Fundamenta Informaticae 66 (2005) 53—-82 53
10S Press

A General Framework for Mining Frequent Subgraphs from
Labeled Graphs

Akihiro Inokuchi *

Tokyo Research Laboratory

IBM Japan

1623-14, Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan
inokuchi@jp.ibm.com

Takashi Washio and Hiroshi Motoda

The Institute of Scientific and Industrial Research
Osaka University

8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
washio@ar.sanken.osaka-u.ac.jp
motoda@ar.sanken.osaka-u.ac.jp

Abstract. The derivation of frequent subgraphs from a dataset of é@bgtaphs has high compu-
tational complexity because the hard problems of isomarpland subgraph isomorphism have to
be solved as part of this derivation. To deal with this corafiahal complexity, all previous ap-
proaches have focused on one particular kind of graph. mphper, we propose an approach to
conduct a complete search for various classes of frequégtaphs in a massive dataset of labeled
graphs within a practical time. The power of our approach &®finom the algebraic representa-
tion of graphs, its associated operations and well-orgahizas constraints to limit the search space
efficiently. The performance has been evaluated using redtivdatasets, and the high scalabil-
ity and flexibility of our approach have been confirmed withpect to the amount of data and the
computation time.

Keywords: Data Mining, Graph Mining, Frequent Subgraph, Bias, CacaniForm, Subgraph
Isomorphism

*Address for correspondence: Tokyo Research Laboratoly, JBpan, 1623-14, Shimotsuruma, Yamato, Kanagawa, 242-
8502, Japan



54 A. Inokuchi et al./ A General Framework for Mining Frequenb8raphs from Labeled Graphs

1. Introduction

Graph mining algorithms that discover characteristic saply patterns embedded in a dataset of labeled
graphs have a broad range of applications. However it is ttadgvelop methods with practical run
times because the search for candidate frequent subgraphexponential complexity and includes the
subgraph isomorphism problem, which is known to be NP-cetapl

To address these issues, various approaches to mine a tesgtief frequent patterns from massive
datasets of labeled graphs or labeled trees have been ptbpsshough each method can efficiently
discover the patterns, the subgraphs to be searched atedimithin a specific class. For example,
MolFea efficiently mines frequent paths from labeled grgfs TreeMiner [27] and FREQT [2] can
quickly discover all frequent patterns from ordered treemwever, they cannot mine more complex
substructures such as labeled subgraphs. On the otherthar&:M algorithm [10, 12], FSG [17], and
gSpan [24] can mine frequent subgraphs from a set of labebguthg. However, they cannot efficiently
discover frequent patterns of paths and trees, becausel#iaistructures and their search operations are
not dedicated to path and tree structure mining.

In this paper, we propose a generic and efficient frameworkite various classes of substructures.
By introducing a bias for each class of substructeg, connected subgraphs, ordered subtrees, and
path structures, to the AGM algorithm, a complete searchh®ifrequent substructures of each class is
achieved. The bias includes restrictions on the searclesifdbe frequent patterns, on the ambiguity of
the structural representation, and on the criteria usedubgraph isomorphism checking. We call this
new frameworkBiased Apriori-based Graph Mining (B-AGMJVe evaluate its performance in terms of
the required computation time for real world datasets oibver sizes.

The rest of this paper is organized as follows. Section 2 defilne frequent subgraph pattern mining
problem, and describes the basic concepts of the Apri@ed&raph Mining algorithm used for mining
frequent patterns in a dataset consisting of labeled grafbstion 3 defines some additional specific
biases to derive various types of pattemg,, general subgraphs, connected subgraphs, ordered subtree
and path patterns. Section 4 provides an experimental ai@huof our algorithm on some real datasets
consisting of chemical compounds, Web access logs, and Xafa. din Section 6, we discuss future
extension of our framework. We provide a discussion and safa¢ed work in Section 6, and finally
conclude in Section 7.

2. Problem Definitions and the AGM algorithm

We use the basic principles of the AGM algorithm in our exeshfitamework. By applying some specific
biases to the algorithm, our B-AGM discovers frequent saplgs of various classes. In this section, we
define the problem and explain the AGM algorithm. In the nextisn, we propose biases to enable
graph mining of various classes.

2.1. Problem Definition

The input for frequent subgraph mining is a set of labeleg@lggan which each vertex and each edge have
a vertex label and an edge label respectively. The labeldf eartex (edge) does not need to be unique,
and it is possible that the same label can be used for sevatidas (edges). Each graph in the dataset
is represented & = (V, E, Ly, Ev, 1b), whereV = {v,vo,..., v}, E = {(vi,v))|vi,v; € V(G)},
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Ly (V) = {lb(vy)|Vv; € V(G)}, Lg(E) = {Ib((v;,v;))|V(vi,v5) € E(G)},andlb : (V — Ly )U(E —

L) are sets of vertices, edges, vertex labels, edge labels, fmdtion to assign a label to a vertex or to
an edge, respectively. To the convenience of the desaritie sets of vertices, edges, vertex labels, and
edge labels of the labeled grapghare represented as(G), E(G), Ly (G), andLg(G), respectively.
The number of vertice$) (G)], is called the “size” of the grap&'.

A graph can be represented by using an “adjacency matrix'c&loulation efficiency, letum(1b(v;))
andnum(lb((v;, v;))) be natural numbers assigned to a vertex |alfel) and an edge labéb((v;, v;)),
respectively. Given a labeled graph the (7, j)-elementz; ; of an adjacency matriX; of the graphG
whose size i% is represented as follows.

4o — Jrum(b((vi;v5)), i (vi05) € B(G)
G i (0s,05) ¢ B(G)’

wherei, j € {1,2,3,--- ,k}. The vertex corresponding to tlieh row (i-th column) of an adjacency
matrix is called thei-th vertex, and the graph structure of an adjacency mafiixis represented as
G(Xy).

By choosing different assignments of rows and columns ttioeey in a graph, multiple adjacency
matrix representations for a single graph can be obtainedemove this ambiguity, we use a “canonical
form” of the adjacency matrices to represent a graph. To emadttically define the canonical form of a
graph and to deal efficiently with matrices, the code of aa@ehcy matrix is defined as follows. For an
undirected graph, the functiamde of an adjacency matriX, is defined as

code(X}) = 1221323014 Th—2 kTh—1k>

which is a concatenation of e, j)-element withz; ; as shown in Figure 1. For a directed graph, it is

defined as

k(k—1
code(Xy) = cregeseq -+ cpy, (n= %), and

-1 - 2))
2 bl
wherei < j. Furthermore, a functiod’O D E including the vertex labels is defined as

c = (|LE| + 1)$j7¢ + x4, (l =14+

CODE(X}) = num(Xy)code(Xy),
which is a concatenation efum(Xy) andcode(X}), and
num(Xy) = num(lb(vy)) - - - num(lb(vg)).

