無料のKindleアプリをダウンロードして、スマートフォン、タブレット、またはコンピューターで今すぐKindle本を読むことができます。Kindleデバイスは必要ありません。
ウェブ版Kindleなら、お使いのブラウザですぐにお読みいただけます。
携帯電話のカメラを使用する - 以下のコードをスキャンし、Kindleアプリをダウンロードしてください。
The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) ハードカバー – 2009/3/1
購入オプションとあわせ買い
This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.
This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates.
- 本の長さ767ページ
- 言語英語
- 出版社Springer
- 発売日2009/3/1
- 寸法23.62 x 15.24 x 3.56 cm
- ISBN-100387848576
- ISBN-13978-0387848570
よく一緒に購入されている商品
この商品を見た後に買っているのは?
商品の説明
レビュー
From the reviews:
"Like the first edition, the current one is a welcome edition to researchers and academicians equally…. Almost all of the chapters are revised.… The Material is nicely reorganized and repackaged, with the general layout being the same as that of the first edition.… If you bought the first edition, I suggest that you buy the second editon for maximum effect, and if you haven’t, then I still strongly recommend you have this book at your desk. Is it a good investment, statistically speaking!" (Book Review Editor, Technometrics, August 2009, VOL. 51, NO. 3)
From the reviews of the second edition:
"This second edition pays tribute to the many developments in recent years in this field, and new material was added to several existing chapters as well as four new chapters … were included. … These additions make this book worthwhile to obtain … . In general this is a well written book which gives a good overview on statistical learning and can be recommended to everyone interested in this field. The book is so comprehensive that it offers material for several courses." (Klaus Nordhausen, International Statistical Review, Vol. 77 (3), 2009)
“The second edition … features about 200 pages of substantial new additions in the form of four new chapters, as well as various complements to existing chapters. … the book may also be of interest to a theoretically inclined reader looking for an entry point to the area and wanting to get an initial understanding of which mathematical issues are relevant in relation to practice. … this is a welcome update to an already fine book, which will surely reinforce its status as a reference.” (Gilles Blanchard, Mathematical Reviews, Issue 2012 d)
“The book would be ideal for statistics graduate students … . This book really is the standard in the field, referenced in most papers and books on the subject, and it is easy to see why. The book is very well written, with informative graphics on almost every other page. It looks great and inviting. You can flip the book open to any page, read a sentence or two and be hooked for the next hour or so.” (Peter Rabinovitch, The Mathematical Association of America, May, 2012)
著者について
Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
登録情報
- 出版社 : Springer; 2nd ed. 2009版 (2009/3/1)
- 発売日 : 2009/3/1
- 言語 : 英語
- ハードカバー : 767ページ
- ISBN-10 : 0387848576
- ISBN-13 : 978-0387848570
- 寸法 : 23.62 x 15.24 x 3.56 cm
- Amazon 売れ筋ランキング: - 30,824位洋書 (洋書の売れ筋ランキングを見る)
- - 1位Bioinformatics (洋書)
- - 3位Technical Computer Support
- - 11位Artificial Life
- カスタマーレビュー:
著者について
著者の本をもっと見つけたり、似たような著者を調べたり、おすすめの本を読んだりできます。
著者の本をもっと見つけたり、似たような著者を調べたり、おすすめの本を読んだりできます。
カスタマーレビュー
上位レビュー、対象国: 日本
レビューのフィルタリング中に問題が発生しました。後でもう一度試してください。
- 2013年9月22日に日本でレビュー済みAmazonで購入評価はできない.ただ換えがたいものです.
- 2010年8月23日に日本でレビュー済みAmazonで購入ここ10年ほど、
統計的学習理論の分野では
Lasso推定などの正則化推定が非常に流行しています。
これは
近年の計算機技術の発展に伴う
新しいタイプのデータ解析の際に
非常に重要となるものであり、
私も勉強・研究しています。
この本の著者3人、
Hastie, Tibshirani, Friedman
はこの分野のフロンティアであり、
本の内容としても
統計的学習理論の内容を広くカバーしたものとなっており、
非常に有益な本です。
まぁ
確かに広範囲をカバーしているために
一つひとつのトピックは浅くなってしまってますが、
そもそも
この分野全体をカバーした上で
詳しい理論展開を載せるなんて
明らかに不可能。
それに
この本が読める人は
原著論文も読める人のハズ。
そして
深い理論が知りたいのであれば
論文を読むに越したことはありません。
というわけで
この本の使い方としましては
「トピックと概要を抑える」
というのをオススメします。
そして
もしこの本に興味を持たれた方は
この本を基に
原著論文を読まれることを期待します。
他の国からのトップレビュー
-
Leonardo Bastos2023年6月12日にブラジルでレビュー済み
5つ星のうち5.0 Excelente referência
Amazonで購入Livro necessário para a biblioteca de estatísticos e cientistas de dados. Apresenta a teoria por associada aos principais métodos estatísticos usados na área de aprendizado de máquina, dando nome a uma nova área que reutiliza métodos estatísticos tradicionais voltados para a ciência de dados, o aprendizado estatístico. Livro fundamental para quem quer se aprofundar na área.
-
Customer2023年12月7日にオランダでレビュー済み
5つ星のうち1.0 Bad quality rip-off, barely readable
Amazonで購入My bad opinion is not about the content of the book, but the physical item itself. This is a smelly, bad quality rip-off, not the usual Springer edition! Thin pages, bad ink, very very hard to read. Be careful when ordering.
-
-
Cliente de Amazon2020年10月12日にメキシコでレビュー済み
5つ星のうち5.0 Excelente libro, a.k.a. The ML Bible
Amazonで購入Excelente experiencia de compra. Libro en muy buen estado, a color y buena calidad de hojas - - considerando el precio.
El contenido del libro es excelente, y para quien no esté convencido de adquirirlo puede buscar la versión digital gratuita que hay en Internet.
-
Colbert Philippe2019年10月23日にカナダでレビュー済み
5つ星のうち5.0 Very good book for those who work in the field!
Amazonで購入Excellent book! I am glad I purchased this book because I need it. I work in Machine Learning and AI and needed this book as a reference book. I received it on time and in excellent, almost new condition. I am very pleased!