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ABSTRACT 

Automatic recognition of an acoustic signature in underwater environments is an important and active field with 

multiple applications, one of which is vessel recognition. When a vessel moves through the sea, its engine and the 

cavitation generated by its propellers produce an acoustic wave of unique characteristics that allow for its individual 

identification. The problem of identification involves several variables, such as ambient noise, biological noise, and even 

noise produced by its own machinery, which means that the signal produced, is complex to treat. This paper presents a 

method based on Fourier transform and digital signal processing to extract a set of features allowing for automatic ship 

classification (by type). Computational intelligence techniques such as Artificial Neural Networks (ANNs) and Support 

Vector Machines (SVMs) are used for the classification stage. Results showed that the vessel recognition system has 

accuracy close to 92%.  
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INTRODUCTION 

Underwater acoustic signal identification is an 

important field in areas dealing with coastline 

surveillance, security in the seas, war strategies and 

tactics, among others. Acoustic signals produced by a ship 

are caused mainly by its machinery and the cavitation 

produced by the propellers, combined with the marine 

environment, which can include noise from other ships, 

biological noise such as that produced by dolphins and 

whales, and even rainfall. Such signals, however, are 

unique for each type of vessel, and therefore can be used 

for identification and tracking purposes.  

Underwater acoustic signals are detected, 

recorded and classified by using sonars, which are an 

important military tool that helps determine if a ship is a 

friend or enemy. The task of ship classification by sonar is 

sometimes carried out by a sonar operator that must 

perform a series of analysis; therefore, the necessary time 

for vessel recognition increases considerably and depends 

on operators' skills. 

Recent works aimed at developing automatic 

identification systems of acoustic signals approach the 

issue as a stationary process, given its variability and short 

duration [1-3]. 

Initially, techniques used for automatic ship 

detection have been based on the extraction of features in 

the frequency domain by using Fourier fast transform 

(FFT) [4-10]. An example of this is found in [4], where an 

omnidirectional hydrophone is used; the power spectral 

density is extracted from the signal, and the information is 

used to train a feed forward neural network. Similarly, in 

[8] sonar information is processed by extracting the 

amplitude spectrum and transforming it by means of 

principal component analysis. The objective is to separate 

the sets or types of ships to be classified, and such 

information is used as input for a neural network serving 

as non-linear classifier. With a similar approach, [9] 

proposes a process that uses neural networks with 

supervised and unsupervised learning, comparing their 

performance given the same spectral information as input. 

Other works make use of an auto-regressive model. In 

[11], spectral information is used to build an ARMA (Auto 

Regressive Moving Average) model. In [12], an 

autoregressive model is created, from which the poles are 

extracted periodically, in order to differentiate the source 

emitting the noise signal to finally classify the different 

signals by means of statistical classifiers.  

Given the results of the application of Fourier 

transform, interest has broadened to include Wavelet 

transform [7]. In [7], two pre-processing algorithms are 

used: the first one, known as Two-Pass Split-Window 

(TPSW), separates the windows in two steps, extracting 

information about mean power spectral density from input 

data; the second one uses Wavelet transform with the same 

data. For the classification stage, four different classifiers 

are used, so that a comparative analysis among them is 

carried out.  

Neural networks have a particular and special 

place in the classifying stage in many of the proposed 

strategies [8-10], [13-15]. In [15] a Kohonen neural 

network was used with smoothed spectral data and the 

differences between components of k order as input. Other 

works with neural networks include [16-19]. 

Different approaches can be found in [20], which 

uses fractal techniques for acoustic signature identification 

and classification.  

Two different schemes for the identification of 

acoustic signatures are addressed in [21]; in both, feature 

mailto:nleal@uac.edu.co


                               VOL. 10, NO 20, NOVEMBER, 2015                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      9634 

extraction is carried out by using Mel-frequency cepstral 

coefficients and Linear Predictive Coding (LPC) derived 

from cepstral coefficients, which have been broadly used 

for speech recognition. In [22], a robust algorithm is 

presented to detect the arrival of certain types of boats 

when there is background noise. The algorithm performs 

an analysis of the acoustic signature against an existing 

database of acoustic signals recorded and processed. In 

[23], the problem of noise in acoustic signals is analyzed, 

not from the statistical viewpoint, as static noise (white 

noise), but from the viewpoint of fractal analysis.  