The canonical form of the adjacency matrices representmgyzh is the unique matrix having the max-
imum (or minimum)CODE. The choice of the maximum or minimutiO D E depends on a class of

substructure patterns to be mined, which is included in #feniion of each bias. For example, when
connected subgraphs are mined, the maxinthD E is used to define the canonical form, while the
minimumCODE is used for subtree mining. Both are applicable to the camweal AGM algorithm.
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Ib(vy) 1b(vy) Ib(vs) -+ 1b(vg)
1b(v1) 0 5131,2l $1,3l e Tk
lb(vg) x2,1 0 x2,3 T2k

X = b(vs) | 231 x3,2 0 T I3k
Ib(vg) \ Tk1 Tk T3 e 0

Figure 1. Order of Matrix Elements to Define a Functiede for an Undirected Graph.

lb(vl) lb(’UQ) lb(v3) ce lb(’l)k)
1b(v1) 0 5131,2i $1,3l e Tk
b(va Z2,1 0 Z2,3 Tok
X, = b(vs) | 231 Z3.2 0 T I3k
Ib(vg) \ Tk1 Tk TRz e 0

Figure 2. Order of Matrix Elements to Define a Functiode for a Directed Graph.

Adjacency matrices corresponding to an identical grapmargally convertible using the following
“transformation matrix” (permutation matrix). When adiacy matricesX, andY) representing an
identical graph of sizé are given, each elemet); of a transformation matri{}, is defined as follows.

- J1, thei-th vertex ofG(X}) corresponds to thgth vertex ofG (Yy)
" 10, otherwise

Y, is expressed ag;, = T}/ X;Tj,.
Given graphg7 andG, if there is a functionp : V(G5) — V(G) that satisfies

1. Yv e V(Gs), ¢(v) € V(G), Ib(v) =1b(¢(v)), and
2. Y(vi,vj) € E(Gs), (9(vi), d(vj)) € E(G), 1b((vi,v5)) = 1b((p(vi), $(v5)))-

G is a “subgraph” ofz, which is represented &8, C G. Additionally, if the function satisfies
3. (vi,v5) € E(Gs) & (d(vi), $(vj)) € E(G),

thenG, is an “induced subgraph” @&, which is represented ds, C; G.

A “path” is a sequence of consecutive vertices and edges rafhg Given an undirected gragh
if a path exists between any two vertices of the graph, thaes called a “connected graph”. In the case
of a directed grapltz, G is called a connected graph if a path exists between any twiwes in the
undirected graph obtained by ignoring the directions ofttiges inG. An “unordered tree” is a directed
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Figure 3. Examples of Labeled Graphs.

acyclic graph with a root vertex and where every other velngexone entering edge. An “ordered tree”
is a tree with a left-to-right ordering among the childrereath vertex.
Given a set of labeled grapisD, the “support’sup(Gs) of an induced subgraph patteé is
defined as
{G|G € GD,G; C; G}
|GD| ’

whereLZ; stands for inclusion of an induced subgraph in a graph. Wheseawould like to derive all of
the frequent patterns that are contained as subgraphsjppersis defined as

sup(Gy) = |

_HGIGeGD, G, C G}
- |GD

sup(Gs)

There is an induced subgraph derivation and a general qubglerivation for each class of structure
except for a subtree. These derivations are introducegardkently of any bias for each class of struc-
ture which is defined in Section 3. By combining an inducedesregal subgraph derivation with a bias,
the B-AGM algorithm can mine the frequent induced subgragdsarately from the frequent general
subgraphs. Any derived subgraph having support greataraghaqual to the “minimum support” spec-
ified by a user is called a “frequent subgraph”. A frequenigsaph withk vertices is called a frequent
k-subgraph. When a dataset which consists of labeled graghsha minimum support are given as
input, the frequent subgraph mining problem is to derivdratjuent subgraphs in the dataset that have
support greater than or equal to the minimum support vallig [1

For example, two labeled graphs as shown in Figure 3 are giseam input datasét D, where the
numbers 1, 2, and 3 are assigned4toB, andC, respectively, and 1 is assigned to an edge label. The
canonical form of the grap&'; in Figure 3 is expressed as

C C B B A

c/o 0 1 1 0
c{o o 1 0 0
Xs=B]1 1 0 1 1
Bf1 0 1 0 O
A\N0O O 1 0 O

TheCODE of X5 is represented as

CODE(Xs) = 332210111010010,
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Figure 4. Search Space to Mine Subgraphs in Data in Figure 3.

where the italic characters representn(X;). When the dataséf D is given as input and the minimum
support is set to 100%, the search space for mining frequmelhitced subgraphs is as represented in
Figure 4, where each graph in a rectangle corresponds togaagibpattern which has support greater
than 0%. (In Figure 4, any pattern whose support is 0% is ethifue to space limitations.) A rectangle
for a subgraph pattern is linked to the rectangles of itséedusubgraphs. The subgraph patterns above
the dashed line in Figure 4 are the frequent subgraphs. podwalue of the subgraph; in Figure 4

is sup(Py) = % = 100%. The support value of the subgraph is sup(P») = 50%, and the subgraph is
not added to the set of frequent subgraphs.

2.2. Apriori-based Graph Mining Algorithm

In our previous work, we proposed an approach named AGM @hipiased Graph Mining) algorithm
in which the knowledge representation and the search opesadre highly dedicated to the graph struc-
tured data mining [10, 12]. The AGM algorithm is so generiattt can discover not only connected
frequent subgraphs, but also disconnected frequent uitigraNe use the basic concept of the AGM
algorithm as the framework for frequent subgraph mining.aBging some additional biases, the AGM
framework can discover various types of subgraphs, sucbraxected subgraphs, subtree structures, and
path structures.

The AGM algorithm derives all frequent subgraphs in asaemdider of the size of the graph based
on the anti-monotonic property of the support measure. uengigsubgraphs are derived stepwise from
the top in the lattice search space as depicted in Figuregdiréb is the outline of our AGM algorithm.
First, al x 1 adjacency matrix representing a vertex is generated foy eegtex, and they are substituted
for C4 (Line 1). Next, the support for the each candidate frequehgsaph is calculated by scanning
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the database (Lines 4 and 5). Next, the Generate-Candidat¢éidn generates the candidate frequent
subgraphs of sizé + 1 from the frequen&-subgraphs i}, and they are substituted f6k;,; (Line

6). These steps are repeated u@lilbecomes empty. Finally, all of the frequent subgraphs dvened
(Line 9).

Il GD is a database consisting of labeled graphs.
I/l F}, is a set of adjacency matrices of frequérgubgraphs
Il Cy is a set of adjacency matrices of candidetsubgraphs
Il minsup is the minimum support.

0) Main(GD,minsup){

1) C, <{all adjacency matrices consisting of one elemgnt
2) k <+ 1;
3) while(Cy, # 0) {
4) CountGD, Cy);
5) Fy, — {cx € Cylsup(G(ck)) > minsup};
6) Ci+1 < Generate-Candid(&y );
7 k< k+1;
8 )
9) return{J, { fx € F%|f is canonicaj
10) }

Figure 5. Outline of the Apriori-based Graph Mining Algdurit.

