
IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 1

Beyond Amdahl’s Law:
An Objective Function That Links

Multiprocessor Performance Gains
To Delay and Energy

Andrew S. Cassidy, Member, IEEE, and Andreas G. Andreou, Fellow, IEEE

F

Abstract—Beginning with Amdahl’s law, we derive a general objective
function that links parallel processing performance gains at the system
level, to energy and delay in the sub-system microarchitecture struc-
tures. The objective function employs parameterized models of compu-
tation and communication to represent the characteristics of processors,
memories, and communications networks. The interaction of the latter
microarchitectural elements defines global system performance in terms
of energy-delay cost. Following the derivation, we demonstrate its utility
by applying it to the problem of Chip Multi-Processor (CMP) architecture
exploration. Given a set of application and architectural parameters,
we solve for the optimal CMP architecture for six different architectural
optimization examples. We find the parameters that minimize the total
system cost, defined by the objective function under the area constraint
of a single die. The analytical formulation presented in this paper is gen-
eral and offers the foundation for the quantitative and rapid evaluation
of computer architectures under different constraints including that of
single die area.

1 INTRODUCTION

AMDAHL’S law, is a simple and intuitive argument
about performance gains in large scale multipro-

cessor computer systems, that has its origin in a 1967
conference paper by Gene Amdahl [1]. Amdahl’s Law
is often stated in a more general form, that includes
the speedup of computation due to any enhancement
(architectural or algorithmic). The key idea is that any
speedup is ultimately limited by the fraction of the al-
gorithm that is able to use the enhancement. In the years
following Amdahl’s conference paper, the original verbal
description has been cast into a mathematical equation
(see for example [2]). Amdahl’s fundamental insight
regarding parallel processing, has been successfully ap-
plied in many contexts, including the design of High
Performance Computing (HPC) systems and off the shelf
multiprocessor systems known as “Beowulf” clusters [3].
For a good discussion of Amdahl’s Law with insights on
its applicability and limitations, see papers by Gustafson

A.S. Cassidy and A.G. Andreou are with the Department of Electrical and
Computer Engineering, Johns Hopkins University, Baltimore, MD 21218
USA e-mail: {acassidy, andreou}@jhu.edu
Manuscript received June 30, 2010; revised May 20, 2011

[4] and Krishnaprasad [5]. The elegance of Amdahl’s
simple but powerful argument has more recently moti-
vated scientists and engineers to formulate other simple
empirical ”rules of thumb” to aid the design of Petascale
data-intensive computer architectures [6] also known as
”Graywulf” clusters [7]. It is not surprising that with the
advent of Chip Multi-Processors (CMPs), with dozens or
hundreds and potentially thousand of processor cores
[8], computer scientists have applied Amdahl’s Law in
CMP architecture exploration [9], [10], [11].

CMPs first appeared in research labs in the mid-1990s
[12], [13] and by the mid-2000s, major commercial mi-
croprocessor manufacturers including IBM, Sun, AMD,
and Intel had all released CMP products. This paradigm
shift to chip-multiprocessing has brought about new
opportunities for high performance and high efficiency
computing, but realizing optimal architectures is a chal-
lenge for today’s computer architects. In particular, as
CMPs transition from a few processor cores on a chip
to dozens or hundreds, the importance of system-level
design increases greatly. Questions that need to be an-
swered include: how should local memories be sized and
organized? How many processors are most efficient, or
even effective? How can the system keep hundreds of
processors fed with data, in order to prevent stalling?
What architecture is required to keep data flowing with
minimal latency in a network of hundreds of proces-
sors? While detailed simulations are an important step
towards implementation, high-level analytical methods
for system optimization, such as those presented here,
play an important role in rapidly narrowing the system
design space prior to detailed modeling. They illuminate
high-level design trade-offs and present solutions for
optimal performance and efficiency.

The next generation of CMPs will include asymmet-
ric or heterogeneous processors of multiple varieties, a
complex memory hierarchy, as well as an assortment of
application specific algorithm accelerators. In this case,
the parts of the system cannot be optimized individually,
rather a global optimization approach is required. Hence,

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 2

compact analytical models such as Amdahl’s Law, have
the potential to rapidly narrow the system design space
prior to more detailed simulations.

Motivated by the need for a design methodology to
address architectural space exploration in CMPs, we
derive a simple objective function that links parallel
processing in a computer system of N processors, to the
costs of energy and delay, the traditional metrics of VLSI
[14]. The area of a single die is often a hard physical
and economical constraint. Parallel processing systems
should be optimized with respect to two performance
objectives: speed (inverse of delay) and energy. The root
of our model is a cost function formulation of Amdahl’s
law, that employs parameterized models of computation,
communication, energy and delay. After deriving the
generalized objective function, we demonstrate its utility
by applying it to the problem of CMP architecture ex-
ploration where the constraint is the area of a single die.
Given a set of application and architectural parameters,
we solve for the optimal CMP architecture for six differ-
ent architectural optimization examples, by finding the
architectural parameters that minimize the total system
cost. Using our analytical model, we demonstrate meth-
ods for solving the constrained optimization problem to
find the optimal CMP architecture. A preliminary ver-
sion of this work was presented in [15] and an example
of an application demonstrating the applicability of the
proposed methodology in [16].

The theoretical framework presented in this paper
can be applied to a wide range of architectures and
optimizations, including asymmetric CMPs and shared
access structures such as buses, memories, networks, and
other communication fabrics. Even though, by way of
example, we have focused on CMPs where the area of
a single die is the constraint, other constraints such as
energy and monetary cost can be employed to explore
different dimensions of computer architecture tradeoffs.
These principles apply to large scale parallel computing
architectures in addition to micro-parallel processors
such as CMPs. Because our objective function is built
on delay and energy, fundamental costs governed by
the laws of physics, our approach can also be used to
model and analyze non-traditional computing architec-
tures such as the human cortex.

In Section 2 we begin with the theoretical foundations
and derive a general objective function to link multi-
processor gains to delay and energy costs. Models for
the different components in the architecture (processor
and memory hierarchy) are presented in Section 3. We
present concrete results for six architectural optimization
examples in Section 4, followed by application of our
model to commercially available CMPs in Section 5,
discussion in Section 6, and conclusions in Section 7.

F0 F1

F0 F1/4

T1

T0

Fig. 1. Timing diagram: symmetric multiprocessing with
two degrees of parallelism. (top) Algorithm executed on
single processor. (bottom) Algorithm executed in parallel,
with the number of processors N = 4.

2 THEORETICAL FOUNDATIONS

2.1 Amdahl’s Law

The overall speedup SP , as a result of an algorithmic
or architectural enhancement in a computing system is
given by:

SP =
told
tnew

=
1

(1− Fenh) + Fenh

Senh

(1)

where told and tnew are the old and new execution
times of the same algorithm on old and new (or en-
hanced) architectures respectively [2]. Fenh is the fraction
of the algorithm that is enhanced while (1 − Fenh) is
the non-enhanced fraction of the algorithm. To maxi-
mize speedup, two quantities must be maximized: the
speedup of the enhancement Senh, and the fraction of
the computation that can be enhanced Fenh.

When applied to multiprocessor systems, Fenh is the
parallel fraction of the algorithm, while (1 − Fenh) is
the serial fraction of the algorithm. The enhancement
speedup Senh, is the number of processors that the
parallel portion of the algorithm is distributed over. The
impact of parallel processing on the execution time of an
algorithm can be visualized with the help of the timing
diagrams in Fig. 1. The bar on top, of length T0, signifies
the time to complete a given algorithm on a single
processor. The algorithm is split into two fractions, F0

designating the serial fraction of the algorithm, and F1

the parallel fraction of the algorithm. When the parallel
fraction of the algorithm is executed on four processors
in parallel, the overall execution time is reduced from T0
to T1. The speedup of T1 with respect to T0 is:

SP =
T0
T1

=
1

F0 +
F1

4

(2)

Equation (1) specifies a quantitative measure of the
speedup or performance improvement between two
computational architectures, and captures the essence of
Amdahl’s Law [1] as we know it today.

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 3

F0 F1

F0 F2/2

T1

T0

F2

F1/4

Fig. 2. Timing diagram: symmetric multi-processing with
multiple degrees of parallelism. For F0, N0 = 1 (serial), for
F1, N1 = 4 (parallel), and for F2, N2 = 2 (parallel).

2.2 Generalizing Degrees of Speedup

In Section 2.1, we have seen the traditional formulation
of Amdahl’s Law as found in the standard computer
architecture textbooks. This formulation (1), partitions
the algorithm into two categories, the enhanced frac-
tion and the non-enhanced fraction. The splitting of the
algorithms into two categories is somewhat arbitrary.
Starting from Amdahl’s original intuitive argument, we
postulate that an algorithm can be split up into K
fractional components Fj , where the sum of the fractions
must add up to 1. Each fractional component has an
enhancement speedup Sj , associated with that fraction
of the algorithm. Furthermore, we note that while we
label Sj as “speedup” for values of Sj greater than 1, it
is equivalent to a “slowdown” for values of Sj less than
1. This first step is a generalization of Amdahl’s Law to
incorporate multiple degrees of speedup:

SP =
1

F0

S0
+ F1

S1
+ ...+ FK−1

SK−1

=
1∑K−1

j=0
Fj

Sj

(3)

subject to the constraint that
∑K−1
j=0 Fj = 1. We can

link the fractions of the algorithms to the instructions
executed. Each term in the denominator corresponds to
the fraction of instructions Fj executed with a speedup
of Sj . Rigorously, the fraction Fj is defined as:

Fj =
Qj∑
j Qj

(4)

where Qj is the number of instructions executed with
the jth speedup and

∑
j Qj is the total number of

instructions.
The timing diagram in Fig. 2 illustrates the effect of

multiple degrees of parallelism on the execution time
of an algorithm. While some portion of the algorithm is
serial (N0 = 1), another portion can be parallelized across
four processors (N1 = 4), and a third fraction of the
algorithm can only be parallelized across two processors
(N2 = 2). In this example, the speedup of T1 with respect
to T0 is:

SP =
T0
T1

=
1

F0

1 + F1

4 + F2

2

(5)

This generalization to multiple degrees of speedup is
important for a few reasons. The fact that applications
are common divided into only two fractions (serial and
parallel) reduces the power of the model to describe real
applications which have multiple phases. For example,
the standard Automatic Speech Recognition algorithm
has four phases: DSP for the acoustic front end, Gaussian
Mixture Modeling (GMM), Hidden Markov Modeling
(HMM), and Language Modeling [17]. The DSP phase
is generally serial. The GMM phase is almost entirely
parallelizable. The HMM and language modeling phases
both have serial and parallel aspects. This is a concrete
example of multiple levels of parallelism. Moreover,
the Fj ’s could also be “phases” of the program, where
the speedup changes based on changing application
characteristics. Suppose we have a simple program with
two phases, both serial, but phase j = 0 is compute
dominated, while phase j = 1 is memory dominated.
In this simple example, the parallel speedups S0 and S1

are both 1, but the instruction distributions are vastly
different and will execute with different delay and en-
ergy. Modeling these effects will become more clear
with the full objective function, but the point is that
generalization enables modeling the complex distribu-
tions of application statistics. Finally, this generalization
is important for modeling heterogeneous CMPs. They
are not covered here, however they are the subject of
forthcoming work, and the principles outlined here lay
the foundations for them.

We proceed with a cost minimization approach, where
an architecture’s cost is the inverse of its speedup. Thus
maximizing speedup and minimizing the cost are equiv-
alent.

2.3 Delay Cost
Consider now a model at the processor microarchitec-
tural level. From the definition of expected value [18],
for M possible classes of instructions, the expected time
(or delay D) for a processor to execute an instruction is:

E[D] =
M−1∑
i=0

di p(di) (6)

where each class of instructions requires di time to
execute. Execution time depends on the level of the
memory hierarchy accessed, functional unit latencies,
superscalar instruction level parallelism (ILP), as well as
communication latencies. The execution times for each
instruction are distributed according to the probability
distribution p(di). Given the execution trace of specific
program on a specific processor for a specific dataset,
the probabilities are:

p(di) =
Qi∑M−1
i=0 Qi

= Gi (7)

where Qi is the number of instructions with the ith
delay and

∑
iQi is the total number of instructions

executed. This is equivalent to the fraction of instructions

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 4

Gi executed with the ith delay. These fractions follow
the law of probabilities such that:

∑M−1
i=0 p(di) = 1 and∑M−1

i=0 Gi = 1.
Given that our goal is to minimize the expected cost

in terms of the delay of the architecture, then we want to
minimize the following cost function (changing notation
slightly such that Di = di):

JD =
M−1∑
i=0

GiDi (8)

2.4 Delay Cost with Parallelism
For an ideal parallel processor, program execution is
divided equally across the number of parallel processors
N . For example, if a set of computations must be per-
formed on a data set, then the same computations could
be performed in parallel on N processors, each with 1/N
of the data set. The time to execute this algorithm is
reduced by 1/N , thus the expected delay is:

E[D] =
M−1∑
i=0

di
N

p(di) =
1

N

M−1∑
i=0

di p(di) (9)

and

JD =
1

N

M−1∑
i=0

GiDi (10)

In a realistic (non-ideal) parallel processor, program exe-
cution cannot be perfectly divided across the number of
parallel processors N . Rather only some portion of the
algorithm can be parallelized (the parallel fraction, Fp),
while the remaining portion is executed sequentially (the
serial fraction, Fs). The parallel fraction executes with an
expected cost of (10), while the serial fraction executes
with an expected cost of (8). Thus the total cost is a
weighted combination of the parallel and serial fractions:

JD =
Fp
N

M−1∑
i=0

GpiDpi +
Fs
1

M−1∑
i=0

GsiDsi (11)

where Fp + Fs = 1. Gpi and Gsi are the instruction
distribution fractions with delays Dpi and Dsi for the
parallel and serial portions of the algorithm respectively.
If the algorithm contains an arbitrary number of levels
of parallelism, (11) can be generalized:

JD =
K−1∑
j=0

Fj
Nj

M−1∑
i=0

GijDij (12)

where
∑K−1
j=0 Fj = 1, Nj = 1 for the serial fraction of the

algorithm, and K is the number of levels of parallelism.
A derivation of (12) directly from the expected value of
a joint distribution of random variables is given in the
Online Supporting Material.

The timing diagram in Fig. 3 depicts the various
components of the generalized objective function in (12).
At the top level of description we have the algorithm
with multiple degrees of parallelism. The fractions of the

F0 F1

T0

F2

F1 F2

R L1 R L2 R L1 R L2 M… …RM

Fig. 3. Timing diagram: algorithmic parallelism frac-
tions (Fj) and corresponding cost components Dij ∈
{R,L1, L2,M}.

algorithm with corresponding levels of parallelism are
F0, N0 = 1 (serial), F1, N1 = 4 (parallel), and F2, N2 = 2
(parallel) as in Fig. 2. At the second level, these algorithm
fractions are further subdivided into delay cost compo-
nents Di corresponding to the delay for each instruction
to access the register file (R), L1 cache (L1), L2 cache
(L2), or main memory (M). Summing the number of
instructions for each delay component and normalizing
yields the fraction for each delay category Gij .

