. Qu, Cosine radial basis function neural networks for solving fractional differential equations,
Adv. Appl. Math. Mech., 9 (2017), 667–679. https://doi.org/10.4208/aamm.2015.m909

17. F. Rostami, A. Jafarian, A new artificial neural network structure for solving high-
order linear fractional differential equations, Int. J. Comput. Math., 95 (2018), 528–539.
https://doi.org/10.1080/00207160.2017.1291932

18. F. B. Rizaner, A. Rizaner, Approximate solutions of initial value problems for ordinary
differential equations using radial basis function networks, Neural Process. Lett., 48 (2018),
1063–1071. https://doi.org/10.1007/s11063-017-9761-9

19. A. Jafarian, S. M. Nia, A. K. Golmankhaneh, B. Baleanu, On artificial neural
networks approach with new cost functions, Appl. Math. Comput., 339 (2018), 546–555.
https://doi.org/10.1016/j.amc.2018.07.053

20. A. H. Hadian-Rasanan, D. Rahmati, S. Gorgin, K. Parand, A single layer fractional orthogonal
neural network for solving various types of Lane-Emden equation, New Astron., 75 (2020),
101307. https://doi.org/10.1016/j.newast.2019.101307

21. H. Qu, X. Liu, Z. She, Neural network method for fractional-order partial differential equations,
Neurocomputing, 414 (2020), 225–237. https://doi.org/10.1016/j.neucom.2020.07.063

22. Y. Ye, H. Fan, Y. Li, X. Liu, H. Zhang, Deep neural network methods for solving forward
and inverse problems of time fractional diffusion equations with conformable derivative,
Neurocomputing, 509 (2022), 177–192. https://doi.org/10.1016/j.neucom.2022.08.030

23. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, New York: Elsevier, 2006.

24. R. Garrappa, The Mittag-Leffler function, MATLAB Central File Exchange. Available from:
https://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function

25. M. H. Hassoun, Fundamentals of artificial neural networks, Cambridge: MIT Press, 1995.

26. L. C. Evans, Partial Differential Equations, 2nd edition, Providence: American Mathematical
Society, 2010.

Networks and Heterogeneous Media Volume 18, Issue 3, 1083–1104.

http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.011
http://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107529
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2014.11.012
http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.08.034
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2019.03.027
http://dx.doi.org/https://doi.org/10.4208/aamm.2015.m909
http://dx.doi.org/https://doi.org/10.1080/00207160.2017.1291932
http://dx.doi.org/https://doi.org/10.1007/s11063-017-9761-9
http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.07.053
http://dx.doi.org/https://doi.org/10.1016/j.newast.2019.101307
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.07.063
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2022.08.030
http://dx.doi.org/Available from: https://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function
http://dx.doi.org/Available from: https://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function


1104

27. S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies
in physics-informed neural networks, SIAM J. Sci. Comput., 43 (2021), A3055–A3081.
https://doi.org/10.1137/20M1318043

28. J. Shen, X. M. Gu, Two finite difference methods based on an H2N2 interpolation for two-
dimensional time fractional mixed diffusion and diffusion-wave equations, Discrete Contin. Dyn.
Syst. Ser. B, 27 (2022), 1179–1207. https://doi.org/10.3934/dcdsb.2021086

29. X. M. Gu, H. W. Sun, Y. L. Zhao, X. Zheng, An implicit difference scheme for time-fractional
diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021),
107270. https://doi.org/10.1016/j.aml.2021.107270

30. X. M. Gu, T. Z. Huang, Y. L. Zhao, P. Lyu, B. Carpentieri, A fast implicit difference scheme
for solving the generalized time-space fractional diffusion equations with variable coefficients,
Numer Methods Partial Differ Equ, 37 (2021), 1136–1162. https://doi.org/10.1002/num.22571

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Networks and Heterogeneous Media Volume 18, Issue 3, 1083–1104.

http://dx.doi.org/https://doi.org/10.1137/20M1318043
http://dx.doi.org/https://doi.org/10.3934/dcdsb.2021086
http://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107270
http://dx.doi.org/https://doi.org/10.1002/num.22571
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Methodology
	The time-fractional diffusion-wave equation (??)

	Adaptive weight adjustment
	Numerical illustrations
	The time-fractional diffusion equation (??)

	Conclusion