2.2.1. Join Operation

The Generate-Candidate function referenced in Figure Sisisnof three parts: the join operation, the
subgraph-check operation, and the canonicalize operdtiahe join operation, the adjacency matrices
of the candidate frequent subgraphs of size 1 are generated by joining the two adjacency matrices
of the frequent:-subgraphs irF,. Given two adjacency matrices;, andY, representing the frequent
subgraphs, they are joinable if and only if all of the corudis to join are satisfied.

Condition 1. Let V(G(Xy)) and V(G(Yy)) be {z1,z9,--- ,z,} and {y1,y2, -+ ,yx} respectively,
wherez; is thei-th vertex of G(X) andy; is thei-th vertex ofG(Yy). Xj andYj are identical ex-
cept for thek-th row and thek-th column,i.e.,

Xp1 oz Xp1 Yy
X = T 0 , Y = T 01 ,and
) Y5

lb(:v,) = lb(yz) fori=1,---,k—1.
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Figure 6. Example of Join Operation.

Condition 2. X}, is the canonical form off(X}).
Condition 3. CODE(Xy) > CODE(Yy) is fulfilled.
If X, andY}, are joinable, their join operation is defined as follows.

X1 T Y1
_ T
L1 = Ty 0 Zk,k+1 ’
T
Yo Zk+lk 0

lb(:l?z) = lb(zz) fori=1,---,k—1, lb(:l?k) = lb(zk), andlb(yk) = lb(zk+1).

These matrice(;, andY, are called the “first generator matrix” and the “second gateematrix” of
Zy+1, respectively. The two elementg ;1 andz1; of Z;,, are not determined hy; andY}. For
the undirected graph, the possible graph structure&/{df;, ) are those where there is a labeled edge
or where there is no edge betwekith vertex andk + 1)-th vertex. For these undirected graphs, the
(|Lg| + 1) adjacency matrices undef .11 = 21, are then generated, whetey;| is the number of
edge labels, while thg Lz| + 1)? adjacency matrices are generated for directed graphs. djaesmcy
matrix generated under the above conditions is called ariabform”.

Figure 6 shows an example of the join operation when theralisane edge label in the undirected
graphs andvum(A) < num(B) < num(C). SinceX) andY}, are joinable, the two adjacency matrices
Zy4+1 are generated, where the difference is the pair consistirtheo(3, 4)-element and theé4, 3)-
element. In the two matrices, each pair consists of Os or 1s.

2.2.2. Subgraph-Check Operation

For the necessary condition 6f(Z;,1) being a frequent subgraph, all induced subgraphG (@f;1)
must be frequent subgraphs according to the anti-monofomuiperty of the support. This condition
reduces the candidates. When the subgraph-check opefatiargraph of sizé + 1 is done, it can be
assumed that one of transformation matrices from every aldiorm matrix to its canonical form matrix
whose size is less than+ 1 is known, since the complete search was done in the pre¥igtesps.

'In the case that the canonical form is defined as the uniqueixrzving the mininum CODE, the condition 3 is
CODE(X) < CODE(Yy) .
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0) Normalizefy) {

1) 14+ 1;
2) while@ # &k + 1){
3) if(Z; is a normal form and can become the first generator méatrix)
4) Zy + P Zy Pl
5) 141+ 1;
6) telsg
7) Zi — QF 24 Qi
8) i—i—1;
9

10) )

11) returnzy;

12) }

Figure 7. Normalization Algorithm.

An adjacency matri¥;, of an induced subgraph of sizes obtained by removing the elements in the
i-th row and the-th column ( < i < k + 1) of Z,;. ThenZ is transformed into the normal form by
applying the algorithm shown in Figure 7. This is necessagalise the AGM algorithm generates only
normal form matrices, and support 8f, is easily checked by using the normal form matrices obtained
in the earlier steps. Let the upper léftx ¢+ submatrix of the adjacency matri%, be Z;, the matrix
to transformZ; into the canonical form bé&; and the unit matrix of sizé be I,. The transformation
matricesP;, andQ, in Figure 7 are generated as follows.

P L, 0 O
P,Q:(z ),ankoz 0 0 1

0 I,
b 0 ILxiy1 O

Line 4 in Figure 7 is the operation to transforffy into its canonical form, and Line 7 changes the
(1 — 1)-th vertex into thet-th vertex and thg-th vertex into thgj — 1)-th vertex § =i, + 1,--- , k).

2.2.3. Canonicalization Operation

After generating the matrices of candidate subgraphs,abdaé is accessed to calculate their supports.
However, since multiple normal form matrices can repretiesame graph, the canonical form of each
of these matrices must be identified to collect all suppdrtee@subgraph.

When the canonical form ok, and its associated transformation matrix are searched fran be
assumed that one of the transformation matrices from eachatdorm matrix into its canonical form
matrix of sizek — 1 is known, because of the stepwise extension of the graphrsihe search. Let the
transformation matrix of(! , to its normal form b&”; | whereX| |, is the adjacency matrix obtained
by removing the elements in thieth row andi-th column of Xj. Also let the matrix to transform the
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normalized matrix(7}_,)" X;T}_, into its canonical form bes}_,. The transformation matrices;,
andTy. for X, are generated by using the following equations fi§jn, and7}_,.

Si_, 0 f 90 o
S,iz(k‘l 1),andT,ﬁz 0 0 1 (’“‘1 )

0 0 1
0 Ix; O
A canonical form forX}, is given by
Xep = arg max CODE((T;S})" Xi(T;S)- (1)
=1,

The matrix to transfornX}, into its canonical form is representedﬂﬁ,i, which makes Equation (1) the
maximum. If the transformation matri%;, which transformsX;, through a(7}S;)? X (1}.S%) into the
canonical form has already been found, the canonical fory,d$ provided ass}’ (T7.5})" X, (T}.S}) S},
and thus the calculations for all of the in Equation (1) are not required. It should be noted, howeve
that the canonical form might not be found by the above methedme cases where the canonical form
and its transformation matrix must be searched for in acoure with the permutations. The principles
of this canonical-form finding method are described in digtethe literature [12].

2.2.4. Counting the Frequency of Each Candidate

After all of the canonical forms of the candidate subgraptesaodtained, the database is accessed, and
the frequency of each candidate subgraph is calculated. kitawn that subgraph isomorphism [8] is
NP-complete, and ordered subtree isomorphism matchingsablee isomorphism matching require
O(|C||T|) time and space whef€’'| and|T| are the sizes of the two graphs for isomorphism [14].

11 11

(a) Graph Gk (b) Candidate Subgraph G(Xx-1)  (c) Candidate Subgraph G(Xk)

Figure 8. Graph Data and Candidate Subgraphs.

We now explain the counting in the case of frequent inducédsyph derivation. Let the canonical
form of the candidaté-subgraph beX}, its first generator matrix h&,_;, and the graph in the database
of sizeK beG . For example, leG x, G(X)_1), andG(X}) be the graphs in Figure 8 (a), (b), and (c)
respectively. The canonical forms of Figure 8 (b) and (c)exressed as

B A B A
B

0
Xk1:B<0 1), and X, = A 1
0

A
0
1
A\1 O A 0

1
0
1
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Figure 9. Search Tree f@f x andG(X;_1).