2.5 Energy Cost

Up to this point, we have considered delay as the
primary computing cost to be minimized. Future sys-
tems will be optimized in terms of a different metric:
the weighted energy-delay product. It has become clear
that the primary barrier to realizing Exascale systems
is power consumption. Scaling current technology will
reach a power barrier before Exascale systems can be
realized [19]. Energy consumption is also an important
constraint in embedded processors. Hence we now pro-
ceed to add energy as a component to the cost function.
While the energy-delay product is a commonly used
metric [20], we observe that it too is subject to Amdahl’s
Law. That is to say, any architectural enhancement to
reduce energy consumption will only be effective for
the fraction of the algorithm that uses that architectural
enhancement. We now derive the energy cost function.

Closely following the approach in Sections 2.3 and 2.4,
the expected energy consumption for a processor core to
execute an instruction is:

E[E] =
M−1∑
i=0

ei p(ei) (13)

where each class of instructions requires ei Joules of
energy to execute. Similar to the delay case, the execution
energy depends on the level of the memory hierarchy
accessed, the complexity of the processor core, as well
as any communication operations. Based on this cor-
relation, delay and energy costs are naturally grouped
into the same instruction classes. Thus the probability
distributions for the delay costs and energy costs can be
merged for simplicity: p(di) = p(ei), but could also be
independent for greater modeling detail. Exchanging the

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 5

Fig. 4. Energy diagram: symmetric multi-processing with
multiple degrees of parallelism. For F0, N0 = 1 (serial), for
F1, N1 = 4 (parallel), and for F2, N2 = 2 (parallel).

probabilities for instruction fractions Gi and changing
notation slightly such that Ei = ei, we arrive at the
expected energy cost for a core:

JE =
M−1∑
i=0

GiEi (14)

In order to account for parallel processing energy,
consider Fig. 4. There are four processors in the system,
and three algorithm fractions (F0, F1, F2). As with the
delay case, the fractions of the program Fj are divided
by the degree of parallelism Nj , but there are N total
processors executing in parallel (some active and some
idle). During each phase or fraction of the algorithm
there are Nj active processors and N−Nj idle processors.
Thus we must multiply by the number of active or idle
processors. We sum the contributions from all of the
active and idle processors, using Njh ∈ {NjA, NjI} to
account for the number of processors that are active or
idle. Including parallelism, the energy cost function is:

JE =
K−1∑
j=0

Fj
Nj

∑
h∈{A,I}

Njh

M−1∑
i=0

GijhEijh (15)

The number of active processors NjA always equals
Nj , which cancels with the Nj in the outer summation.
Similarly, the number of idle processors NjI always
equals N −Nj (but doesn’t cancel).

2.6 A Generalized Objective Function

Combining the delay cost function (12) and the energy
cost function (15) according to the energy-delay product,
we obtain a generalized objective function JED that links
the gains from multiprocessor architecture to delay and

energy costs:

JED =

K−1∑
j=0

Fj
Nj

M−1∑
i=0

GijDij

×
K−1∑
j=0

Fj
Nj

∑
h∈{A,I}

Njh

M−1∑
i=0

GijhEijh

γ (16)

In the outer summations, Fj is the fraction of the al-
gorithm that has parallelism of Nj . Since Fj is a frac-
tion,

∑K−1
j=0 Fj must equal 1. In the inner summations,

each of the algorithm fractions Fj , are subdivided into
constituent cost components. Gij is the fraction of Fj
that has the ijth cost component Dij or Eijh. The ijth
delay is Dij and the ijth energy cost is Eijh for the
jth fraction of the algorithm and the active or idle
processors, h ∈ {A, I}. Since Gij is also a fraction,∑M−1
i=0 Gij must equal 1. In the outer summation of the

delay term, Nj in the denominator reflects the speedup
in delay obtained by parallelizing the algorithm over N
processors. In the middle summation of the energy term,
Njh is the number of active or idle processors during the
jth phase of the algorithm.

Adding an exponential weighting parameter γ to the
energy side of the equation allows energy and delay to
be unequally weighted. In the realm of energy efficient
design, two metrics are typically used for design eval-
uation: the energy-delay product ED and energy-delay
squared ED2. The energy-delay product equally weights
the contribution of delay and energy, while energy-delay
squared doubly weights the contribution of delay in
order to emphasize performance over energy savings. In
our model, using γ = 1 results in the standard energy-
delay product, while with γ = 0.5, the contribution of
delay is twice as large as the contribution of energy,
analogous to the energy-delay squared metric.

An alternative method of combining energy and delay
is the energy-delay dot product [15]:

JE·D =
K−1∑
j=0

Fj
Nj

M−1∑
i=0

GijDij(NjEij)
γ (17)

The energy-delay dot product (17) divides the energy-
delay cost into constituent components, such that we
optimize the energy-delay product of the constituent
components of the architecture. On the other hand, with
the strict energy-delay product (16), we optimize the
energy-delay product of the overall system architecture.
Our goal is to globally optimize the overall system
architecture, thus we use the strict energy-delay product
(16) in this paper.

2.7 Architecture Design
The hardware/software codesign and optimization pro-
cess consists of finding the values of the parameters
Nj , Fj , Gij , Dij , and Eijh that minimize the objective
function (16). The software application/algorithm affects

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 6

the parameters Fj , Gij , while the hardware architecture
affects Nj , Gij , Dij and Eijh

1. Formally, the optimization
problem is stated as finding the optimal parameter val-
ues that minimize the cost function:

{Nopt
j , F optj , Goptij , D

opt
ij , E

opt
ijh} = argmin

Nj ,Fj ,Gij ,Dij ,Eijh

JED (18)

In actuality, we do not control all of these parameters
directly. Rather, we have design choices about the archi-
tecture and architectural elements. We want to minimize
the cost function over the set of all possible architectures:

ARCHopt = argmin
∀ARCH

JED (19)

If we consider only the hardware architecture (by as-
suming the algorithm, data set, and thus instruction
mix are given), then Gij , Dij and Eijh can be expressed
as functions of the architecture. For example, in CMP
design where the constraint is the area of a single die,
these parameters can be defined as functions of area,
as we will see in the next section. The architecture is
the area allocated to the processor cores and memory
(and communications elements), and the optimization is
stated as:

{Aoptp , Aoptcache, N
opt
j } = argmin

Ap,Acache,Nj

JED (20)

The generalized cost function formulation in (16),
together with the low level models of energy and delay
that will be summarized in Section 3 constitute the
framework that is employed to analytically explore CMP
design in Section 4 for the optimal architecture.

3 LOW-LEVEL MODELS: PERFORMANCE
SPECIFICATIONS AND CONSTRAINTS

In the CMP examples that we consider in Section 4, the
constraint is the area of a single silicon die. The design
variables are: the number of cores in the CMP N , the area
of a processor core AP , and the area of the L2 cache AL2.
These variables capture the microarchitecture (i.e. pro-
cessor core complexity), the memory hierarchy, and the
interconnection and relate to the parameters Gij , Dij and
Eijh through low level physical and empirical models.
These models represent computational and architectural
structures, the application/algorithm characteristics, and
the physical characteristics. In this section we summarize
the underlying computational models and parameters
used in our analyses. The parameters for instruction frac-
tions Fj and Gij , delay costs Dij , and energy costs Eijh
are summarized in Table 1. (See the Online Supporting
Material for estimates of the values of these parameters.)

1. At first it appears that the instruction fractions Gij are a function
of only the algorithm and the dataset. However after further thought
it becomes apparent that the delay and energy for these fractions are
heavily dependant on the memory hierarchy – a key component of the
hardware architecture.

TABLE 1
Parameter Definitions

Parameter Symbol Value
Parallelism Frac. F0 10%

F1 90%
Memory HRL1 95%
Hierarchy HRL2 95%
Hit Rates HRmem 100%
Instruction Frac. G0 HRL1

G1 (1−HRL1)HRL2

G2 (1−HRL1)(1−HRL2)HRmem

Instruction Frac. G1 (1−G0)(1− κA
− 1

2
L2)

(Variable AL2) G2 (1−G0)κA
− 1

2
L2

Memory Access D0 DL1 = 1 cycle
Delay Costs D1 DL2 = 10 cycles

D2 Dmem = 200 cycles
Memory Access EL1 3.6 pJ
Energy Costs EL2 18.5 pJ

Emem 168.5 pJ
Computational Eactive EFPU + ERF + EL1−I = 19.7 pJ
Energy Costs Eidle EL1−I = 3.6 pJ
Total Energy E0 Eactive = 19.7 pJ
Costs E1 Eidle + EL2 = 22.1 pJ

E2 Eidle + Emem = 172.1 pJ

3.1 Area Constraint

For the fixed area constraint, a first order model of the
total area utilization on a single die Atot is:

Atot = N(AP +AL2) +Afix (21)

where N is the number of cores in the CMP, AP is area
of a processor core, AL2 is the area of the L2 cache, and
Afix accounts for the fixed area functions (I/O, memory
controller, test and debug circuitry, etc.)

3.2 Relationship between Computation and Area

The next subsections detail the functional relationships
between the physical quantities of delay and energy and
the low level architectural structures in terms of area.

3.2.1 Cache Memory Area Models
Cache size (area) is a variable whose value must be
determined as a result of the optimization process. The
instruction fractions Gij depend on the hit rates HR
at each level of the cache hierarchy. In turn, hit rates
are highly dependant on the size of the cache. An
approximate rule of thumb for caches is that miss rate
MR is inversely proportional to the square root of the
size (or area, Acache) of the cache [21]:

MR =
κ√

Acache
= κA

− 1
2

cache (22)

where the relationship between hit rate and miss rate
is: HR = (1 − MR). Fig. 5 shows the change in miss
rates as cache size changes, for various values of κ. For
example, if an application has a miss rate of 3.125% with
a 64KB cache, κ is 8.0, as designated by the black dot in
Fig. 5. Recently, Hartstein et al. investigated the theory

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 7

4KB 16KB 64KB 256KB 1MB 4MB 16MB
0

0.05

0.1

Cache Memory Size

M
iss

 R
at

e

κ = 16
κ = 8
κ = 4

Fig. 5. Cache miss rates as a function of cache size for
different values of κ.

and foundation for this power law [22]. Substantiating
the relation, they proposed a generalization:

MR = κA−ξcache (23)

where ξ takes on values between 0.3 and 0.7. This
generalized form could be directly substituted into our
approach without difficulty.

3.2.2 Processor Area Models
Pollack’s Rule [8], relates the performance of a processor
to the square root of its area, or inversely:

CPI = βA
− 1

2

P (24)

where CPI is cycles-per-instruction, a measure of time
necessary to execute one instruction. Pollack’s empiri-
cal observation captures the effect of microarchitectural
techniques, such as those associated with super-scalar
architectures (the number of arithmetic or logic func-
tional units, instruction issue width, in vs. out of order
execution, etc.) The quadratic growth of superscalar
processor area with respect to performance was first
observed by Olukotun et al. [12], [23] and used as a
rationale for designing chip multiprocessors rather than
building superscalar processors of increasingly larger
complexity. The parameter β defined as:

β =
√
AP0 (25)

where AP0 is the area of a baseline processor with CPI
of 1 in the targeted process technology.

Any other differentiable function could be employed
to relate processor performance as captured by CPI to
the processor area such as a logarithmic or sigmoidal
function. For example, a refinement to Pollack’s Rule
could be used to modestly generalize the relationship
between performance and processor area, by adding an
additional parameter, ζp:

CPI = βA
−ζp
P (26)

3.3 Relationship between Computation and Energy
The system dynamic power is a measure of the energy
expended during computation and communication. The
traditional method for estimating microprocessor power
consumption is using instruction set simulators (ISS)
with integrated energy models such as: Wattch [24],
powerTimer [25], and simplePower [26]. The CACTI sim-
ulator [27], [28] is an ISS for modeling cache memories
(including energy). These energy estimators incorporate
detailed energy models for specific functional units with
explicitly defined logic structures. Power is then esti-
mated from the transition frequencies observed while
running a specific application on the ISS. While detailed
and accurate, this approach is rather time consuming for
high-level design exploration.

Without developing detailed architectural models, we
can still make intelligent assumptions about energy con-
sumption. For example, a basic model from Su and
Despain [29] breaks cache energy into three constituent
components: decoding energy, array energy, and I/O
energy. Array energy dominates the other components
and is itself proportional to the word line size times the
bit line size. Thus, cache memory energy consumption
is linearly proportional to the area (and thus size) of
the cache. Kamble and Ghose [30], [31] created a more
detailed model, analyzing the capacitances in the bit
lines, word lines, input and output lines. The result,
however, is the same. The bit line energy, which accounts
for between 80 and 98% of the energy dissipation [31], is
proportional to Nrows×Nbit. Thus cache memory energy
dissipation scales linearly with cache area. If cache sub-
banking is used, the bitline capacitance is proportional
to Nrows × Kbit, where Kbit is constant assuming that
the number of sub-banks increases as the cache size
increases. Using this assumption, cache memory energy
dissipation scales with the square root of cache area:

Ecache = ρcacheA
1
2

cache (27)

where ρcache = EM0/AM0 is the energy to access a
baseline cache memory.

Industry data provide further insight into high-level
energy trends for processor cores. Pollack states “power
is proportional to die-area × frequency” [32], which
implies a linear scaling of energy versus microprocessor
area. This is intuitively based on the proportional rela-
tionship between die area and capacitance. Importantly
however, Pollack also notes that static memory has an
order of magnitude lower active power (and lower leak-
age power) per area than logic. This ratio directly affects
the design trade-off between cache size and processor
area. In our analyses, we also use the relation that the
energy of the processor is linearly proportional to the
size of the processor:

EP = ρPAP (28)

where the constant ρP = EP0
/AP0

is derived from the
energy of a baseline (minimum sized) processor.

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 8

Processor

Cache memory

Fig. 6. Baseline symmetric CMP block diagram: each
core has a dedicated L2 cache (N=16)

4 CMP DESIGN EXAMPLES

In this section, we use the generalized objective function
derived in Section 2 to explore the architecture design
space for symmetric CMPs. Six examples build from
simple to progressively more complex, demonstrating
the increasing architectural complexity that can be mod-
eled using the generalized objective function. The first
example examines the tradeoffs of processor complexity
versus the number of processors. The second example
optimizes the size/area of the L2 cache versus the
number of processors. The third example combines the
analyses and optimizes both the processor performance,
the L2 cache size, and the number of processors. The
fourth through sixth examples repeat the first three,
while including energy during optimization.

For quick conversion between processor area and
cache memory area, as well as the convenient logarith-
mic representation, we represent all area values (proces-
sor, cache memory) in our examples in terms of bytes.
That is, the area equivalent to a memory of that number
of bytes. For example, a processor of size 216 is the same
area as a 64kB cache memory. We assume a linear scaling
of memory size and area with a conversion of 7.5mm2

per 1MB in a 45nm process technology. See the Online
Supporting Material for estimates of the delay, energy,
and area values used in the following optimization
examples. In addition, the Online Supporting Material
contains the full mathematical details for each of the
following optimization examples.

4.1 Processor area vs. number of processors
(AP vs. N)

In our first example, we apply the cost function to
optimizing the size (or performance) of each processor
core and number of processors in a symmetric CMP,
while holding the total area of the chip constant. Figs. 6
and 7 depict the area tradeoff between a larger quantity
of smaller processor cores and fewer more powerful (but
larger) processor cores.

In this example, the algorithm is divided into two
fractions, the serial fraction and the parallel fraction,
thus K = 2. Instead of enumerating the computational
costs over i, we use CPI as an aggregate measure of
computational cost, therefore:

CPIj =
M−1∑
i=0

GijDij (29)

Processor

Cache memory

Fig. 7. Symmetric CMP block diagram: trading off the
number of processor cores (N = 8) and the area of each
processor core (AP).

Assuming the instruction mix is the same for the parallel
and serial fractions of the algorithm and a symmetric
CMP, then CPI0 = CPI1. In this example we do not
consider energy (γ = 0), thus the cost function is JD,
where the suffix denotes delay and has units of cycles.
From the generalized cost function (16), we derive the
cost function specific to our optimization:

JD =
∑
j=0,1

FjN
−1
j

M−1∑
i=0

GijDij (30)

=
F0

1
CPI0 +

F1

N
CPI1 =

(
F0 +

F1

N

)
CPI (31)

where N is the number of cores in the CMP. To perform
the optimization, we constrain the total area of the chip
to be fixed (21). Rearranging, we obtain an expression
for N :

N =
Atot −Afix
AP +AL2

(32)

We substitute this expression for N into (31) and for CPI
we use Pollack’s Rule (24), resulting in:

JD =

[
F0 +

F1(AP +AL2)

(Atot −Afix)

]
βA
− 1

2

P (33)

Choosing β = A
1
2

P0, the inverse cost function (1/JD)
is equivalent to the speedup over a single processor
baseline P0. The speedup is plotted in Fig. 8 for differ-
ent values of F1, which correspond to algorithms with
different parallelism characteristics.

Returning to the formula for the objective function,
the optimal core area AP and number of cores N , are
determined by finding the peak in the speedup (1/JD)
curve. By differentiating the objective function (33) with
respect to AP we get:

dJD
dAP

= −1

2

(
F0 +

F1AL2
Atot −Afix

)
βA
− 3

2

P +

F1

2(Atot −Afix)
βA
− 1

2

P = 0 (34)

After a bit of algebra:

AP =
F0(Atot −Afix)

F1
+AL2 (35)

Solving 35, the optimal processor area AP for each
algorithm (F1 value) is designated by the black dot
in Fig. 8 at the peak of the speedup (1/JD) curve.

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 9

256KB 1MB 4MB 16MB 64MB 256MB
0

50

100

150

200

Processor Area (AP)

Sp
ee

du
p

F1=0.999
F1=0.99
F1=0.975
F1=0.9
F1=0.5

Fig. 8. Speedup (1/JD) for different values of F1, assum-
ing non-zero Afix and AL2.

0.5 0.6 0.7 0.8 0.9 1
64KB

512KB

4MB

32MB

256MB

Fraction of algorithm parallelizable (F1)

Pr
oc

es
so

r A
re

a
(A

P)

20

22

24

26

28

0.5 0.6 0.7 0.8 0.9 1

Nu

m
be

r o
f P

ro
ce

ss
or

s
(N

)
AP0
N

Fig. 9. Optimal processor area (AP) and number of
parallel cores (N).

After calculating the optimal processor area, AP , the
corresponding optimal number of cores N is found using
(32). Using this method, we can solve for the optimal
architectural parameters over a range of values of F1,
the parallel fraction of the algorithm. This corresponds
to applications or algorithms with different levels of
parallelism. Sweeping F1, the optimal values of AP and
N are plotted in Fig. 9. Intuitively, as the parallel fraction
of the algorithm F1 increases towards 1.0, the optimal
architecture becomes more cores of smaller size.

4.2 L2 cache area vs. number of processors
(AL2 vs. N)
An alternative optimization problem is to trade off the
number of cores and the L2 cache size of each core,
given a fixed total chip area for a symmetric CMP. This
tradeoff is shown in Fig. 10 (with respect to Fig. 6).
The number of cores in the CMP is N , and the area
constraint is defined in (21). We also neglect energy in
this example. Our goal is to minimize the cost of the
architecture in terms of delay, by trading off the parallel

Processor

Cache memory

Fig. 10. Symmetric CMP block diagram: trading off the
number of processor cores (N = 8) and the L2 cache
area (AL2).

4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB
0

0.5

1

1.5

2

2.5

3

L2 Cache Area (AL2)
J D

F1=0.5
F1=0.70

F1=0.85
F1=0.95
F1=0.999

Fig. 11. Objective function JD over the range of L2 cache
sizes (AL2). Black dot designates the minimum cost and
therefore optimum L2 cache size. JD is a time value with
units of cycles (per instruction).

performance gain with the gains due to increasing L2
cache size, subject to the constraint that the total area
Atot is constant. The optimization is formulated with the
following parameters: K = 2, M = 3 and γ = 0. From
(16) and the variable L2 cache size and hit rate (22), the
cost function for this optimization is:

JD =

(
F0 +

F1

N

)[
G0D0 + (1−G0)(1− κA

− 1
2

L2)D1+

(1−G0)κA
− 1

2

L2 D2

]
(36)

The first term, G0D0, accounts for the instructions (and
data) that hit in the register file or the L1 cache. The
second term, (1 − G0)(1 − κA

− 1
2

L2)D1, is the fraction of
instructions that hit in the L2 cache. And the final term,
(1−G0)κA

− 1
2

L2 D2, is the fraction of instructions that miss
in the L2 cache and must go to main memory. The frac-
tion of the algorithm that is parallelizable over multiple
cores is F1, while the serial fraction is F0 = (1−F1), and
correspondingly, N1 = N while N0 = 1. Fig. 11 depicts
the cost curve JD for several values of F1, over the range
of the possible of values AL2. The closed form solution
for the optimum is found using the method of Lagrange
multipliers. We minimize the Lagrangian:

L(N,AL2, λ) = JD + λ[N(AP +AL2) +Afix −Atot] (37)

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 10

0.5 0.6 0.7 0.8 0.9 1
32KB

128KB

512KB

2MB

8MB

Fraction of algorithm parallelizable (F1)

L2
 C

ac
he

 A
re

a
(A

L2
)

24

25

26

27

28

0.5 0.6 0.7 0.8 0.9 1

Nu
m

be
r o

f P
ro

ce
ss

or
s

(N
)

AL2
N

Fig. 12. Optimal L2 cache size and number of cores
for various values of F1, the parallelizable fraction of the
algorithm.

where JD is given in (36). Differentiating (37) with
respect to N,λ,AL2:

∂L

∂N
= −N−2F1 [G0D0 + (1−G0)D1+

(1−G0)(D2 −D1)κA
− 1

2

L2

]
+

λ(AP +AL2) = 0 (38)
∂L

∂λ
= N(AP +AL2) +Afix −Atot = 0 (39)

∂L

∂AL2
=

(
F0 +

F1

N

)[
(1−G0)(D2 −D1)

−κ
2
A
− 3

2

L2

]
+

λ(N) = 0 (40)

Now we have three equations (38, 39, 40) and three
unknowns N,λ,AL2. Substituting and simplifying to
solve the system of equations gives us a closed form
expression for AL2 (full mathematical details are given
in the Online Supporting Material):

0 = [F1AP + (Atot −Afix)(1− F1)]

[(1−G0)(D2 −D1)]
−κ
2

+

[F1(1−G0)(D2 −D1)]
κ

2
AL2 +

F1 [G0D0 + (1−G0)D1]A
3
2

L2 (41)

Equation (41) is a polynomial function of AL2 which
can be solved for the optimal AL2 with numerical
methods2. Then using the optimal AL2 value, we can
find the corresponding optimal number of cores N for
the architecture. The optimum L2 cache size for each
cost curve is designated by the black dots in Fig. 11.
Fig. 12 shows the optimization results for a range of
values of F1, the parallel fraction of the algorithm. The
solutions vary widely based on the characteristics of the
algorithm, with the optimal L2 cache size varying over

2. We utilized the ‘fzero’ command in MatLab. Given a function to
solve, and two endpoints over which the function is of opposite signs,
this command finds the zero within the range.

Processor

Cache memory

Fig. 13. Symmetric CMP block diagram: trading off the
number of processor cores (N = 8) with the area of each
processor core (AP) and the L2 cache area (AL2).

64x (approximately 64KB to 4MB) as the parallel fraction
of the algorithm increases. This shows that if parallelism
is available, increasing the number of cores improves
performance over increasing the cache memory size.

4.3 Processor area vs. L2 cache area vs. number of
processors (AP vs. AL2 vs. N)
In the previous two examples we have separately
demonstrated processor optimization and cache memory
optimization, dealt with as independent optimization
problems. In this example, we present an example of
a joint optimization of number of cores, processor area,
and L2 cache memory area. Fig. 13 depicts the tradeoff
between processor core size and cache memory area for
a variable number of cores (with respect to Fig. 6).

We begin again by assuming that the algorithm has
only two fractions, a serial fraction and a parallel fraction
(K=2) and CPI0 = CPI1. We modify the assumption
that CPIj =

∑M−1
i=0 GijDij , and instead assume that

CPIj = G0jD0j , that is, the performance of the processor
using only L1 cache. We add an L2 cache of variable size
as part of the optimization, as well as main memory.
Thus, M = 3. From the generalized cost function (16),
we derive the cost function specific to our optimization:

JD =

(
F0 +

F1

N

)[
G0βA

− 1
2

P + (1−G0)(1− κA
− 1

2

L2)D1+

(1−G0)(κA
− 1

2

L2)D2

]
(42)

Using the fixed total chip area constraint (21), the
Lagrangian is:

L(N,AL2, λ)=JD + λ[N(AP +AL2) +Afix −Atot](43)

As in the previous example, we differentiate the La-
grangian: ∂L

∂AP
, ∂L
∂AL2

, ∂L∂N ,
∂L
∂λ , algebraically simplify the

system of four equations and four unknowns, and solve
for the optimal architecture parameters AP , AL2, N using
numerical methods. Full mathematical details are given
in the Online Supporting Material. Fig. 14 depicts the
cost surface JD (42) for various values of AP and AL2.
N takes on the value that satisfies the fixed area con-
straint. The optimum architecture is designated by the
black dot. The thick solid line represents the boundary
condition for valid architectures. If we solve for the
optimum architecture for multiple values of F1, we
obtain a curve representing the optimum architecture
for different amounts of application parallelism, shown

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 11

16KB
256KB

4MB
64MB

16KB
256KB

4MB
64MB

0

5

10

AL2
AP

J D

Fig. 14. Objective function JD for processor area (AP)
and L2 cache area (AL2). Units of area in memory byte
equivalent units. JD is a time value with units of cycles
(per instruction).

0.5 0.6 0.7 0.8 0.9 1
2KB

16KB

128KB

1MB

8MB

64MB

Fraction of algorithm parallelizable (F1)

Pr
oc

es
so

r a
nd

 C
ac

he
 A

re
a

(A
P, A

L2
)

20

23

26

29

212

215

0.5 0.6 0.7 0.8 0.9 1

Nu
m

be
r o

f P
ro

ce
ss

or
s

(N
)

AL2
AP
N

Fig. 15. Optimal area in memory byte equivalent units for
processor (AP), L2 cache (AL2), and number of processor
cores (N).

in Fig. 15. As the parallelism increases, the number of
parallel cores N increases, and as a result AP and AL2
must decrease. The relative scaling of AP and AL2 is
given by β and κ, and they both decrease at the same rate
(as N increases) due to their performance both scaling by
the power of − 1

2 , as specified by the underlying models
(22) and (24). This suggests a constant balance between
processor size and cache memory size as parallelism
increases.

4.4 Processor area vs. number of processors with
energy cost (AP vs. N)
Up to this point, the optimization examples have ne-
glected energy, focusing only on minimizing delay. We
now reanalyze the three earlier examples, this time with
energy included in the analysis. First, we reanalyze the
tradeoff between the number of processor cores N and
the processor area AP for a symmetric CMP, as presented

in Section 4.1. The cost function is derived as follows.
For delay, we use (31) and for energy, we expand (15)
for K = 2,M = 1, G0jh = 1.0:

JE =
K−1∑
j=0

Fj
Nj

∑
h∈{A,I}

Njh

M−1∑
i=0

GijhEijh (47)

=
F0

N0
(N0EA + (N −N0)EI) +

F1

N1
(N1EA + (N −N1)EI) (48)

In the serial fraction of the algorithm F0, there is one
active core N0A = N0 = 1, and N0I = N − N0 = N − 1
idle cores. In the parallel fraction of the algorithm F1,
all N cores are active: N1A = N1 = N and no idle
cores N1I = N − N1 = 0. For processor energy, we use
the linear relation between processor area and energy
(28). Processor energy is divided into active energy
EA = ρpAAP , and idle energy EI = ρpIAP .

JE = F0
1

1
(EL1 + ρpAAP) + F0

(N − 1)

1
ρpIAP +

F1
N

N
(EL1 + ρpAAP) (49)

Combining delay (31) and energy (49), as specified by the
generalized cost function (16), the resulting cost function
is given in (44) in Fig. 16. The Lagrangian is:

L(N,AP , λ) = JED +

λ[N(AP +AL2) +Afix −Atot] (50)

Once again we solve this optimization problem using
the method of Lagrange multipliers. After differentiating
the Lagrangian, we have three equations with three
unknowns (AP , N , λ). However, in this case we cannot
simplify the resulting equations with variable substitu-
tions and the closed form solution for the optimal archi-
tecture is intractable. As a result, to find the minimum
of the cost curve, we employ Newton’s method. First he
variables and the partial derivatives of the Lagrangian
are aggregated into matrices:

X = [AP , N, λ]
T

, F =

[
∂L

∂AP
,
∂L

∂N
,
∂L

∂λ

]
(51)

as well as the Jacobian of F:

J =

 ∂F1
∂AP

∂F1
∂N

∂F1
∂λ

∂F2
∂AP

∂F2
∂N

∂F2
∂λ

∂F3
∂AP

∂F3
∂N

∂F3
∂λ

 (52)

Then the update rule for the variables X for each itera-
tion k of Newton’s method is:

X(k + 1) = X(k)− (F/J)T (53)

After a finite number of iterations, the optimal architec-
tural values are contained in X.

We repeatedly solve for the optimum using various
values of F1, the parallel fraction of the algorithm. The

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 12

JED =

[(
F0 +

F1

N

)
βA
− 1

2

P

]
× [F0(1)(EL1 + ρpAAP) + F0(N − 1)ρpIAP + F1(EL1 + ρpAAP)]

γ (44)

JED =

[(
F0 +

F1

N

)(
G0D0 + (1−G0)(1− κA

− 1
2

L2)D1 + (1−G0)κA
− 1

2

L2 D2

)]
×[

F0(1)
(
G0E0 + (1−G0)(1− κA

− 1
2

L2)(EI + ρL2A
1
2

L2) + (1−G0)κA
− 1

2

L2 E2

)
+ F0(N − 1)EI+

F1

(
G0E0 + (1−G0)(1− κA

− 1
2

L2)(EI + ρL2A
1
2

L2) + (1−G0)κA
− 1

2

L2 E2

)]γ
(45)

JED =

[(
F0 +

F1

N

)(
G0βA

− 1
2

P + (1−G0)(1− κA
− 1

2

L2)D1 + (1−G0)κA
− 1

2

L2 D2

)]
×[

F0(1)
(
G0ρpAAP + (1−G0)(1− κA

− 1
2

L2)(EI + ρL2A
1
2

L2) + (1−G0)κA
− 1

2

L2 E2

)
+ F0(N − 1)ρpIAP+

F1

(
G0ρpAAP + (1−G0)(1− κA

− 1
2

L2)(EI + ρL2A
1
2

L2) + (1−G0)κA
− 1

2

L2 E2

)]γ
(46)

Fig. 16. Cost functions JED for the examples in Sections 4.4–4.6.