%A\%\

IIIIII

—
1=
W
INS
=
oN=
—
=
Wi
NS
=

>—4

OTOTOTOTOTIT ... IO IOE OOD IO0COOT ) e IIT 1T IO ID0 IOT 11X
123456 12345 123456

Figure 10. Search Tree f6tx andG(X},).

wherek = 3 andnum(B) > num(A). The numbers assigned to the vertices in Figure 8 are veD®x |

If the brute force method checks wheth@) includes the graplis( X, 1) by a depth first search in the
ascending order of the vertex IDs whéfi{ X_1) is the candidate subgraph, it turns out that the graph
G includes the grapli7(Xj_1), and the correspondences of the vertices betweégrand G(Xy 1)

are 2=I and 3=ll, where 2= shows that vertex whose ID is 2 ipped to I. The search tree for this case
is shown in Figure 9. Whe@'(X},) is the candidate subgraph, it turns out that gr&fiX’ ) is included,
and the correspondences of the vertices are 2=l, 3=Il, afidl &s shown in Figure 10. In this case,
the search in the part on the left side of the path root-12dIBigure 10 is not necessary since this part
has already been checked in Figure 9. Therefore, if the sporedence relation of the vertex@f; and

G(Xy_1) is recorded( x’s inclusion of a graph structure which has _, as the first generator matrix
can be efficiently checked.

We use this method as the default method to count the freguétmwvever, this method is imple-
mented so that it can be overwritten. As mentioned laterntbthod is modified to compare B-AGM
with other tree mining methods.
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2.3. Completeness of Search of Frequent Subgraphs
The completeness of the search of frequent subgraphs ijoihisperation is proven as follows:

Theorem 2.1. Given a canonical form matriX., of an undirected graph and SODE(Xy1) =
num(Xy_1)num(lb(zg))num(b(zgi1))code( Xy 1)T1k -+ Tk 1kT1k+1 " Th k1. THEN

num(lb(zg)) > num(lb(xg+1)), oOr
num(lb(zy)) = num(lb(zg41)) and @yp- Th_1k 2 Trp41- Th—1h41

holds. Similarly,

num(lb(zg)) > num(lb(xg+1)), or
num(lb(zg)) = num(lb(zgy1)) and cp_gi2 - Cp > Cngl - Cpgk—1

holds for a directed graph, whene= -1

Proof:
Consider a matrixX;_ , obtained by permutation of theth and(k + 1)-th rows and columns of the
matrix Xy 1.

CODE(X},,)

= num(Xg_1)num(lb(z41))numlb(zg))code(Xk—1)T1 k41 Th—1k+121k ** Th1kTh+1,k-

Accordingly, CODE(X;_,,) > CODE(Xy1) when

num(lb(zg)) < num(lb(zgs1)), oOr

num(lb(zg)) = num(lb(zgy1)) and zyg - Tp_1p < T1gpt1 " Th—1h+1-

On the other hand((X; ) = G(Xy41), because the graph represented by an adjacency matrix is
invariant over the permutation of rows and columns. Thistrealicts the assumption thaf, . is a
canonical form matrix. The same argument applies to thewidegraph. O

Theorem 2.2. The first generator matriX;_; of a canonical form matri¥X,, is also a canonical form
matrix.

Proof:
If X}, is a canonical form matrix, buk;_; is not, then the matriceX; and its first generator matrix
X, _, meeting the following conditions must exist:

num(Xj,_,) > num(Xy_1), or
num (X, 1) =num(Xg_1) and code(X; ;) > code(Xy 1),

where
G(Xf) = G(Xy) andG (X} 1) = G(Xg 1),



A. Inokuchi et al./ A General Framework for Mining Frequenb8raphs from Labeled Graphs 65

In the latter condition, the labels of the vertices corresfig to the last rows and columns&f andX;,
are identicalj.e., num(lb(z})) = num(lb(z;)), because&r (X;) = G(X}). Accordingly, the following
relation satisfied:

CODE(X}) = num(Xy_ )num(Ib(zy))code(Xg_y )y g -+ Ty
> CODE(Xy) = num(Xy_1)num(lb(zy))code(Xg_1)T1 k- Th—1k-

This contradicts the assumption th#j, is a canonical form matrix. ThusY;_; is a canonical form
matrix. O

Theorem 2.3. GivenF}, = {all frequent subgraphs of sizg andF' X, = {X;|G(Xy) € Fy, and Xy is
the canonical forrh, for a givenX;, € F' X, then letF'Y,(Xy) = {Yi|G(Yx) € Fj, whereY), shares its
first generator matrix;,_; with X, andCODE(Xy) > CODE(Yy)}, FYy, = Ux,erx, F'Yi(Xk),
SZk11(Xk) = {Zk+1|Zk+1 is derived by the join operation betwedf, andY, € F'Y;(Xy)}, and
SZy1 = Ux,erx,SZk+1(Xy). ThenSZ,; includes allX 1S in F Xy ;.

Proof:
EachX; € FX; meets Condition 2. The codes &f, andY}, for undirected graphs are represented as
follows from Condition 1.:

CODE(Xy) = num(Xg—1)num(lb(zy))code(Xp—_1)x1 k- - - Th—1 ks

CODE(Yy) = num(Xy_1)num(lb(yx))code( Xk 1)y1.k Yk 1,k

Hence, Condition 3 can be rewritten as follows (#1):

num(lb(zg)) > num(lb(yg)), or

num(lb(zy)) = num(lb(yy)) and xig - Tp—1k > Y1k Yh—1k-

Also, the labellb(zy) and the element values ;- - - zx_1 441 Of Z;41 corresponds tdb(y;) and
Y1k Yk—1,k, respectively. These constraints @D E's are identical with those of Theorem 2.1 when
Zi+1 is considered aX, ;. The elementsy, ., andz, 1, in Z;, take any values imum(Lg) =
{num(lb)|Vlb € Lg} (#2). G(X})) andG(Y}) are frequent. Through the join operations of aayand
Y}.s satisfying these constraints, all canonical form madriXg, ;s representing frequent subgraphs and
having its first generator matriX;, are derived inSZ1(Xy). The corresponding discussion applies to
the case of directed graphs. From this observation and théhiat the join operations are applied to all
XS inF Xy, we conclude that every canonical form matkix.,; where the first generator matrix is one
of Xxs in F X}, is completely derived it Z; ;. On the other hand, every canonical form mafXix, ;
has the first generator matriX; which is a canonical form from Theorem 2.1. Sin€&;, is complete,
every Xy, has the first generator matriX; in £ X;. Therefore,SZ;; includes the complete set of
Xk+1sinFXk+1. O

After deriving SZy1, complete pruning of infrequerf;, ;s and frequency counts &f, ;S in the
objective data are used to deri¥&,, and F' X, as described later. At the level= 1, all complete
sets off, X, andF'Y; are derived, since all frequent single vertices and theil matrix notions are
completely enumerated at the initial search. Accordintjig, completeF,, and F' X, are found in every
stepk from Theorem 2.3.
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3. Extension to Mine Various Classes of Structures

The original AGM performs the complete mining of the frequeabgraphs. However, the variation of
AGM that we introduce here contains a bias to derive only thgudent induced subgraphs [10, 12]. An
induced subgraph of a gragh has a subset of the vertices @fand the same edges between pairs of
vertices as inG. To limit the search of the frequent subgraphs within théss| the following bias has
been applied in the past work. When counting the frequenaaoh candidate frequent subgraph, the
AGM algorithm checks whether it is contained in each graph database as an induced subgraph.