0.5 0.6 0.7 0.8 0.9 1
256B

4KB

64KB

1MB

16MB

256MB

20

22

24

26

28

210

20

22

24

26

28

210

20

22

24

26

28

210

Fraction of algorithm parallelizable (F
1
)

P
ro

ce
ss

or
 A

re
a

(A
P
)

A
P
, γ = 0

A
P
, γ =0.5

A
P
, γ = 1

N, γ = 0

N, γ =0.5

N, γ = 1

0.5 0.6 0.7 0.8 0.9 1

0.5 0.6 0.7 0.8 0.9 1

0.5 0.6 0.7 0.8 0.9 1

N

um
be

r
of

 P
ro

ce
ss

or
s

(N
)

Fig. 17. Optimal processor size AP and number of
processor cores N as a function of the parallel fraction of
the algorithm F1, for increasing γ. Units of area in memory
byte equivalent units.

solution for increasing values of γ are plotted in Fig. 17.
As the importance of energy increases in the weighting
of the cost function, the optimal architecture shifts to
minimize the area (and complexity) of the processor core
AP and increase the number of parallel computational
units N . This implies that as the importance of energy
increases, performance gained from parallelism is more
energy efficient than performance gained from advanced
microarchitectural techniques (that increase AP). As a
result, CMPs will have more processor cores that are
smaller and simpler, consuming less power per proces-
sor core and deriving increased performance from paral-
lelism. This makes sense as larger processors get linearly
more expensive in terms of power, but only faster by the
power of 1

2 . Similarly, increasing the number of cores N
has linear improvement in speed for the parallel fraction
of the algorithm, but has small effect on the energy
(moderately increasing the wasted idle power).

0.5 0.6 0.7 0.8 0.9 1
16KB

128KB

1MB

8MB

64MB

21

23

25

27

29

21

23

25

27

29

21

23

25

27

29

Fraction of algorithm parallelizable (F
1
)

L2
 C

ac
he

 A
re

a
(A

L2
)

A
L2

, γ = 0

A
L2

, γ =0.5

A
L2

, γ = 1

N, γ = 0

N, γ =0.5

N, γ = 1

0.5 0.6 0.7 0.8 0.9 1

0.5 0.6 0.7 0.8 0.9 1

0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 P

ro
ce

ss
or

s
(N

)

Fig. 18. Optimal L2 cache size AL2 and number of
processor cores N as a function of the parallel fraction of
the algorithm F1, for increasing γ. Units of area in memory
byte equivalent units.

4.5 L2 cache area vs. number of processors with
energy cost (AL2 vs. N)

In this example, we reanalyze the tradeoff between the
number of processor cores N and the L2 cache size AL2
for a symmetric CMP, as presented without energy in
Section 4.2. We use the relationship that cache energy is
proportional to the square root of cache area (27) and
processor energy during the cache access is constant
(Eidle). The cost function specific to this optimization is
given in (45). The solution for the optimal architecture
is once again found using the method of Lagrange
multipliers and Newton’s method. Full mathematical
details are found in the Online Supporting Material.

Solving for the optimal architecture using various
values of F1, the parallel fraction of the algorithm, and
plot the solutions are plotted in Fig. 18 for γ = 0, 0.5,
and 1. As energy becomes more important in the opti-
mization, cache memories become larger and larger and

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 13

0.5 0.6 0.7 0.8 0.9 1
1KB

8KB

64KB

512KB

4MB

32MB

20

22

24

26

28

210

20

22

24

26

28

210

A
L2

, γ = 0

N, γ = 0

A
P
, γ = 0

A
L2

, γ = 1

N, γ = 1

A
P
, γ = 1

Fraction of algorithm parallelizable (F
1
)

C
ac

he
 a

nd
 P

ro
ce

ss
or

 A
re

a
(A

L2
, A

P
)

0.5 0.6 0.7 0.8 0.9 1

0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 P

ro
ce

ss
or

s
(N

)

Fig. 19. Optimal areas for processor (AP), L2 cache
(AL2), and number of processor cores (N) as a function
of the parallelism in the algorithm (F1), for γ = 0.0 and
γ = 1.0. Units of area in memory byte equivalent units.

the architecture has fewer cores. There are three reasons
for this: cache memories have lower power consumption
than processor logic per area so that decreasing the
number of cores decreases the area devoted to power
hungry cores, cache memories scale favorably in terms
of energy–as the square root of area, and finally, cache
memories improve the hit rate, reducing the number of
energy-expensive off-chip accesses that occur.

4.6 Processor area vs. L2 cache area vs. number of
processors with energy cost (AP vs. AL2 vs. N)

Finally, we reanalyze the case presented in Section 4.3,
including energy in finding the optimal tradeoff between
the number of processor cores N , the area of the proces-
sor core AP , and the area of the L2 cache AL2. Using (28)
for processor energy and (27) for L2 cache energy results
in the cost function specific to this optimization (45),
given above. Using the method of Lagrange multipliers,
we differentiate the Lagrangian and solve four equations
with four unknowns (N , AP , AL2, λ). This is followed
by Newton’s method to solve for the optimal number of
processors N , processor area AP , and L2 cache size AL2,
as detailed in the Online Supplemental Material.

For a range of values of F1, the optimal values of
AP , AL2, and N are plotted in Fig. 19 for values of
γ = 0 and 1. The curves reinforce the trends seen in the
previous two sections. Processor size is minimized and
cache size increases as energy is taken into account in
the optimization. This is because processor energy scales
linearly with processor area, while cache memory energy
scales with the square root of area. Unlike the previous
examples however, the number of cores changes little,
since memory and processor core size can be traded off
directly and not just by changing the number of cores to
satisfy the fixed area constraint.

TABLE 2
Empirical CMP Data

Year nm Name Cores Ref.
1 2004 90 Intel Pentium 4 1 [33]
2 2005 90 Sun UltraSPARC 1 [34]
3 2005 130 Intel Itanium 1 [35]
4 2004 90 AMD Athlon 64 2 [36]
5 2007 65 AMD Phenom 4 [36]
6 2009 45 AMD Phenom II 4 [36]
7 2006 65 Intel Core 2 (Conroe) 2 [37]
8 2006 65 Intel Core 2 (Kentsfield) 4 [37]
9 2008 45 Intel Core i7 (Nehelem) 4 [37]
10 2001 180 IBM Power 4 2 [38]
11 2004 130 IBM Power 5 2 [39]
12 2007 65 IBM Power 6 2 [40]
13 2007 65 AMD Opteron 4 [36], [41]
14 2009 65 Intel Itanium 2 4 [42]
15 2005 90 Sun Niagara 8 [43]
16 2007 65 Sun 2nd gen. SPARC 8 [44], [45]
17 2009 65 Sun 3rd gen. SPARC 16 [46]
18 2007 90 Azul Systems Vega 2∗ 48 [47]
19 2005 90 IBM Xenon (Xbox360)∗ 3 [48]
20 2006 90 Cell processor (PS3) 9 [49], [50]
21 2010 45 Intel Larrabee‡ 32 [51]
22 2000 280 Intel IXP1200 7 [37]
23 2002 180 Intel IXP240x∗ 9 [37]
24 2002 130 Intel IXP280x∗ 17 [37]
25 2008 65 Intel Teraflops chip 80 [52]
26 2007 90 Tilera TILE64∗ 64 [53]
27 2006 130 ClearSpeed CSX600∗ 96 [54]
28 2008 90 ClearSpeed CSX700∗ 192 [54]
29 2008 90 Nvidia GeForce 9† 128 [55]
30 2009 65 Nvidia GeForce 200† 240 [56]
31 2007 55 AMD Radeon 2900 XT 320 [36]
32 2008 55 AMD Radeon 4870 XT† 800 [36]
33 2008 130 Storm-I Stream Processor 82 [57]

Notes:
∗ The total chip area was not reported, so it was estimated from the
reported number of transistors in the chip, using an average number
of transistors per mm2 for the particular process technology.
† Memory size (in MB) is estimated, extrapolating from earlier GPUs.
‡ Neither chip area nor number of transistors per chip was reported,
so total area was estimated from wafer photographs.

5 RESULTS

As one test of our approach, we consider the tradeoff
between processor area, on-chip memory area, and the
number of processor cores, assuming a symmetric CMP.
Here we compare the theoretical predictions from our
objective function with a sample set of actual commercial
or research CMPs. The result, shown in Fig. 20, is a
plot of the normalized memory per core versus the
number of cores, for each CMP architecture. The solid
line indicates the optimal memory per core as predicted
by our theoretical model, without including energy costs.
It was generated from the solution given in Section 4.3.

The sample set contains CMPs from many classes: 1–18
are desktop and server CMPs, 19–21 are game/graphics
chips, 22–24 are network processors, 25–28 are processor
arrays, and 29–33 are graphics processing units (GPUs).
Table 2 lists the full cross listing of CMP architecture and
corresponding numerical index. The area of each chip
was scaled to a 90nm process equivalent. The normalized
memory per core is measured as a percentage of total

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 14

number of processor cores (N)

m
em

or
y

ar
ea

 p
er

 p
ro

ce
ss

or
 c

or
e

to
 to

ta
l a

re
a

ra
tio

: (
A

m
em

/N
)/

A
to

t

1

2
3

4

5 6

7
8

9

10

11
12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

1/65536

1/16384

1/4096

1/1024

1/256

1/64

1/16

1/4

1

1 2 4 8 16 32 64 128 256 512 1024

Fig. 20. Log-log plot of normalized memory per core vs. number of processor cores. Open circles signify estimated
data points. The solid line indicates the optimal memory per core as predicted by our theoretical model, without
including energy costs. Table 2 lists the corresponding numerical index for each CMP.

chip area: Amem/(AtotN) where Amem is the total cache
memory area, Atot is the total chip area, and N is the
number of cores.

In Fig. 20, many designs fit the predicted optimal
architecture curve (within a factor of 2x above and
below the curve). This demonstrates the ability of our
approach to capture the high-level tradeoffs between
computation and memory in real systems. Architectures
that fall below the fit line, indicate they are under-
capitalized in terms of memory per processor core for
general purpose computing applications. Observing that
22–24 are network processors and 29–33 are GPUs, it is
reasonable to claim that network processors and GPUs
are not general purpose processors and should not be
expected to conform to the predictions of a general pur-
pose model. However, there is a significant movement
afoot to use GPUs for scientific computing, the goal of
Nvidia’s CUDA and AMD’s CAL frameworks. Thus,
although GPU architectures may be optimal for graphics
applications, our results contend that GPU architectures
are less than optimal for general purpose and scientific
computations. These architectures would benefit from a
factor of 4 to 8 increase in memory per core if used for
non-graphics computation. The Storm-I stream processor
architecture, 33 and designs from Clearspeed, 27–28
appear to be a more promising alternatives for this class
of applications. Another CMP that is particularly sub-

optimal in terms of memory per processor core is Intel’s
Teraflops research chip, 25. In contrast, the architectures
from Tilera, 26 and Azul Systems, 18 have a far more
optimal allocation of memory per processor core.

6 DISCUSSION

Today microprocessor design is largely based on sim-
ulators [58], [59], [60], [61], [62]. While this approach
has served the computer architecture design community
well, the recent advances in CMPs technology poses
serious challenges to the community. In response, re-
searchers have begun to investigate analytical methods
for optimizing CMP architectures. Notably, work by Hill
and Marty [9] use a measure of processor performance
to augment Amdahl’s Law, and apply it to symmetric,
asymmetric, and dynamic multicore processors in order
to quantitatively compare CMP architectures. Our model
is broader, incorporating more architectural design ele-
ments such as memory hierarchy and communication
contention, in addition to processor performance. Our
model also allows the inclusion of more detailed models
for more accurate system modeling. In addition, after a
few algebraic transformations and appropriate parame-
ters, we can show that Hill and Marty’s expression for
the speedup of a symmetric CMP (the first equation in
[9]), is a special case of our own model. First, in order to

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 15

256KB 1MB 4MB 16MB 64MB 256MB
0

100

200

300

400

500

600

Processor Area (AP)

Sp
ee

du
p

F1=0.999
F1=0.99
F1=0.975
F1=0.9
F1=0.5

Fig. 21. Speedup for different values of F1, assuming
Afix = AL2 = 0. Compare with Fig. 2(b) in [9]. Units of
area in memory byte equivalent units.

match Hill and Marty’s approach, we must use Afix = 0
and AL2 = 0. The cost function (33) simplifies to:

JD = F0βA
− 1

2

P +
F1AP
Atot

βA
− 1

2

P (54)

Next, we formulate an expression for speedup. Since we
are not accounting for energy, the units of JD are cycles.
Creating a ratio between the cost of the architecture JD
and the cost of a baseline architecture, JP0

D , we obtain a
measure of speedup. Let the baseline architecture be a
single processor (F0 = 1) of minimum size (AP0), thus
JP0
D = βA

− 1
2

P0 .

speedup =
JP0
D

JD
=

βA
− 1

2

P0

F0βA
− 1

2

P + F1AP

Atot
βA
− 1

2

P

(55)

In order to normalize the numerator to 1, we choose
β = A

1
2

P0:

speedup =
1

F0A
1
2

P0A
− 1

2

P + F1AP

Atot
A

1
2

P0A
− 1

2

P

(56)

Following Hill and Marty’s notation, perf(r) =
√

AP

AP0
,

F1 = f , F0 = 1− f , AP = r and Atot = n, resulting in:

speedup =
1

F0

perf(r) +
F1AP

perf(r)Atot

(57)

=
1

1−f
perf(r) +

f ·r
perf(r)n

(58)

This is Hill and Marty’s expression for the speedup of a
symmetric CMP [9]. Equation (56) is plotted in Fig. 21,
matching Fig. 2(b) in [9]. Comparing Fig. 8 and 21, it
is apparent that using a value of zero for AL2 and Afix
leads to overly optimistic estimations of speedup. (Note
the change in y-axis scale between the figures.) Further,
the optimal processor area (the area value at which each
curve is at a maximum) is under estimated.

In another recent work, Woo and Lee [11] extend
the model of Hill and Marty to include energy. Our
model is similar, in that energy is broken out for serial
and parallel processors, active and idle processors, and
can be applied to both symmetric and asymmetric ar-
chitectures. In contrast, we include a microarchitectural
model of energy, such as the memory hierarchy and
communication energy, and they do not. In the Online
Supporting Material, we demonstrate that with a num-
ber of simplifying assumptions, our model is equivalent
to Woo and Lee’s model.

Oh et al. [63] developed a detailed model of cache
memory and performed tradeoffs between the cache size
and number of cores on the CMP. We perform a similar
area constrained design tradeoff analysis in Section 4.2.
Their cache model is more detailed, however, they lack
a global system expression, inclusion of energy, and a
closed form solution to the optimum. Moreover, there is
nothing to preclude using more detailed cache models
in our global objective function.