In the following subsections, we propose further biasets dllaw for the graph mining of various
classes based on the AGM framework as depicted in Figure glcaliithis frameworlB-AGM (Biased-
Apriori based Graph Mining). A bias for a specific class of ¢inaph structure consists of the dedicated
definitions of the canonical form and the join operation. Bgasing an appropriate bias on the platform
of the AGM framework, the complete mining for the frequenbg@aphs of the objective class we are
seeking for is defined.

frequent subgraph
frequent connected subgraph
frequent ordered tree
frequent tree

frequent path
graph connected ordered tree|| tree path bias
derivation|| graph derivation|| derivation ||derivation|| derivation
Generate-Candidate normalize B-AGM

‘ join H subgraph check H canonicalize‘ Count canonical coding

ﬁ I

minimum support
Figure 11. B-AGM Framework.

3.1. Bias for Connected Subgraph Derivation

For calculation efficiency, the B-AGM algorithm with thisasi mines all of the frequent connected sub-
graphs and some semi-connected subgraphs which consisbohacted subgraph and an isolated ver-
tex. The semi-connected graphs are not added to the outfhg &fequent subgraphs

Canonical Form

The definition of canonical form is altered from the origin@liven the upper left x 7 submatrix of the
adjacency matriXX asX; (1 < i < k), the following sefl’(G) of adjacency matrices representing an
identical graph is defined.

I'(G) = {X}|G(X;) is connected foi = 1,--- ,k — 1,G = G(Xj)}.

2B-AGM with this bias is available from http://www.alphavkstibm.com/tech/fsm.
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The adjacency matrig’, with the largesCODE in T'(G) is called the canonical form.

Ck s.t. CODE(Ck) = Xnel%i((;) CODE(Xk)
k

Join Operation

The original Conditions 1 and 2 are retained, and the follgwConditions 3 and 4 are introduced.
Condition 3. G(X}) is a connected graph.

Condition 4. G(Y}) is not a connected graph, otherwiS& DE(Xy) > CODE(Yy).

Each frequent subgraph ¢f(X}) has a flag to represent whether or not it is connected. Thedlag i
determined from the flags of its first and second generatorceat If both flags are connected, then the
flag of a graph which is made from the first and second matrieesrhes connected.

If the second generator matrix corresponds to an discoadepbphCODE (X)) > CODE(Y})
does not have to be satisfied to join the adjacency matriagsexample, lethvum(A) andnum(B) be 1
and 2, respectively, in Figure 12. The canonical forntz¢¥s) in Figure 12 isCODE(Z3) = 212101,
and it is generated by joining two adjacency matrices, ssei@D E(X,) = 211 andCODE(Ys) =
220. Therefore, the condition that the second generator matrisesponds to an disconnected graph is

needed.
=

BAB

BA BB g[010
BOl} BOO} Al 101
Al10 B{0O BOIO
X2 2 Z3

Figure 12. Example of Join Operation Bias for Connected gagigDerivation.

The completeness of the search by this join operation isgoroMdowever, due to the space limitation,
only the points to be altered in the aforementioned prootHerstandard join operation are explained.
Theorem 2.1 is altered as follows.

Theorem 3.1. Given a canonical form matriX, of an undirected graph and ESODE(Xj1) =
num(Xg_1)num(b(zy))num(lb(xgi1))code(Xg_1)T1 k- * Th—1 kL1 k41" * Thkt1. FOr Xpiq repre-
senting a connected graph,

m(lb(x)) > num(lb(xgy1)) OF
2. num(lb(a:k)) num(Ib(xyy1)) andxy g -+ Tp_1 g > L1 k41 Lh—1,k+1, OF
3. num(lb(zy)) < num(lb(zgy1)), num(lb(z1)) > num(b(zr41)), Ti g1 = - = Th—1 k41 =

0, andzy, k41 7é 0,

’

3In the case of the conventional AGM algorithm which finds naliyaonnected subgraphs but also disconnected subgraph, th
canonical form of5(Z3) in Figure 12 becomeSODE(Z3) = 221011.
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and for X, representing a disconnected graph,
T k+1 =0foralli= 1,--- .,k
holds.

A similar alternation is made for directed graphs. This teeois similarly proven by the reduction
to absurdity. Theorem 2.2 holds, sinég,_; of X, represents a connected graph, and the identical
definition of the canonical form applies to the adjacencyrixatf a connected graph. Theorem 2.3 also
holds since Condition 3 and 4 alter the constraints of (#ihénmanner consistent with Theorem 3.1.

3.2. Bias for Ordered Subtree Derivation

The B-AGM algorithm with this bias efficiently mines all fregnt ordered subtrees included in a forest
in the same way as the connected subgraph derivation.

Canonical Form

When the total order of the rows and columns of the adjacerayixnX; representing an ordered tree
G(X}) matches the preorder numbers assigned to the verticesamdbeed tree, the matrix is defined as
the canonical form o&(X}) as shown in Figure 13. More strictly, let the set of the totaleo numbers
of the columns and rows of, bel = {i|i = 1--- k}. WhenG(X}) is an ordered tree, let the set of the
preorder numbers assigned to the verticeS oK) beJ = {j|j = 1--- k}. WhenG(X}) consists of an
ordered tree and an isolated vertex, let the set of the peeoutmberd - - - kK — 1 assigned to the vertices
of the ordered tree and the ldstaissigned to the isolated vertex@{X) beJ = {j|j =1---k}. Then,
X, is the canonical form adjacency matrix @{ Xy ) if an identity mappingi = 1D(:) betweenl and

J exists. Under this identity mapping;OD E(X},) is represented as

CODE(Xy) = num(lb(x1)) - - - num(lb(z))code(Xg).

Since the identity mappindgD is unique, the total order numbers assigned to the vertit&s(X})
uniquely specifies(;,. Under this definition, the AGM algorithm can search onlyar@nal form matri-
ces. This greatly enhances the search efficiency [27, 2].

convertible

Q> T »Q

~HHR OOR O M
Oor HORQ
OO0 oo+~ O
Oooor oW
OO0 o000+
oo ooor Q

Figure 13. CODE of Ordered Tree.

Join Operation

The original Conditions 1 and 2 are retained, and the folignTonditions 3 and 4 are introduced.
Condition 3. G(Y}) is disconnected, otherwisede(Xy) < code(Yy).