Two other approaches, [64] and [65], perform similar
constrained design space exploration of CMP architec-
tures, including thermal analysis. They emphasize the
importance of joint optimization across interrelated vari-
ables and inclusion of constraints during optimization.
However, both approaches are based on simulators, in
contrast to our analytical approach to optimization.

6.1 Methodology

We have shown considerable math in this paper in
order to demonstrate our methodology and in particular,
closed form solutions to our objective function. However,
if the closed form solution is intractable or one wishes to
avoid the algebra, our objective function can be solved
using Newton’s method to find the optimal solution.
This automation step is proceeded by using symbolic
solvers to perform the partial derivatives (using Maple
[66] or Sage [67] for example). In this case, building
the CMP model is reduced to expressing the system in
terms of the objective function – writing down a single
equation. In addition to being able to rapidly create CMP
models, design exploration and optimization executes
in fractions of second. Fast model creation and fast
execution time represent two significant advantages over
simulation based approaches for exploring a large design
space. (See Fig. 2 in [59] for representative execution
times of simulation based approaches.)

In this paper we have made the assumption of general
purpose computing applications, particularly for cache
miss rate parameters κ,Gi and the processor perfor-
mance versus area constant β. However, our approach
is in no way limited only to general purpose com-
puting. With appropriate parameters and underlying
models (for example, the relationship between proces-
sor performance and area), our model easily extends
to other application classes. In forthcoming work, we
have extended our generalized objective function to the

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 16

optimization of asymmetric CMPs as well as to shared
access models of bus and network communication and
memory bandwidth.

Our goal for this paper is to establish a system-level
analytical model for parallel computational architectures
that incorporates computation, memory, and parallelism,
combined with delay and energy costs in an area con-
strained setting. Our six examples have built from simple
to progressively more complex in an effort to make our
modeling approach understandable. As a result, we have
focused on first-order, system-level effects. Thus there
are many detailed effects that we have not yet included
in our model, as presented here. Examples include cache
sharing and interference, L3 caches, and cache coherency.
More detailed models can be built using our approach
by incorporating more complex lower-level models. For
example, in Section 4.2, we modeled independent L2
caches, without sharing or interference between cores.
More detailed low-models that include these effects
could be derived from analytical models such as [68],
[69], [70]. Similarly, we do not specifically model of cache
coherency. It could be included by considering how it af-
fects area, energy, and delay. It increases communication
traffic on the CMP network, which increases congestion
and potentially increases delay for any instructions that
require data from the network. And, depending on the
coherency protocol, it may increase the latency and
energy to access data, depending on the distance to
access the data (local, neighbor, distant, etc). Modeling
this level of detail is a good subject for future work.

There are also effects that we have not considered
here, but are straightforward extensions to that which
we have presented. For example, we assumed that the
L2 cache was the last level cache, while many CMPs
have internal L3 caches. An L3 cache is easily modeled
by extending the inner summation with an extra Gij
term for the fraction of instructions that hit in the L3
cache, (after L2 and before main memory). Of course,
an L3 model including sharing or interference would
require more work. Similarly, effects such as access to
off-chip resources (I/O, disks, network) can be modeled
by adding extra Gij terms (and Dij , Eijh) and expanding
the inner summation. Another effect to consider is that
all of our examples have assumed the delays for the
parallel and serial sections are the same (Di0 = Di1,∀i),
resulting a cost function of the form:

JD = (F0 + F1/N)(G0D0 +G1D1 +G2D2).

However, the instruction mix is generally different for
the parallel and serial fractions of the algorithm. For
example, communication and access to the memory hi-
erarchy is much larger in the parallel fraction than in the
serial fraction. However, there is nothing in the model
that precludes different delays for the parallel and serial
algorithm fractions, using a cost function of the form:

JD = F0(G00D00 +G10D10 +G20D20) +

F1/N(G01D01 +G11D11 +G21D21)

TABLE 3
Summary of symmetric CMP examples

Section Optimization Variables Energy
4.1 Processor N vs. AP -
4.2 Memory N vs. AL2 -
4.3 Full Optimization N vs. AP vs. AL2 -
4.4 Processor N vs. AP Yes
4.5 Memory N vs. AL2 Yes
4.6 Full Optimization N vs. AP vs. AL2 Yes

TABLE 4
Summary of parameters for each example

Parameter 4.1 4.2 4.3 4.4 4.5 4.6
K 2 2 2 2 2 2
F0 F0 F0 F0 F0 F0 F0

F1 F1 F1 F1 F1 F1 F1

N0 1 1 1 1 1 1
N1 N N N N N N

M 1 3 3 1 3 3
G0 1 G0 G0 1 G0 G0

G1 - Ĝ1 Ĝ1 - Ĝ1 Ĝ1

G2 - Ĝ2 Ĝ2 - Ĝ2 Ĝ2

D0 CPI D0 CPI CPI D0 CPI
D1 - D1 D1 - D1 D1

D2 - D2 D2 - D2 D2

γ 0 0 0 γ γ γ
E0 - - - EP E0 EP

E1 - - - - EM EM

E2 - - - - E2 E2

Ĝ1 = (1−G0)(1− κA
− 1

2
L2)

Ĝ2 = (1−G0)(κA
− 1

2
L2)

EP = ρPAP = Eactive/AP0
AP

EM = Eidle + ρL2A
1
2
L2 = Eidle + E1/AL20A

1
2
L2

where F0, Gi0, Di0 correspond to the serial fraction, and
F1, Gi1, Di1 correspond to the parallel fraction. With
accurate estimates of the statistics for the Gij ’s and Dij ’s
for both the serial and parallel fractions, the result is a
more accurate model.

6.2 Summary of Examples
Our six optimization examples are summarized in Table
3 and the parameters for each of the examples are
summarized in Table 4. The first three examples show
the tradeoffs of the number of cores N versus the size
of each core and its cache memory as a function of the
parallelism in the application. As the parallel fraction of
the application F1 increases, the optimal number of cores
N grows rapidly. The last three examples replicate the
earlier examples while including energy.

7 CONCLUSION

With the historical advent of Very Large Scale Integrated
(VLSI) systems and Systems on a Chip (SoC), sim-
ple analytical models that characterize the architectural

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 17

components in VLSI systems much like Amdahl’s law,
have proven to be crucial to the success VLSI design
methodologies. This trend was exemplified in the models
for memory area, circuit delay and system parallelism
found in the seminal textbook on VLSI design [14]. Over
the past twenty years analytical models were developed
for many different levels of design abstraction, including
the transistor, wire and element level, the logic gate and
standard cell level, up to the functional unit level. Even-
tually, many analytical models became part of automatic
algorithms for generating complete circuits and designs.
For example, there are currently placement and routing
CAD tools for physical layout, as well as tools for logic
synthesis and standard cell mapping.

In the new era of many-core CMPs, full system op-
timization is the dominant design theme. Memory ar-
chitecture and communication must be optimized along
with processor microarchitecture. In modern processors,
the cost of off-chip communication is high in terms of
delay and energy. And although there are some methods
for latency hiding (e.g. prefetching, non-blocking writes,
etc.), we observe that there are no available techniques
for “energy hiding.”

In this paper we have presented a cost function
formulation of parallel processing performance based
on low level energy and delay costs. We derived our
objective function beginning with Amdahl’s law. Using
a constrained optimization framework and cost function
minimization, we have demonstrated an approach for
high-level architectural optimization of CMPs. Our ap-
proach finds the CMP architecture that maximizes the
parallel energy-delay performance, subject to the fixed
total area constraint. This approach is useful for illu-
minating architectural trends in CMP design. However,
the primary goal is to explore the high-level design
space prior to refining the design space (with instruction
set simulator models). Ultimately, our objective func-
tion is the cost function to be optimized in a high-
level automated design tool for designing symmetric
and asymmetric multi- and many-core CMPs. This CMP
architectural optimization is required in order to realize
next-generation Exascale systems [19].

Our generalized cost function is capable of capturing
and optimizing a rich set of complex behaviors, inherent
in the design tradeoffs of CMP system design. By no
means are the examples presented here exhaustive. Our
goal is to present a framework and approach for opti-
mization. We expect that further research will produce
refined expressions for the performance, energy, and area
tradeoffs used for optimization.

ACKNOWLEDGMENTS
This research was motivated by the discussions at the
Second Kavli Futures Symposium titled held in Costa-
Rica in January of 2009, under the theme of “Real
Problems for Imagined Computers.” More specifically,
the generalization of Amdahl’s Law as a cost func-
tion formulation that includes the energy-delay product

was inspired by the “Bandwidth-Cost Integral,” an idea
that was conceived by the members of the working
group “Obstacles to Exascale,” Bill Dally, Tim Cornwell,
Ravi Nair, Michael Roukes, Horst Simon, and A.G. An-
dreou. This work was also partially supported by the
European FP7 project SCANDLE and an ONR MURI
N000141010278.

REFERENCES
[1] G. M. Amdahl, “Validity of the single processor approach to

achieving large scale computing capabilities,” Proceedings AFIPS
Spring Joint Computer Conference, 1967.

[2] J. L Hennessy and D. A Patterson, “Computer architecture: a
quantitative approach, (3rd edition),” Morgan Kaufmann Publishers,
2002.

[3] R. G. Brown, “Maximizing Beowulf Performance,” Proceedings of
4th Annual Linux Showacase and Conference, 2000.

[4] J. Gustafson, “Reevaluating Amdahl’s Law,” Communications of
the ACM, 1988.

[5] S. Krishnaprasad, “Uses and abuses of Amdahl’s Law,” Journal of
Computing Sciences in Colleges, 2001.

[6] G. Bell, J. Gray, and A. Szalay, “Petascale computational systems,”
Computer, 2006.

[7] A. Szalay, G. Bell, J. Vandenberg, A. Wonders, R. Burns, D. Fay,
J. Heasley, T. Hey, M. Nieto-SantiSteban, A. Thakar, C. van Ingen,
and R. Wilton, “GrayWulf: Scalable Clustered Architecture for
Data Intensive Computing,” in 42nd Hawaii International Confer-
ence on System Sciences, (HICSS 2009), 2009.

[8] S. Borkar, “Thousand core chips: a technology perspective,” Pro-
ceedings of the 44th annual Design Automation Conference (DAC ’07),
2007.

[9] M. Hill and M. Marty, “Amdahl’s Law in the multicore era,”
Computer, 2008.

[10] J. M. Paul and B. H. Meyer, “Amdahl’s Law revisited for single
chip systems,” International Journal of Parallel Programming, 2007.

[11] D. H. Woo and H. Lee, “Extending Amdahl’s Law for energy-
efficient computing in the many-core era,” Computer, 2008.

[12] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang,
“The case for a single-chip multiprocessor,” Proceedings of the 7th
international conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII), 1996.

[13] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese, “Piranha:
a scalable architecture based on single-chip multiprocessing,”
Proceedings of the 27th annual International Symposium on Computer
Architecture (ISCA ’00), 2000.

[14] C. Mead and L. Conway, “Introduction to VLSI systems,” Addison-
Wesley Publishers, 1979.

[15] A. S. Cassidy and A. G. Andreou, “Analytical methods for the
design and optimization of chip-multiprocessor architectures,”
43rd Annual Conference on Information Sciences and Systems (CISS
2009), 2009.

[16] A. S. Cassidy, K. Yu, H. Zhou, and A. G. Andreou, “A high-
level analytical model for application specific CMP design ex-
ploration,” Proceedings of the 2011 Conference on Design Automation
& Test in Europe (DATE 2011), 2011.

[17] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. A.
Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and
P. Woodland, “The HTK book,” University of Cambridge, 2009.

[18] J. A. Rice, “Mathematical Statistics and Data Analysis (3rd Edi-
tion),” Duxbury Press, 2006.

[19] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller,
S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli,
S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick,
“ExaScale computing study: technology challenges in achieving
exascale systems,” DARPA IPTO Report, 2008.

[20] R. Gonzalez and M. Horowitz, “Energy dissipation in general
purpose microprocessors,” IEEE Journal of Solid State Circuits,
1996.

[21] S. Przybylski, M. Horowitz, and J. Hennessy, “Characteristics of
performance-optimal multi-level cache hierarchies,” Proceedings of
the 16th annual International Symposium on Computer Architecture
(ISCA ’89), 1989.

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 18

[22] A. Hartstein, V. Srinivasan, T. Puzak, and P. Emma, “On the
nature of cache miss behavior: is it square root of 2?” Journal
of Instruction-Level Parallelism, 2008.

[23] L. Codrescu, M. Deb-Pant, T. Taha, J. Eble, S. Wills, and J. Meindl,
“Exploring microprocessor architectures for gigascale integra-
tion,” 20th Anniversary Conference on Advanced Research in VLSI,
1999.

[24] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” Proceedings
of the 27th annual International Symposium on Computer Architecture
(ISCA ’00), 2000.

[25] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. Emma,
and M. Rosenfield, “New methology for early-stage,
microarchitecture-level power-performance analysis of
microprocessors,” Ibm Journal Of Research And Development,
2003.

[26] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye,
“Energy-driven integrated hardware-software optimizations us-
ing SimplePower,” ACM SIGARC Computer Architecture News,
2000.

[27] P. Shivakumar and N. Jouppi, “CACTI 3.0: an integrated cache
timing, power, and area model,” Compaq Computer Corporation
(WRL Research Report 2001/2), 2001.

[28] S. Thoziyoor, N. Muralimanohar, and J. Ahn, “CACTI 5.1,” HP
Laboratories Technical Report (HPL-2008-20), 2008.

[29] C.-L. Su and A. Despain, “Cache design trade-offs for power and
performance optimization: a case study,” Proceedings of the 1995
international symposium on Low power design (ISLPED ’95), 1995.

[30] M. Kamble and K. Ghose, “Analytical energy dissipation models
for low power caches,” Proceedings 1997 International Symposium
on Low Power Electronics and Design, 1997.

[31] ——, “Energy-efficiency of VLSI caches: a comparative study,”
Proceedings Tenth International Conference on VLSI Design, 1997.

[32] F. Pollack, “New microarchitecture challenges in the coming gen-
erations of CMOS process technologies (keynote address)(abstract
only),” Proceedings of the 32nd annual ACM/IEEE international
symposium on Microarchitecture (MICRO 32), 1999.

[33] J. Schutz and C. Webb, “A scalable X86 CPU design for 90 nm
process,” in 2004 IEEE International Solid-State Circuits Conference,
Digest of Technical Papers (ISSCC 2004), 2004.

[34] H. McIntyre, D. Wendell, K. Lin, P. Kaushik, S. Seshadri, and
Wang, “A 4-MB on-chip L2 cache for a 90-nm 1.6-GHz 64-bit
microprocessor,” IEEE Journal of Solid State Circuits, 2005.

[35] C. McNairy and R. Bhatia, “Montecito: a dual-core, dual-thread
Itanium processor,” IEEE MICRO, 2005.

[36] AMD, “AMD website,” www.amd.com/, 2010.
[37] Intel, “Intel website,” www.intel.com, 2010.
[38] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy, “POWER4

system microarchitecture,” Ibm Journal Of Research And Develop-
ment, 2002.

[39] R. Kalla, B. Sinharoy, and J. Tendler, “IBM Power5 chip: a dual-
core multithreaded processor,” IEEE MICRO, 2004.

[40] H. Le, W. Starke, J. Fields, F. O’Connell, D. Nguyen, B. Ronchetti,
W. Sauer, E. Schwarz, and M. Vaden, “IBM POWER6 microarchi-
tecture,” Ibm Journal Of Research And Development, 2007.

[41] P. Conway and B. Hughes, “The AMD Opteron northbridge
architecture,” IEEE MICRO, 2007.

[42] B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer,
J. Desai, E. Francom, M. Gowan, P. Gronowski, D. Krueger,
C. Morganti, and S. Troyer, “A 65nm 2-billion transistor quad-
core Itanium processor,” IEEE Journal of Solid State Circuits, 2009.

[43] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way
multithreaded SPARC processor,” IEEE MICRO, 2005.

[44] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski, N. Gura,
R. Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Sana, D. Shea-
han, L. Spracklen, and A. Wynn, “UltraSPARC T2: a highly-
treaded, power-efficient, SPARC SOC,” IEEE Asian Solid-State
Circuits Conference, (ASSCC ’07), 2007.

[45] U. Nawathe, M. Hassan, K. Yen, A. Kumar, A. Ramachandran,
and D. Greenhill, “Implementation of an 8-core, 64-thread, power-
efficient SPARC server on a chip,” IEEE Journal of Solid State
Circuits, 2008.

[46] G. Konstadinidis, M. Tremblay, S. Chaudhry, M. Rashid, P. Lai,
Y. Otaguro, Y. Orginos, S. Parampalli, M. Steigerwald, S. Gundala,
R. Pyapali, L. Rarick, I. Elkin, Y. Ge, and I. Parulkar, “Architecture
and Physical Implementation of a Third Generation 65nm, 16

Core, 32 Thread Chip-Multithreading SPARC Processor,” IEEE
Journal of Solid State Circuits, 2009.

[47] Azul, “Azul website,” www.azulsystems.com, 2010.
[48] J. Andrews and N. Baker, “Xbox 360 System Architecture,” IEEE

MICRO, 2006.
[49] D. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry,

D. Cox, P. Harvey, H. Hofstee, C. Johns, J. Kahle, A. Kameyama,
J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M. Riley,
D. Stasiak, M. Suzuoki, O. Takahashi, J. Warnock, S. Weitzel,
D. Wendel, and K. Yazawa, “Overview of the architecture, circuit
design, and physical implementation of a first-generation cell
processor,” IEEE Journal of Solid State Circuits, 2006.

[50] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor com-
munication network: built for speed,” IEEE MICRO, 2006.

[51] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa,
E. Grochowski, T. Juan, and P. Hanrahan, “Larrabee: a many-
core x86 architecture for visual computing,” ACM Transactions on
Graphics, 2008.

[52] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,
Y. Hoskote, and N. Borkar, “An 80-Tile 1.28TFLOPS Network-
on-Chip in 65nm CMOS,” in 2007 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC 2007), 2007.

[53] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks,
D. Khan, F. Montenegro, J. Stickney, and J. Zook, “TILE64 - Proces-
sor: A 64-Core SoC with Mesh Interconnect,” in IEEE International
Solid-State Circuits Conference, Digest of Technical Papers(ISSCC
2008), 2008.

[54] Clearspeed, “ClearSpeed website,” www.clearspeed.com, 2010.
[55] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and

J. Phillips, “GPU Computing,” in Proceedings of the IEEE, 2008.
[56] Nvidia, “NVIDIA website,” www.nvidia.com, 2010.
[57] B. Khailany, T. Williams, J. Lin, E. Long, M. Rygh, D. Tovey,

and W. Dally, “A Programmable 512 GOPS Stream Processor for
Signal, Image, and Video Processing,” IEEE Journal of Solid State
Circuits, 2008.

[58] D. Burger and T. Austin, “The SimpleScalar tool set, version 2.0,”
SIGARCH Computer Architecture News, 1997.

[59] L. Zhao, R. Iyer, J. Moses, R. lllikkal, S. Makineni, and D. Newell,
“Exploring large-scale CMP architectures using ManySim,” IEEE
MICRO, 2007.

[60] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics:
A full system simulation platform,” Computer, 2002.

[61] C. Hughes, V. Pai, P. Ranganathan, and S. Adve, “Rsim: sim-
ulating shared-memory multiprocessors with ILP processors,”
Computer, 2002.

[62] M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod, “Using the
SimOS machine simulator to study complex computer systems,”
Transactions on Modeling and Computer Simulation (TOMACS), 1997.

[63] T. Oh, H. Lee, K. Lee, and S. Cho, “An Analytical Model to Study
Optimal Area Breakdown between Cores and Caches in a Chip
Multiprocessor,” IEEE Computer Society Annual Symposium on VLSI
(ISVLSI 09), 2009.

[64] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP design
space exploration subject to physical constraints,” Proceedings of
the 12th International Symposium on High-Performance Computer
Architecture, 2006.

[65] M. Monchiero, R. Canal, and A. González, “Design space explo-
ration for multicore architectures: a power/performance/thermal
view,” Proceedings of the 20th annual International Conference on
Supercomputing (ICS ’06), 2006.

[66] Maplesoft, “Maple,” www.maplesoft.com/products/Maple/index.aspx,
2010.

[67] Sagemath, “Sage,” www.sagemath.org/, 2010.
[68] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-

thread cache contention on a chip multi-processor architecture,”
in Proceedings 11th International Symposium on High-Performance
Computer Architecture (HPCA), 2005.

[69] X. Chen and T. Aamodt, “A first-order fine-grained multithreaded
throughput model,” 15th International Symposium on High Perfor-
mance Computer Architecture (HPCA 2009), 2009.

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 19

[70] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A.
Wood, “Analytic evaluation of shared-memory systems with ILP
processors,” in ACM SIGARC Computer Architecture News, 1998.

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 1

Supporting Material
Beyond Amdahl’s Law: An Objective Function That Links

Multiprocessor Performance Gains To Delay and Energy
Andrew S. Cassidy and Andreas G. Andreou

F

1 ALTERNATIVE COST-FUNCTION DERIVATION

The delay cost function–Eqn. (12) in the main text–can be directly derived in an expected value framework. We
begin with the definition of expected value for a joint distribution of random variables [1]:

E[XY] =
∑
y

∑
x

g(x, y) p(x, y) (1)

Our goal is to find the expected delay given the processor delay costs and the parallelism. In this case, the value is
the ith constituent delay cost and the number of parallel processors Nj . The probability p(dij) is the joint probability
of an instruction belonging to the ith cost category and the jth level of parallelism.

E[D] =
K−1∑
j=0

M−1∑
i=0

dij
Nj

p(dij) (2)

where p(dij) =
Qij∑

j

∑
iQij)

and Qij is the number of instructions with the ijth delay. Since the probability that an
instruction belongs to the ith cost category and the jth level of parallelism are conditionally dependent:

E[D] =

K−1∑
j=0

M−1∑
i=0

dij
Nj

p(di|dj)p(dj) (3)

Rearranging:

E[D] =
K−1∑
j=0

p(dj)

Nj

M−1∑
i=0

di p(di|dj) (4)

where

p(di|dj) =
Qij∑M−1
i=0 Qij

= Gij (5)

and

p(dj) =
∑
i

p(dij) = Fj (6)

Interchanging fractions for probabilities:

JD =
K−1∑
j=0

Fj
Nj

M−1∑
i=0

GijDij (7)

Equation (7) is equivalent to the result in the main text, Eqn (12).

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 2

2 SUB-SYSTEMS DELAY AND ENERGY COSTS

In macro scale computing systems, delay and energy costs as they relate to computer architecture are in general,
a function of distance and the subsystem. For example, memory hierarchy is a key concept envisioned by the
pioneers of computer architecture in 1946: “Ideally one would desire an indefinitely large memory capacity such that any
particular...word would be immediately available. ... We are ... forced to recognize the possibility of constructing a hierarchy
of memories, each of which has greater capacity than the preceding but which is less quickly accessible.” [2], [3] Today the
concept of a memory hierarchy is ubiquitous in modern computers. Multiple levels of memory form the hierarchy,
where each level is smaller but faster than the level below it. Table 1 estimates size and speed parameters for
relatively current technology and a microprocessor operating at a frequency of 1GHz.

TABLE 1
Memory Hierarchy - Access Delay

Description Size Access Access
Cycles Time

(@1GHz)
Register File 100Bs - 1KBs 1 1ns
L1 Cache 10KBs 1s 1ns
L2 Cache 100KBs - 1MBs 10s 10ns
Memory GBs 100s 100ns
Remote Processor 1-100GBs 1K-100K 1-100µs
Hard Drive 100GBs - 1TBs 1M 1ms
Network (WAN) > TBs 1M - 1B ms - sec

The success of the memory hierarchy is based on the principles of locality [3]. Locality of reference states that
programs spend most of their time executing only a small fraction of the code, while temporal locality states that
data that has been used is likely to be used again in the near future. Small fast memories at the top of the hierarchy
enable the fastest execution of the most used instructions and data. More rarely used instructions and data can be
retrieved from lower levels of the hierarchy, albeit with longer access time. However, this longer access time is far
less frequent, so that the overall execution time of the program is not severely affected.

The energy expended during communication is directly related to the communication distance. In particular, the
energy cost of off-chip communication to external memory, to other processor chips, or across a network is orders
of magnitude more costly than communication within a single chip. Fig. 1, shows the energy required to send a
bit of data over a range of distances. Note the log scale on both axes. Bars at the bottom of the graphs indicate the
approximate range of various types of communication. Significant variation in the graph represent differences in
technology. For example, points (m) and (n) both represent SERDES technology, however, point (n) has a voltage
signaling swing of 130mV, versus 400mV for (m). Point (o) represents the energy savings of optical technology over
electrical (p) for long distance communication.

By combining the complexity of the instructions as well as the distance costs, one can compute the energy costs
per operation in Joules/OP. Table 3 lists the energy costs per OP extracted and adapted from [6]. If we assume
64 bit operations, the values of Table 3 compare favorably with the data in Fig. 1. The first three rows of Table

TABLE 2
Energy cost of communication as a function of distance: data labels for Fig. 1.

Index Ref. Description
a [4] 100nm CMOS inverter
b [4] 1000nm CMOS inverter
c [5] SOI 3D via
d [6] 3D Through Silicon Via
e [6] MPU register file
f [6] L2 cache
g [7] IC copper trace (future)
h [7] IC copper trace (current)
i [5] electrical switching across 1cm die
j [6] L3 cache
k [5] electrical chip-to-chip link
l [6] DDR DRAM
m [8] SERDES (current)
n [9] SERDES (future)
o [10], [11], [12], [13] optical
p [14], [15] Firewire (IEEE 1394b)

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 3

10−6 10−3 100
10−18

10−16

10−14

10−12

10−10

10−8

a

b c d
e

f
g

h
i j

k
l

m

n
o

p

Distance (m)

Bi
t E

ne
rg

y
(J

ou
le

s/
bi

t)

transistors funct. units intra−chip inter−chip network

Fig. 1. Energy cost of communication as a function of distance. The data labels are listed in Table 2.

TABLE 3
Energy costs of computation and communication, adapted from [6]

Symbol Description Energy Cost
(Joules per OP)

EFPU Floating pt unit (arith) 10.6× 10−12

ERF Register file (2R, 1W) 5.5× 10−12

EL1−I L1-I Cache 3.6× 10−12

EL1−D L1-D Cache 3.6× 10−12

EL2 L2 Cache 18.5× 10−12

EL3 L3 Cache 39.5× 10−12

Emem Memory 168.5× 10−12

Enet Network 311.5× 10−12

3 constitute the energy consumption of a basic operation: instruction fetch from L1-I, operands supplied by the
register file, floating point arithmetic, and writing the result back to the register file. These approximate delay and
energy values are used in the main text in order to give the design examples in Section 4 reasonable results.

3 PROCESSOR AREA

To provide realistic CMP architecture examples in our analysis, we investigated the area breakdown of current
CMP designs. Starting with area values provided in the literature (typically for the full die), we extrapolated sub-
unit areas from die photographs. This provides only noisy estimates that include estimation error. However, with
smoothing these estimates provide reasonable values for our high-level optimization examples in Section 4 of the
main paper. Table 4 summarizes area values for a number of contemporary processors.

For our analyses, we target a 45nm process technology. Then we assume a die size 12.5% larger than the 2 billion
transistor Intel quad-core Itanium: Atot = 25mm× 32mm = 800mm2. On a die this size, we could tile 32 complete
Intel Atom processors. More realistically for a CMP, we do not need all of the functions replicated, just processor
cores, local memory, and interconnect. Tiling Atom core logic and L2 cache, we could fit 60 Atom processor cores on
the 800mm2 die. Using simple ARM processor cores, thousands of processor cores (with minimal memory) could
be integrated. For example, the ARM Cortex M0 processor occupies only 0.25mm2 in a 0.18µm process.

The core area for each processor is also compared in Table 4. The table does not show relative performance between
the processors, but the differences are apparent: the first three ARM processors are basic 32-bit microcontrollers

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 4

TABLE 4
Comparison of CMP Area Values. Total area values (Atot) are from the literature. Values for total processor area
(APT), total memory area (AMT), and fixed function area (Afix) are extrapolated from die photographs, unless

denoted by (†), which are values reported in the literature.

CMP Ref. Year Proc. N Atot APT APT /N APT /N Cache AMT 1MB est Afix Percent
45nm est Size 45nm Afix

nm mm2 mm2 mm2 mm2 MB mm2 mm2 mm2 %
ARM7TDMI [16] 180 1 - 0.62† 0.62 0.0388 - - - - -
ARM Cortex M3 [17] 2004 180 1 - 0.86† 0.86 0.0537 - - - - -
ARM Cortex M0 [16] 2009 180 1 - 0.25† 0.25 0.0156 - - - - -
IBM Power 4 [18] 2001 180 2 414 166.5 83 5.2 1.41 120 5.31 128 31
IBM Power 5 [19], [20] 2004 130 2 389 142 71 8.9 1.88 108 7.2 139 36
IBM Power 6 [21] 2007 65 2 341 90 45 22.5 8 123 7.68 127 37
Intel Atom [22] 2007 45 1 25 8 8.3 8.3 0.5 5 9.96 11 44
Intel Itanium [23] 2009 65 4 699 276† 69 34.5 24 191† 3.98 230† 33
STI Cell [24] 2006 90 9 221 108 - - - 55 - 59 27
STI Cell SPE [24] 2006 90 8 - - 14.5 3.625 0.25 4.04 4.04 - -
STI Cell PPE [24] 2006 90 1 - - 24.8 6.2 0.5 22.6 11.3 - -
Sun T2 [25] 2007 65 8 342 97 12 6 4 87 10.9 158 46
Sun T3 [26] 2009 65 16 396 223 14 7 2 26 6.5 148 37

for embedded applications. At the other end of the spectrum, the Power 5, Power 6, and Itanium are full server
class processors. Within these broad processor class distinctions, there are a myriad of finer distinctions: numbers of
functional units, data width, vector arithmetic, instruction issue width, instruction retirement strategy, simultaneous
multi-threading, and so forth.