Condition 4. G(X},) is a connected graph.

The Condition 3 related toode for this bias is different from the conditions for the startand the
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connected subgraph derivation in terms of the part of the @rdi the direction of the inequality used
in the condition. The difference comes from the definitiorthe# canonical form for the ordered tree.
The rows and the columns of the adjacency matrix are ordeyeillowing the left and depth first
preorder numbering in the ordered tree. Accordingly, th&imbaving the last row and the last column
representing a vertex located at a deeper level has a edalunder a given first generator matk, _;.
For example X3 of a graphGG; having the third vertex at depth 3 has a smeadle thanY; of G5 having
the third vertex at depth 2. Because the gréphresulting from the join operation of two graphs having
their final vertices at different depths is uniquely detered independent from the labels of the vertices,
redundants joins are avoided by introducing the conditiefe(Xy) < code(Yy). When Xy andYy
represent graphs whose last vertices are at the same depttude(X) = code(Y}), the join operation
for the graphs result in two candidates depending on ther midthe join of X; andY;, as depicted

in Figure 15. Since these candidates represent differelgred trees, the join operations in the both
orders should be admitted wheode(X) = code(Yy). Thus,code(Xy) < code(Y}) in the Condition

3 should be applied to the case whérexX ) andG(Y}) are both connected graphs. Whe(ly) is not
connected, the analysis of Section 3.1 is used.

1 1
1
2 4 2
2 3
3 3
G, G, G

3

0101
Lo 1o 010 01 1
Z, = X;=[1 0 1| Y,=[1 0 0

0100
010 100

100 0

code(Z,)=101100  code(X;)=101 code(¥;)=110
Figure 14. Examples of Join Operation for Ordered Subtrgmbpdifferent Depth.

The completeness for the search by this join operation is m@wven. Theorem 2.1 is altered as
follows.

Theorem 3.2. Given a canonical form matriX_; of an ordered tree or an ordered tree with an isolated
vertex and its

CODE(Xj41) =num(Xg_1)num(lb(zy))num(lb(zg41))code(Xy—1)T1 g - - Th—1kT1 k41" Lh kt1-
Then,

Loz xp_1p S T1gy1c Th—1 k41, OF
2. Ty 1= = Tp_1 k41 = 0andzg 1 #0

holds.
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Sy
) @

G, G,

01 10
01 1 010

1000
Zo=| 4oy Xm[P 00 Y=l 00
100 000

0010

code(Z,)=110001 code(X;)=110  code(Y;)=100
Figure 15. Examples of Join Operation for Ordered Subtrgambddentical Depth.

Theorem 2.2 is also easily proven by the reduction to absur@iheorem 2.3 also holds since Con-
dition 3 and 4 alter the constraints of (#1) in a manner ctmsisvith Theorem 3.2.

3.3. Bias for Path Derivation

This bias derives frequent subgraphs included as path&dvatno loops or branches. The definition of
a canonical form is identical with that of the connected brap

Join Operation

The original Conditions 1 and 2 are retained, and the folhgw€onditions 3, 4 and 5 are introduced.
Condition 3. G(X},) is a connected graph.

Condition 4. G(Y}) is not a connected graph, otherwiS& DE(Xy) > CODE(Y}).

Condition 5. WhenG(Y},) is connectedz;,y , andzy ;1 Of Z;; are set to zero to prevent making a
pattern which has loops or branches.

The completeness of the search by this join operation isepranr almost identical manner with
Section 3.1 except the part (#2) in the proof of Theorem 2,3..; andz;1 ; in Z; are always zero
to avoid the generation of loops and branches. These coristdo not break the completeness of the
search as far as only frequent paths are searched. Hensedtwh by this join operation is complete.

4. Experiments

An IBM PC 300PL with Windows 2000 was used for the experimefitse test machine has a Pentium
111-667 MHz CPU and 192MB of main memory installed.
4.1. Mining Connected Subgraphs

Molecular structure data of carcinogenic compounds wa$/zed This data was provided from a
Predictive Toxicology Evaluation database [23], and dostanformation on 340 chemical compounds.
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There are 24 types of atoms making up these 340 chemical aordpo Since the atoms have different
states, the total number of atom types is 66. There are fpastgf atomic bonds corresponding to edges
in a graph. The molecular compounds contained an averagé afains, with the largest compound
having 214.

Figure 16 shows the results for the computation times foiouar minimum support values. It
includes the results of B-AGM for both connected subgrapits @nnected induced subgraphs and
FSG [18F and gSpan [24&]for connected subgraphs. When the minimum support degtisecompu-
tation time increases because the number of discoveregfpaincreases. The performance of B-AGM
is better than FSG and is comparable with gSpan for genenalembed subgraph derivation.

Figure 17 shows two examples derived in the connected indsiglegraph derivation. The subgraph
of (a) is contained in 6 chemical compounds with carcinogewstivity and 19 compounds without such
activity. In contrast, the graph of (b) is contained in 17 pawnds with carcinogenic activity and 4

inactive compounds. The first molecular substructure dogegxhibit significant activity, whereas the
second one exhibits quite high activity.

10000
—+—B-AGM(Connected Graph)
—&—B-AGM(Induced Connected Graph)
'§ 1000 —a— FSG(Connected Graph)
w
E —— gSpan(Connected Graph)
£
5 100
=
3
E
8 10

1 2 3 4 5 6 7 8 9 10
minimum support [%)

Figure 16. Minimum Support vs. Computation Time.
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support=7.3% support=6.2%
( positive = 6, negative = 19 ) ( positive = 17, negative =4 )
(a) Example 1 (b) Example 2

Figure 17. Discovered Frequent Connected Subgraphs.

“The experiments were done on a Linux PC with dual AMD Athlon M@0+ and 2GB main memory.
5The experiments were done on a Linux PC with a Pentium Il 5¢@zMrocessor and 448MB main memory.
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4.2. Mining Ordered Subtrees
4.2.1. Web browsing data

Zaki presented experimental results of substructure d&sgdrom a set of logs files over one month at
the RPI computer science department Web site [27]. Afteiptieprocessing, the dataset had 595,691
user browsing subtrees with 13,361 unique labels (Web pagésused the same data provided by Zaki
in our experiment and recalculated with the same machinertagpare our approach with TreeMiner.
TreeMiner can find frequent patterns embedded in a datasatefed trees. It is defined that pattern
P discovered by TreeMiner is embedded in tree daté and only if two vertices in a branch iR are

on the same path from the root to a leaflin For example in Figure 18, an ordered tree in the right is
embedded in the data. We used the same definition in the c@mopanf the results to obtain equivalent
results. The function to count the frequency is changed &4 to adjust to the definition of frequent
patterns of TreeMiner. Figure 19 shows the computationdifoevarious minimum support values. As
shown in Figure 19, B-AGM is comparable to TreeMiner.

Pattern

Figure 18. Examples (1) of Ordered Tree Data and a Pattern.
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Figure 19. Minimum Support vs. Computation Time.
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4.2.2. Semi-structured data

Asai et al. presented experimental results of substrualiseovery from a collection of Web pages
gathered from the Internet [2]. The data was collected froendnline bibliographic archive Citeseer,
and was parsed to create DOM trees. After the preprocedbiadree for the data had 196,247 vertices
with 7,125 unique labels (tags). We used the same data mab\vegt Asai in our experiment. Since
FREQT can find frequent patterns embeddedrirordered tree, the definition of support of FREQT is
slightly different from that defined in Section 2. Given adened tred), the supportup(P) of a pattern

P is defined as a ratio of the number of occurrences of the roét w@f the total number of vertices in
D. For example, given the ordered data tfeé Figure 20, thesup(P) = 2/10, because the root of the
patternP occurs at nodes 2 and 7 in the tree data that contains a toldl nbdes. We used the same
support definition as in FREQT in our comparison of the reswltobtain equivalent results.

Figure 21 shows the results of computation times and the ewsndif derived frequent patterns for
various minimum support values. FREQT was implemented \AJ&nd our B-AGM is implemented
in C++. This experiment was done in the same computationat@mment. As shown in Figure 21,
B-AGM is comparable to or faster than FREQT.

@ B
Data Pattern
Figure 20. Examples (2) of Ordered Tree Data and a Pattern.
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Figure 21. Minimum Support vs. Computation Time and the Nendf Derived Frequent Patterns.
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4.3. Mining Path Patterns

The Developmental Therapeutics Program’s AIDS Antiviradegning has checked tens of thousands of
compounds for evidence of anti-HIV activity [9]. Availabfiata are screening results and chemical struc-
tural data on compounds that are not covered by any confaiéntagreements. The dataset contains
the structures of 42,687 chemical compounds and the redateéning data. The data is categorized into
one of the three classes: active (CA), moderately active)(@M inactive (Cl). There are 422 CA com-
pounds, 1,081 CM compounds, and 41,184 Cl compounds in taeetaKramer et al. applied MolFeato
41,768 of these compounds to discover the characteridiicgadterns (called fragments) [f6MolFea
can mine path patterns with a minimum support for one claghdrdata and a maximum support for
another class in the data based on the search algorithm wete®n space. For the first task, MolFea
mined fragments that were contained in CA compounds morre 1Batimes which corresponds to the
minimum support on the CA dataset is 3% and in Cl less thanifiéstcorresponding to the maximum
support of 1.282%. The total computation time was about foug$rand twenty minutes, and more than
1,600 fragments were discovered. For the second taskoitnaiised fragments that were contained in
more than 13 CA compounds and in less than 8 CM compounds%{).7bhe total computation time
was about 34 minutes, and more than 680 fragments were diszbin this case.

We compared the performance of B-AGM to derive paths withHidal on this HIV dataset. Because
our framework cannot apply the minimum support and the marinsupport simultaneously, the mining
equivalent to that of MolFea is conducted in two steps. Fast approach finds all frequent subgraphs
having supports greater than or equal to the minimum suppdhte data having a class. Second, the
patterns less than or equal to the maximum support for anotass are deleted. For the first task, we
set the minimum support for the CA dataset and the maximumastifor Cl to 3% (13 compounds) and
1.265% (521 compounds), respectively, which were decidethe same criteria as used for MolFea.
The B-AGM algorithm took around 12 minutes to derive a setathpatterns which is almost identical
with that MolFea found. Under the identical conditions witle second task of MolFea, our approach
took around one minute, and identical patterns were oldai@&r algorithm mines all of the fragments
under the minimum and maximum support constraints moreeffly than MolFea.

4.4. Usefulness of Discovered Subgraph Patterns

To evaluate the ability of the B-AGM algorithm to discoveracacteristic patterns in wider classes not
limited to paths, we also mined characteristic connectdafyisyphs by applying B-AGM with a con-
nected subgraph derivation bias to CA and Cl compounds ofihedataset. Figure 22 shows the
results for the computation times and the numbers of disedvpatterns for various minimum support
and maximum support values based on the same criteria us&tbfBea. When the minimum support
decreases, the computation time increases because thenohdiscovered patterns increases. Most of
the computation time was required to find all frequent cotetksubgraphs whose supports are greater
than or equal to the specified minimum support threshold.ekample, when the minimum support for
the CA dataset and the maximum support for Cl were set to 1poands and 699 compounds, respec-
tively, the B-AGM algorithm took 3 hours to find all of the freent patterns from the CA compounds
and thirty minutes to delete the patterns which do not hagerthximum support for Cl compounds. Fi-
gure 23 is one of the discovered patterns which has the maxiohirsquared value in a test introduced

5The experiments were done on a Linux PC with a Pentium 11l 6G@zNMrocessor
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by Brin [4]. It is contained in 64 CA compounds including adfidymidine depicted in Figure 24 and in
16 CI compounds.

1000000 —— 100000
[J# of Frequent Patterns
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Figure 22. Computation Time and the Number of DiscovereteRa.

Figure 23. A Discovered Pattern having a Maximal Chi-sqdafdue.

H3C

Figure 24. Molecular Structure of Azidothymidine (AZT).
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Figure 25. Mechanism of HIV Infection (1).
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Figure 26. Mechanism of HIV Infection (2).

Figures 25 and 26 show the mechanism of HIV Infection. Wheuases invade from the outside,
the immune system works to eliminate them in the human bodie @D4 cells play a central role in
the immune system. HIV invades the CD4 cells, and destrays thAfter infection by HIV, within the
CD4 cell, the RNA of HIV is replicated into DNA by reverse temmiptase, and is included in the host
chromosome. After the inclusion, the DNA is activated toduee new HIV as shown in Figure 25.
Medical treatment is difficult because of HIV’s capabilitiyloding in the host chromosome, but since
the reverse transcriptase of HIV is unnecessary for thedadisthe reverse transcriptase has become the
target in the development of anti-HIV medicines [1]. Azidgidine (AZT) depicted in Figure 24 is
known to be an anti-HIV medicine. The reasons why AZT cankitlthe growth of the DNA chain are
that

e the structure of ATZ is similar to Thymine as depicted in Feg@7, and
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e AZT does not have a hydroxyl group (-OH) at its 3' end as shawRigure 24.

The reverse transcriptase reads the sequence of the HI\AsaRM transcribes it into a DNA sequence
consisting of Adenine, Thymine, Guanine, and Cytosine.c&IAZT is similar to Thymine, it binds
to the reverse transcriptase and is added to the DNA chainglaktension as shown in Figure 26. In
addition, the RNA of HIV is replicated into the DNA by the rese transcriptase from the 5’ end to the
3’ end indicated in Figure 27. Since there is no hydroxyl gratithe 3’ end of AZT, it stops the further
production of the DNA. B-AGM was able to discover the sigrafitsubgraph pattern shown in Figure 23,
which is included in many CA compounds but fewer CI compounithout using this background
knowledge. The compounds including this substructure esenging candidates for developing new
anti-HIV medicines.