Table 4 also shows a comparison of estimated CMP cache memory area values. The 12th column estimates area
for a 1MB cache in a 45nm process. The values include estimation error due to process and array scaling, as well as
additional variations due to cache memory technology, mainly associativity and 4 vs. 6T SRAM cells. However, we
can approximate these values for our purposes. By averaging the final column, we arrive at a round area estimate
of 7.5mm2 per 1MB of memory in a 45nm process technology.

Some functions, such as the I/O interface, clock PLLs, memory interface, test and debug units do not scale
proportionally to the number of cores on the CMP, and can be generally assumed to consume a fixed area per
chip. The last two columns of Table 4 shows a comparison of estimated CMP fixed area functions. On average, the
fixed area functions consume 36.4% of the die area. For the analyses in this paper, we use a fixed area value of
Afix = 0.35× 800mm2 = 280mm2.

4 CMP DESIGN EXAMPLE MATHEMATICS

In this section, we provide the full mathematical solutions to the examples in Section 4 of the main paper. For
reference, the generalized objective function is:

JED =

K−1∑
j=0

Fj
Nj

M−1∑
i=0

GijDij

×
K−1∑
j=0

Fj
Nj

∑
h∈{A,I}

Njh

M−1∑
i=0

GijhEijh

γ (8)

where Fj is the fraction of the algorithm that has parallelism of Nj , the number of active or idle processors during
the jth phase of the algorithm is NjA = Nj and NjI = (N −Nj) respectively, and Gij is the fraction of Fj that has
the ijth cost component Dij in terms of delay or Eijh in terms of energy. The fixed area constraint is:

Atot = N(AP +AL2) +Afix (9)

where N is the number of cores in the CMP, AP is area of a processor core, AL2 is the area of the L2 cache, and
Afix accounts for the fixed area functions.

4.1 Processor area vs. number of processors (AP vs. N)
This example trades off the size, complexity, and computation performance of individual processor cores AP with
the total number of cores N in the CMP. From the generalized cost function (8), we instantiate the cost function
specific to our optimization as follows. The fraction of the algorithm that is parallelizable over multiple cores is

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 5

F1, while the serial fraction is F0 = (1−F1), and correspondingly, N1 = N while N0 = 1, thus K = 2. Since we are
neglecting energy in this example, γ = 0.

JD =
∑
j=0,1

FjN
−1
j

M−1∑
i=0

GijDij =
F0

1
CPI0 +

F1

N
CPI1 =

(
F0 +

F1

N

)
CPI (10)

where N is the total number of cores in the CMP. In this example, CPI is an aggregate measure of computational
cost, where CPIj =

∑M−1
i=0 GijDij and CPI0 = CPI1. Rearranging the area constraint (9), we obtain an expression

for N :

N =
Atot −Afix
AP +AL2

(11)

For CPI we use Pollack’s Rule: CPI = βA
− 1

2

P

JD =

(
F0 +

F1

N

)
βA
− 1

2

P (12)

To perform area constrained optimization, we substitute the expression for N (11) into (12) obtaining:

JD =

[
F0 +

F1(AP +AL2)

(Atot −Afix)

]
βA
− 1

2

P (13)

Differentiating the constrained objective function (13) with respect to AP we get:

dJD
dAP

= −1

2

(
F0 +

F1AL2
Atot −Afix

)
βA
− 3

2

P +
F1

2(Atot −Afix)
βA
− 1

2

P = 0 (14)

Rearranging,

0 = −
(
F0 +

F1AL2
Atot −Afix

)
A
− 3

2

P +
F1

(Atot −Afix)
A
− 1

2

P (15)

0 = −
(
F0 +

F1AL2
Atot −Afix

)
+

F1

(Atot −Afix)
AP (16)

AP =
F0(Atot −Afix)

F1
+AL2 (17)

This, (17), is the closed form solution to the constrained optimization problem.

4.2 L2 cache area vs. number of processors (AL2 vs. N)
This example trades off the size of the core L2 cache AL2 with the total number of cores N in the CMP. From the
generalized objective function (8) and the variable L2 cache size with miss rate MR = κA

− 1
2

cache, the cost function to
optimize is (K = 2,M = 3, N0 = 1, N1 = N, γ = 0):

JD =
∑
j=0,1

FjN
−1
j

∑
i=0,1,2

GijDij =

(
F0 +

F1

N

)
[G0D0 +G1D1 +G2D2] (18)

=

(
F0 +

F1

N

)[
G0D0 + (1−G0)(1− κA−

1
2

L2)D1 + (1−G0)κA
− 1

2

L2 D2

]
(19)

The closed form solution for the optimum is found using the method of Lagrange multipliers. The Lagrangian is:

L(N,AL2, λ) = JD + λ[N(AP +AL2) +Afix −Atot] (20)

=

(
F0 +

F1

N

)
[G0D0 + (1−G0)D1+ (1−G0)(D2 −D1)κA

− 1
2

L2

]
+ λ[N(AP +AL2) +Afix −Atot](21)

Differentiating (21) with respect to N,λ,AL2:

∂L

∂N
= −N−2F1

[
G0D0 + (1−G0)D1 + (1−G0)(D2 −D1)κA

− 1
2

L2

]
+ λ(AP +AL2) = 0 (22)

∂L

∂λ
= N(AP +AL2) +Afix −Atot = 0 (23)

∂L

∂AL2
=

(
F0 +

F1

N

)[
(1−G0)(D2 −D1)

−κ
2
A
− 3

2

L2

]
+ λ(N) = 0 (24)

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 6

Now we have three equations (22, 23, 24) and three unknowns AL2, N, λ. Rearranging (22), we find an expression
for λ:

λ =
F1

(AP +AL2)N2
[G0D0 + (1−G0)D1+ (1−G0)(D2 −D1)κA

− 1
2

L2

]
(25)

Using (23), we find an expression for N :

N =
Atot −Afix
AP +AL2

(26)

Substituting into (24) for N and λ, and simplifying gives us an expression for AL2:

0 =

[
F1(AP +AL2)

Atot −Afix
+ (1− F1)

] [
(1−G0)(D2 −D1)

−κ
2
A
− 3

2

L2

]
+

F1

(Atot −Afix)

[
G0D0 + (1−G0)D1 + (1−G0)(D2 −D1)κA

− 1
2

L2

]
(27)

0 = [F1(AP +AL2) + (Atot −Afix)(1− F1)]

[
(1−G0)(D2 −D1)

−κ
2
A
− 3

2

L2

]
+

F1

[
G0D0 + (1−G0)D1 + (1−G0)(D2 −D1)κA

− 1
2

L2

]
(28)

0 = [F1AP + (Atot −Afix)(1− F1) + F1AL2)]

[
(1−G0)(D2 −D1)

−κ
2
A
− 3

2

L2

]
+

F1 [G0D0 + (1−G0)D1] + F1(1−G0)(D2 −D1)κA
− 1

2

L2 (29)

0 = [F1AP + (Atot −Afix)(1− F1)]

[
(1−G0)(D2 −D1)

−κ
2
A
− 3

2

L2

]
+ [F1AL2)]

[
(1−G0)(D2 −D1)

−κ
2
A
− 3

2

L2

]
+

F1 [G0D0 + (1−G0)D1] + F1(1−G0)(D2 −D1)κA
− 1

2

L2 (30)

0 = [F1AP + (Atot −Afix)(1− F1)]

[
(1−G0)(D2 −D1)

−κ
2
A
− 3

2

L2

]
+

[
F1(1−G0)(D2 −D1)

−κ
2
A
− 1

2

L2

]
+

F1 [G0D0 + (1−G0)D1] + F1(1−G0)(D2 −D1)κA
− 1

2

L2 (31)

0 = [F1AP + (Atot −Afix)(1− F1)] [(1−G0)(D2 −D1)]
−κ
2
A
− 3

2

L2 +

[F1(1−G0)(D2 −D1)]
κ

2
A
− 1

2

L2 + F1 [G0D0 + (1−G0)D1] (32)

0 = [F1AP + (Atot −Afix)(1− F1)] [(1−G0)(D2 −D1)]
−κ
2

+

[F1(1−G0)(D2 −D1)]
κ

2
AL2 + F1 [G0D0 + (1−G0)D1]A

3
2

L2 (33)

Equation (33) is a polynomial function of AL2 which can be solved for the optimal AL2 with numerical methods,
i.e. the ‘fzero’ command in MatLab. Given a function to solve, and two endpoints over which the function is of
opposite signs, this command finds the zero within the range. Note that the calculus and algebra in this step can be
automated by using symbolic solvers to perform the partial derivatives (using Maple [27] or Sage [28] for example).

4.3 Processor area vs. L2 cache area vs. number of processors (AP vs. AL2 vs. N)
In this example, we optimize the processor area, the cache memory size, and the number of processors. With M = 3,
the first level (G0) models the processor and L1 cache, the second level (G1) models the L2 cache, and the third
level (G2) models main memory. The optimization is formulated with the following parameters: K = 2, where the
parallel fraction of the algorithm is F1 with N1 = N and the serial fraction is F0 = (1−F1) with N0 = 1. We use the
assumption that CPI is the performance of the processor using only L1 cache: CPIj = G0jD0j and CPI0 = CPI1.
From the generalized cost function (8), the cost function for this example with no energy (γ = 0) is:

JD =
∑
j=0,1

FjN
−1
j

∑
i=0,1,2

GijDij (34)

=

(
F0 +

F1

N

)[
G0βA

− 1
2

P + (1−G0)(1− κA−
1
2

L2)D1 + (1−G0)(κA
− 1

2

L2)D2

]
(35)

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 7

Using the constraint on the fixed total chip area (9), the Lagrangian is:

L(N,AP , AL2, λ) =

(
F0 +

F1

N

)[
G0βA

− 1
2

P + (1−G0)D1 + (1−G0)(D2 −D1)κA
− 1

2

L2

]
+

λ[N(AP +AL2) +Afix −Atot] (36)

Differentiating the Lagrangian yields four equations with four unknowns (AP , AL2, N, λ):

∂L

∂AP
= −

(
F0 +

F1

N

)
G0

2
βA
− 3

2

P + λN = 0 (37)

∂L

∂AL2
= −

(
F0 +

F1

N

)[
1

2
(1−G0)(D2 −D1)κA

− 3
2

L2

]
+ λN = 0 (38)

∂L

∂N
= −F1N

−2
[
G0βA

− 1
2

P + (1−G0)D1 + (1−G0)(D2 −D1)κA
− 1

2

L2

]
+ λ(AP +AL2) = 0 (39)

∂L

∂λ
= N(AP +AL2) +Afix −Atot = 0 (40)

Algebraic simplification of (40) and (37) and yields expressions for N and λ respectively:

N =
Atot −Afix
AP +AL2

(41)

λ =
1

N

(
F0 +

F1

N

)
G0

2
βA
− 3

2

P (42)

Substituting into (38) yields:

AP =

[
G0

(1−G0)(D2 −D1)κ

]2/3
AL2 = C2/3AL2 (43)

using the constant C to simplify the notation. Solving for AL2:

0 = F1(1−G0)D1A
3
2

L2 +
[
F1G0βC

− 1
3 + F1(1−G0)(D2 −D1)κ−

(C
2
3 + 1)F1

G0

2
βC−1

]
AL2 − (Atot −Afix)F0

G0

2
βC−1 (44)

Equation (44) has only one variable, AL2. Solving for AL2 using numerical methods and then substituting back into
(43) and (41), we obtain the optimal architectural parameters for this constrained optimization problem.

4.4 Processor area vs. number of processors with energy cost (AP vs. N)
Here we repeat the derivation from Section 4.1, this time including energy.

The energy-delay cost function is:

JED =

[(
F0 +

F1

N

)
βA
− 1

2

P

]
× [F0(1)(EL1 + ρpAAP) + F0(N − 1)ρpIAP + F1(EL1 + ρpAAP)]

γ (45)

The Lagrangian is:

L(N,AP , λ) = JED + λ[N(AP +AL2) +Afix −Atot] (46)

Without a closed form solution, we solve this constrained optimization problem using Newton’s method to find the
architectural parameters AP , N that minimize the cost function JED subject to the area constraint. The variables,
partial derivatives, and Jacobian are aggregated into matrices:

X = [AP , N, λ]
T

, F =

[
∂L

∂AP
,
∂L

∂N
,
∂L

∂λ

]
, J =

 ∂F1
∂AP

∂F1
∂N

∂F1
∂λ

∂F2
∂AP

∂F2
∂N

∂F2
∂λ

∂F3
∂AP

∂F3
∂N

∂F3
∂λ

 (47)

where J is the Jacobian of F, (which is equivalent to the Hessian of L). The update rule for the variables X for each
iteration k of Newton’s method is:

X(k + 1) = X(k)− (F/J)T (48)

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 8

The partials, found using Sage [28], are:

∂L

∂AP
=

(
F0 +

F1

N

)
((N − 1)F0ρpI + F0ρpA + F1ρpA)βγ ·

((N − 1)APF0ρpI + (AP ρpA + EL1
)F0 + (AP ρpA + EL1

)F1)
(γ−1)

A
−1/2
P +

ΛN − 1

2

(
F0 +

F1

N

)
((N − 1)APF0ρpI + (AP ρpA + EL1)F0 + (AP ρpA + EL1)F1)

γ
β A

(− 3
2)

P (49)

∂L

∂N
=

(
F0 +

F1

N

)√
APF0βγρpI((N − 1)APF0ρpI + (AP ρpA + EL1

)F0 + (AP ρpA + EL1
)F1)

(γ−1)
+

(AL2 +AP)Λ− ((N − 1)APF0ρpI + (AP ρpA + EL1)F0 + (AP ρpA + EL1)F1)
γ
F1βA

−1/2
P N−2 (50)

∂L

∂λ
= ((AL2 +AP)N +Afix −Atot) (51)

The Jacobian is similarly found using Sage. We coded the iterations for Newton’s method (48) in a short MatLab
program. The output from Sage (the partials and Jacobian) are directly inserted into the MatLab code simplifying
the optimization solution process.

4.5 L2 cache area vs. number of processors with energy cost (AL2 vs. N)
Here we repeat the derivation from Section 4.2, this time including energy.