HO

0
:% __OH
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/

0—=
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Figure 27. Molecular Structure of Thymine.

5. Future Extension

Since the bias of B-AGM has high generality, it can be appt@anine frequent patterns from a set
of unordered trees by introducing the following bias for thrrdered subtree derivation. We plan to
expand our B-AGM by adding the bias for the unordered sulitesation, and to compare with other
existing methods [22, 3].

Canonical Form

From an unordered tre@, we can generate many order treg&sby reordering children of one node
in the unordered tree. Let an adjacency matrix of the ordenesG’ be X. Let the set of the total
order numbers of the columns and rowsXf be = {i|i = 1---k}. WhenG(X}) is an ordered
tree without an isolated vertex, let the set of the preordenivers of assigned to the vertices(ofXy)
beJ = {jlj = 1---k}. WhenG(X}) consists of an ordered tree and an isolated vertex, let the se
of the preorder numbers.: - - k£ — 1 assigned to the vertices of the ordered tree and the:lassigned
to the isolated vertex i67(Xy) beJ = {j|j = 1---k}. LetI'(G) be a set of the adjacency matrices
representing the identical unordered t@eThe adjacency matrig’, whoseCODE is the smallest in
I'(G) is called the canonical form.

Cr  s.t. CODE(Ck):Yrg%?G)CODE(Xk)j
Ak

"The canonical form must be the minimuffO.DE among the adjacency matrices representing an identicehgrecording
to the definition of the condition 3.
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Figure 28. Tree Representation.

For example, the trees in Figure 28 are not isomorphic asreddigees, but they are isomorphic as
unordered trees. Since th&) D E of the adjacency matrix corresponding to the left tree ismatramum

for the matrices that represent the same tree, the mattieisanonical form. The conditions of the join
operation for this bias are the same as those for the ordexedias. The completeness of the search by
this join operation is proven similarly to the bias for thelered subtree derivation.

6. Discussion and Related Work

Heuristic-based approachesg, SUBDUE [5] and GBI [26, 20] have been introduced to allevitte
complexity issue. SUBDUE derives characteristic pattdrased on Minimum Description Length of
subgraphs. The latest version of GBI derives charactensiiterns in a dataset by chunking pair of
connected vertices having various types of high scores [T8f advantage of these methods is their
ability to search for typical patterns under various ci@dan a rapid manner. However, their greedy
search may miss some important patterns.

In contrast, MolFea [7], TreeMiner [27], and FREQT [2] usengidete search strategies similarly
to the AGM algorithm. They requir€(k) memory to store the trees or paths, whers the number
of vertices in the tree. Although our approach requitd%?) memory for the storage, other methods
which focused on one particular class of graph cannot beeaptd mine more complex substructures.
Our proposed method can conduct a complete search of valmeses of frequent subgraphs. As shown
in Section 4, the AGM algorithm with a bias for the orderedtsed or path derivation can derive the
complete result within a practical time period for each slasproblem, where the relative performance
is better than or comparable to the other approaches.

In addition, the B-AGM algorithm with a bias for the connet®ubgraph derivation can efficiently
discover all of the frequent subgraph patterns, with nedgpierformance better than FSG [17] and com-
parable to gSpan [24]. The first reason for the efficiency oh@M is that it can quickly generate
adjacency matrices of candidate frequent subgraphs thrthegjoin operation finding a common sub-
structure shared by two graph patterns under the adjaceatrixmepresentation. If a well-defined data
structure such as an adjacency matrix or the DFS canonidal @bgSpan is not used, exponential time
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is needed to find the common substructures from two graphiactnB-AGM can find one of the com-
mon structures i) (k%) from two adjacency matrices of size Although gSpan does not generate any
candidates, it can find one of common substructures(in+ e) if it generates them, whereande are
the numbers of vertices and edges in a graph pattern, resgectn addition, B-AGM and gSpan can
find itin O(1) by using the implementation used in [12, 24]. On the othedh#re first version of FSG
needs exponential time to find the common subgraphs [174usecit has to do subgraph isomorphism
matching between a pattern wittedges and subgraphs wih- 1 edges of another pattern.

The second reason is frequency counting. The B-AGM algoritores a set of the correspondences
of the vertices between a subgraph pattern and each grapticitalbase, as mentioned in Section 2.2.4.
Figure 29 shows the computation times under various miniraupport thresholds for cases where the
B-AGM algorithm stores the correspondences of the vericesdoes not store the relati8ng he latter
counting method is referred to Naive Counting in Figure 28e Tomputation times of the former count-
ing method are smaller than those of the latter counting atetAccordingly, the B-AGM algorithm can
quickly count support values. A drawback of the B-AGM algjfum is that it requires memory to store
the relations as shown in Figure 30 while no memory is requinghe latter counting method. However,
the required memory space for moderate amounts of datamsrsaiall. These features of the B-AGM
algorithm result in high efficiency since the load of the salpip isomorphism matching required to count
the frequency of each pattern is quite small. FSG needs noonputation time for the subgraph isomor-
phism matching required in the join operation, because ettide representation of graphs without an
algebraic background. The gSpan algorithm uses an effidegrth-first search based on DFS canonical
codes for graphs. Although it can also be extended to mireetdid subgraphs, subtrees, and paths, it
is not easily extended to mine general subgraphs includmgnnected subgraphs [25]. Table 1 sum-
marizes the combinations of the given datasets, the obgeclisses of substructures, and the applicable
approaches. This shows that our B-AGM can be applied to wapooblems.

10000

—e—B-AGM

—&—B-AGM + Naive Count

1000

computation time [sec]

minimum support [%]

Figure 29. Computation Times to Count Support.

8The B-AGM algorithm with a bias for the connected subgrapfivdtion was used in Figures 29, 30. The derived subgraphs
are induced subgraphs of each graph data.
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Figure 30. Required Memory Space to Store Correspondefidestees.

Table 1. Summary of Graph Mining Methods.

Dataset Substructure Class | Approach

Graph General subgraph AGM, B-AGM

Graph Connected subgraph FSG, B-AGM, gSpan

Tree Tree [22], UNOT [3], B-AGM, gSpan
Ordered tree | Ordered tree FREQT, TreeMiner,B-AGM, gSpan
Graph Path MolFea, B-AGM, gSpan

WARMR [6] and FARMER [21] for the complete search of the stuwes that belong to a more
general class than the graph have been proposed. Theyameidé¢ characteristic patterns in the form of
first order predicates using PROGOL, which is a system usiedlirctive logic programming (ILP). They
combined ILP principles with a levelwise search techniquertprove the search efficiency. However,
their results include some predicates having differemhbut equivalent in the sensetbgubsumption,
and the class of the substructures to be searched was litoitenhnected structures.

7. Conclusion

We proposed a generic framework for the data mining of graplttires. By introducing additional
biases, our approach can easily derive various types afiérggsubstructures. We evaluated its perfor-
mance in terms of the required computation time for someweald datasets. The wide coverage for
various problem classes and the computational efficienag wenfirmed and our method appears to
outperform or be comparable with other approaches.
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