The energy-delay cost function is:

JED =

[(
F0 +

F1

N

)(
G0D0 + (1−G0)(1− κA−

1
2

L2)D1 + (1−G0)κA
− 1

2

L2 D2

)]
×[

F0(1)
(
G0E0 + (1−G0)(1− κA−

1
2

L2)(EI + ρL2A
1
2

L2) + (1−G0)κA
− 1

2

L2 E2

)
+ F0(N − 1)EI+

F1

(
G0E0 + (1−G0)(1− κA−

1
2

L2)(EI + ρL2A
1
2

L2) + (1−G0)κA
− 1

2

L2 E2

)]γ
(52)

The Lagrangian is:

L(N,AP , λ) = JED + λ[N(AP +AL2) +Afix −Atot] (53)

The Newton’s method update variables, system of equations, and Jacobian are:

X = [AL2, N, λ]
T

, F =

[
∂L

∂AL2
,
∂L

∂N
,
∂L

∂λ

]
, J =

 ∂F1
∂AL2

∂F1
∂N

∂F1
∂λ

∂F2
∂AL2

∂F2
∂N

∂F2
∂λ

∂F3
∂AL2

∂F3
∂N

∂F3
∂λ

 (54)

The partials, found using Sage [28], are:

∂L

∂AL2
=

1

2

(
F0 +

F1

N

)
(

κ√
AL2
− 1
)

(G0 − 1)ρL2
√
AL2

−
(G0 − 1)

(√
AL2ρL2 + EI

)
κ

A
3
2

L2

+
(G0 − 1)E2κ

A
3
2

L2

F0+

(

κ√
AL2
− 1
)

(G0 − 1)ρL2
√
AL2

−
(G0 − 1)

(√
AL2ρL2 + EI

)
κ

A
3
2

L2

+
(G0 − 1)E2κ

A
3
2

L2

F1

 ·
((

κ√
AL2

− 1

)
(G0 − 1)D1 −

(G0 − 1)D2κ√
AL2

+D0G0

)
γ((N − 1)EIF0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
− (G0 − 1)E2κ√

AL2
+ E0G0

)
F0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
− (G0 − 1)E2κ√

AL2
+ E0G0

)
F1

)(γ−1)

−

1

2

(
F0 +

F1

N

)(
(G0 − 1)D1κ

A
3
2

L2

− (G0 − 1)D2κ

A
3
2

L2

)
((N − 1)EIF0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
− (G0 − 1)E2κ√

AL2
+ E0G0

)
F0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
− (G0 − 1)E2κ√

AL2
+ E0G0

)
F1

)γ
+ ΛN (55)

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 9

∂L

∂N
=

(
F0 +

F1

N

)((
κ√
AL2

− 1

)
(G0 − 1)D1 −

(G0 − 1)D2κ√
AL2

+D0G0

)
EIF0γ ·(

(N − 1)EIF0 +

((
κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
− (G0 − 1)E2κ√

AL2
+ E0G0

)
F0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
− (G0 − 1)E2κ√

AL2
+ E0G0

)
F1

)(γ−1)

+ (AL2 +AP)Λ−

N−2
((

κ√
AL2

− 1

)
(G0 − 1)D1 −

(G0 − 1)D2κ√
AL2

+D0G0

)
((N − 1)EIF0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
− (G0 − 1)E2κ√

AL2
+ E0G0

)
F0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
− (G0 − 1)E2κ√

AL2
+ E0G0

)
F1

)γ
F1 (56)

∂L

∂λ
= (AL2 +AP)N +Afix −Atot (57)

The Jacobian is similarly found using Sage.

4.6 Processor area vs. L2 cache area vs. number of processors with energy cost (AP vs. AL2 vs. N)
Here we repeat the derivation from Section 4.3, this time including energy.

The energy-delay cost function is:

JED =

[(
F0 +

F1

N

)(
G0βA

− 1
2

P + (1−G0)(1− κA−
1
2

L2)D1 + (1−G0)κA
− 1

2

L2 D2

)]
×[

F0(1)
(
G0ρpAAP + (1−G0)(1− κA−

1
2

L2)(EI + ρL2A
1
2

L2) + (1−G0)κA
− 1

2

L2 E2

)
+ F0(N − 1)ρpIAP+

F1

(
G0ρpAAP + (1−G0)(1− κA−

1
2

L2)(EI + ρL2A
1
2

L2) + (1−G0)κA
− 1

2

L2 E2

)]γ
(58)

The Lagrangian is:

L(N,AP , λ) = JED + λ[N(AP +AL2) +Afix −Atot] (59)

The Newton’s method update variables, system of equations, and Jacobian are:

X = [AP , AL2, N, λ]
T

, F =

[
∂L

∂AP
,
∂L

∂AL2
,
∂L

∂N
,
∂L

∂λ

]
, J =

∂F1
∂AP

∂F1
∂AL2

∂F1
∂N

∂F1
∂λ

∂F2
∂AP

∂F2
∂AL2

∂F2
∂N

∂F2
∂λ

∂F3
∂AP

∂F3
∂AL2

∂F3
∂N

∂F3
∂λ

∂F4
∂AP

∂F4
∂AL2

∂F4
∂N

∂F4
∂λ

 (60)

The partials, found using Sage [28], are:

∂L

∂AP
=

(
F0 +

F1

N

)
((N − 1)F0ρpI + F0G0ρpA + F1G0ρpA)

((
κ√
AL2

− 1

)
(G0 − 1)D1 −

(G0 − 1)D2κ√
AL2

+
G0β√
AP

)
·

γ

(
(N − 1)APF0ρpI +

((
κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F1

)(γ−1)

+ ΛN −

1

2
A

(− 3
2)

P

(
F0 +

F1

N

)(
(N − 1)APF0ρpI +

((
κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA−

(G0 − 1)E2κ√
AL2

)
F0 +

((
κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F1

)γ
G0β (61)

∂L

∂AL2
=

1

2

(
F0 +

F1

N

)
(

κ√
AL2
− 1
)

(G0 − 1)ρL2
√
AL2

−
(G0 − 1)

(√
AL2ρL2 + EI

)
κ

A
3
2

L2

+
(G0 − 1)E2κ

A
3
2

L2

F0+

(

κ√
AL2
− 1
)

(G0 − 1)ρL2
√
AL2

−
(G0 − 1)

(√
AL2ρL2 + EI

)
κ

A
3
2

L2

+
(G0 − 1)E2κ

A
3
2

L2

F1

 ·

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 10((
κ√
AL2

− 1

)
(G0 − 1)D1 −

(G0 − 1)D2κ√
AL2

+
G0β√
AP

)
γ((N − 1)APF0ρpI+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F1

)(γ−1)

−

1

2

(
F0 +

F1

N

)(
(G0 − 1)D1κ

A
3
2

L2

− (G0 − 1)D2κ

A
3
2

L2

)
((N − 1)APF0ρpI+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F1

)γ
+ ΛN (62)

∂L

∂N
=

(
F0 +

F1

N

)((
κ√
AL2

− 1

)
(G0 − 1)D1 −

(G0 − 1)D2κ√
AL2

+
G0β√
AP

)
APF0γρpI((N − 1)APF0ρpI+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F1

)(γ−1)

+ (AL2 +AP)Λ−

N−2
((

κ√
AL2

− 1

)
(G0 − 1)D1 −

(G0 − 1)D2κ√
AL2

+
G0β√
AP

)
((N − 1)APF0ρpI+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F0+((

κ√
AL2

− 1

)
(G0 − 1)

(√
AL2ρL2 + EI

)
+APG0ρpA −

(G0 − 1)E2κ√
AL2

)
F1

)γ
F1 (63)

∂L

∂λ
= (AL2 +AP)N +Afix −Atot (64)

The Jacobian is similarly found using Sage.
One goal of showing such lengthy math, is to show that complex models can be analytically formulated and

solved. They do not have to be solved by manually, thus mathematics is not an obstacle to preclude the use of
more complex lower-level models.

5 ENERGY MODEL EQUIVALENCE

In [29], Woo and Lee extended the model of Hill and Marty [30] to include energy. In this section, we show that
with a number of simplifying assumptions and appropriate parameters, Woo and Lee’s model is a special case of
our own cost function. Note that the approaches proposed by Woo et al. and Hill et al. are both just cost functions,
and neither performs optimization based on the cost function, and neither considers constraints (e.g. area) within
their analytical approach.

Beginning with the generalized objective function (8), consider a very simple microarchitectural model. That is
to say, a core operates at a base level of performance, which when normalized equals 1:

CPI =
M−1∑
i=0

GijDij = 1 (65)

Similarly, the core has two energy consumptions, active EA and idle EI :

EA =

M−1∑
i=0

GijAEijA and EI =

M−1∑
i=0

GijIEijI (66)

Next, assume there are two fractions of the algorithm, the serial fraction F0 with N0 = 1 active processors, and the
parallel fraction F1 with N1 = N active processors. Under these conditions, the generalized objective function (8)
is instantiated as:

JED =

[
F0

N0
CPI +

F1

N1
CPI

]
×
[
F0

N0
(N0AEA +N0IEI) +

F1

N1
(N1AEA +N1IEI)

]γ
(67)

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 11

Substituting in for NjA = Nj and NjI = (N −Nj):

JED =

[
F0

N0
CPI +

F1

N1
CPI

]
×
[
F0

N0
(N0EA + (N −N0)EI) +

F1

N1
(N1EA + (N −N1)EI)

]γ
(68)

With serial active processors N0 = 1, parallel active processors N1 = N , and CPI normalized to 1:

JED =

[
F0

1
+
F1

N

]
×
[
F0

1
(1EA + (N − 1)EI) +

F1

N
(NEA + (N −N)EI)

]γ
(69)

=

[
F0 +

F1

N

]
× [F0 (EA + (N − 1)EI) + F1EA]

γ (70)

Since F0 + F1 = 1, let F1 = f and F0 = (1− f), yielding:

JED =

[
(1− f) +

f

N

]
× [(1− f) (EA + (N − 1)EI) + fEA]

γ (71)

Finally, to match Woo and Lee’s notation, let EA = 1 and EI = kEA = k

JED =

[
(1− f) +

f

N

]
× [(1− f) (1 + (N − 1)k) + f]

γ (72)

=

[
(1− f) +

f

N

]
× [1 + (N − 1)k(1− f)]

γ (73)

With γ = 1 and JD ≡ 1
Perf , we have obtained exactly equation (4) in [29]:

Perf

J
=

1

JED
=

[
1

(1− f) + f
N

]
×
[

1

1 + (N − 1)k(1− f)

]
(74)

Thus the symmetric CMP cost function proposed in [29] is a special case of our generalized objective function.

REFERENCES
[1] J. A. Rice, “Mathematical Statistics and Data Analysis (3rd Edition),” Duxbury Press, 2006.
[2] A. W. Burks, H. H. Golstine, and J. v. Neumann, “Preliminary discussion of the logical design of an electronic computing instrument,”

Technical Report, Institute of Advanced Studies, Princeton (http://www.cs.unc.edu/ adyilie/comp265/vonNeumann.html), 1946.
[3] J. L Hennessy and D. A Patterson, “Computer architecture: a quantitative approach, (3rd edition),” Morgan Kaufmann Publishers, 2002.
[4] Y. Taur, D. Buchanan, W. Chen, D. Frank, K. Ismail, S.-H. Lo, G. Sai-Halasz, R. Viswanathan, H. Wann, S. Wind, and H.-S. Wong, “CMOS

scaling into the nanometer regime,” Proceedings of the IEEE, 1997.
[5] M. A. Marwick and A. G. Andreou, “Retinomorphic system design in three dimensional SOI-CMOS.” 2006 IEEE International Symposium

on Circuits and Systems (ISCAS 2006), 2006.
[6] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler,

D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “ExaScale computing study:
technology challenges in achieving exascale systems,” DARPA IPTO Report, 2008.

[7] SIA, “International technolology roadmap for semiconductors (2009 edition),” ITRS (http://www.itrs.net), 2009.
[8] National-Semiconductors, “125-312.5Mhz FPGA-link serializer with DDR LVDS parallel interface,”

(http://www.national.com/pf/DS/DS32ELX0421.html), 2009.
[9] R. Palmer, J. Poulton, W. Dally, J. Eyles, A. Fuller, T. Greer, M. Horowitz, M. Kellam, F. Quan, and F. Zarkeshvari, “A 14mW 6.25Gb/s

transceiver in 90nm CMOS for serial chip-to-chip communications,” 2007 IEEE International Solid-State Circuits Conference (ISSCC 2007),
2007.

[10] P. Kapur and K. C. Saraswat, “Optical interconnects for future higher performance integrated circuits,” Physica E, 2003.
[11] A. Apsel and A. G. Andreou, “5 mW, Gbit/s silicon on sapphire CMOS optical receiver,” Electronics Letters, 2001.
[12] ——, “A 7 milliwatt 1Gbps CMOS optical receiver for through wafer communication,” 2003 IEEE International Symposium on Circuits and

Systems (ISCAS 2003), 2003.
[13] A. Apsel, Z. Fu, and A. Andreou, “A 2.5-mW SOS CMOS Optical Receiver for Chip-to-Chip Interconnect,” Journal of Lightwave Technology,

2004.
[14] Wikipedia, “IEEE 1394 interface,” http://en.wikipedia.org, 2010.
[15] 1394-Trade-Association, “FireWire reference tutorial (an informational guide),” http://www.1394ta.org/index.html, 2010.
[16] Wikipedia, “ARM architecture,” http://en.wikipedia.org/wiki/ARM architecture, 2009.
[17] ARM, “ARM-Cortex-M3 processor,” http://www.arm.com/products/CPUs/, 2009.
[18] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy, “POWER4 system microarchitecture,” Ibm Journal Of Research And Development, 2002.
[19] R. Kalla, B. Sinharoy, and J. Tendler, “IBM Power5 chip: a dual-core multithreaded processor,” IEEE MICRO, 2004.
[20] B. Sinharoy, R. Kalla, J. Tendler, and R. Eickemeyer, “POWER5 system microarchitecture,” Ibm Journal Of Research And Development, 2005.
[21] H. Le, W. Starke, J. Fields, F. O’Connell, D. Nguyen, B. Ronchetti, W. Sauer, E. Schwarz, and M. Vaden, “IBM POWER6 microarchitecture,”

Ibm Journal Of Research And Development, 2007.
[22] G. Gerosa, S. Curtis, M. D’Addeo, B. Jiang, B. Kuttanna, F. Merchant, B. Patel, M. Taufique, and H. Samarchi, “A Sub-2 W Low Power IA

Processor for Mobile Internet Devices in 45nm High-k Metal Gate CMOS,” IEEE Journal of Solid State Circuits, 2009.
[23] B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer, J. Desai, E. Francom, M. Gowan, P. Gronowski, D. Krueger, C. Morganti, and

S. Troyer, “A 65nm 2-billion transistor quad-core Itanium processor,” IEEE Journal of Solid State Circuits, 2009.

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, ??? 2011 12

[24] D. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Harvey, H. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty,
Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M. Riley, D. Stasiak, M. Suzuoki, O. Takahashi, J. Warnock, S. Weitzel, D. Wendel, and
K. Yazawa, “Overview of the architecture, circuit design, and physical implementation of a first-generation cell processor,” IEEE Journal of
Solid State Circuits, 2006.

[25] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski, N. Gura, R. Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Sana, D. Sheahan,
L. Spracklen, and A. Wynn, “UltraSPARC T2: a highly-treaded, power-efficient, SPARC SOC,” IEEE Asian Solid-State Circuits Conference,
(ASSCC ’07), 2007.

[26] G. Konstadinidis, M. Tremblay, S. Chaudhry, M. Rashid, P. Lai, Y. Otaguro, Y. Orginos, S. Parampalli, M. Steigerwald, S. Gundala, R. Pyapali,
L. Rarick, I. Elkin, Y. Ge, and I. Parulkar, “Architecture and Physical Implementation of a Third Generation 65nm, 16 Core, 32 Thread Chip-
Multithreading SPARC Processor,” IEEE Journal of Solid State Circuits, 2009.

[27] Maplesoft, “Maple,” www.maplesoft.com/products/Maple/index.aspx, 2010.
[28] Sagemath, “Sage,” www.sagemath.org/, 2010.
[29] D. H. Woo and H. Lee, “Extending Amdahl’s Law for energy-efficient computing in the many-core era,” Computer, 2008.
[30] M. Hill and M. Marty, “Amdahl’s Law in the multicore era,” Computer, 2008.

IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