This article presents an underwater acoustic 

signal classifier that allows for the automatic identification 

of vessel types. Two classifiers were implemented to carry 

out the classification of the acoustic signal emitted by 

vessels: a back propagation neural network and a Support 

Vector Machine. The main feature of the method proposed 

in this paper, that makes it different from others found in 

the literature, is the processing and extraction of 

information from the signal. Information extraction for 

signal processing is based on processing techniques 

involving spectral analysis, Gaussian windowing, 

estimation and reduction of the noise contained in the 

signal by using Fourier transform.  

 

METHODOLOGY 

The stages of the proposed method include a 

processing stage, followed by a feature extraction stage, 

and finally vessel classification. The procedure is shown in 

Figure-1. 

 

 
 

Figure-1. Block diagram of the system identification. 

 

Signal pre-processing 

The use of Fourier discrete transform to analyze 

the noise signal coming from a vessel is inadequate due to 

the complexity of the signal. When dealing with a signal 

of finite length, the output spectrum shows spurious 

frequency bands around the fundamental frequency 

hindering differentiation. Therefore, it is useful to 

determine the instant frequencies of the signal at different 

points in time, providing a dynamic understanding of 

signal features regardless of its length in time [6].  

The signal must be split into smaller samples in 

order to carry out proper frequency analysis. One option is 

to multiply the signal through a straight pulse; the 

equivalence on frequency of this pulse signal, however, 

gives as a result a Sine function capable of adding 

detrimental information to the spectrum. 

This work proposes the use of a windowing of the 

form݂ሺݔሻ = ܽ݁−ሺ�−್ሻమ೎మ , for any real constantܽ > Ͳ, ܾ, ܿ. 

Ifܿଶ = ʹthe result of the function is an eigenvalue of 

Fourier transform, that is, the result of Fourier transform 

of a signal multiplied by a Gaussian window is another 

function multiple of the original signal. 

 

Feature extraction 

In order to extract the relevant features of the 

processed signal, three methods have been applied: peak 

detection, energy analysis, and smoothed signal analysis. 

The feature vector is formed by the value of the highest 

peak of the original signal, with eight energy values 

corresponding to the energy of the first eight 500-Hz 

segments and the central frequency of the smoothed signal 

(see Figure-2). 

 

 
 

Figure-2. Signal features vector. 

 

a) Peak detection 

Peaks provide information on the signal's 

topological features and indicate special behaviors in the 

phenomenon they represent; for instance, depending on 

the scenario, they can represent highest demand, 

bandwidth increase, price increase, consumption increase, 

among others. In this context, a peak is defined as high 

values with a strong tendency rapidly followed by strong 

drops, generating a narrow base [24]. Algorithms for peak 

detection have been developed in different areas: 

bioinformatics, spectrometry, astrophysics, image 

processing, among others. In this work, we follow the 

procedure described in [24] for peak detection. 

Let ܶ = ,ଵݔ ,ଶݔ … , -be an univariate, uniformly�ݔ

sampled signal containing N values, and ݔ௜ be the i-th 

value of T; an ܵ function, or peak function, is estimated, 

which associates a positive ܵሺ�, ௜ݔ , ܶሻ value to the i-th 

value of T. Thus, point  ݔ௜ is a peak if ܵሺ�, ௜ݔ , ܶሻ ≥  ,ߚ

where ߚ is a predefined threshold. Where ܵ is defined as 

follows: 

 

ܵሺ݇, �, ௜ݔ , ܶሻ = (௫೔−∑ �೔−ೕೖೕ=భೖ )+(௫೔−∑ �೔+ೕೖೕ=భೖ )ଶ                       (1) 

 

where k is a positive integer that determines the size of the 

neighborhood of points coming before and after each ݔ௜ 
value. 
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b) Energy analysis 

Energy estimation for short segments is a simple 

and effective classification parameter for acoustic signals 

with or without voices [25]. In general, energy estimation 

is defined as the sum of the squares of the amplitudes 

froma segment. In order to characterize the acoustic 

signal, and since most of the information is found in the 

band of lower frequencies at 4 kHz, the spectrum was 

divided into eight 500-Hz segments. In this way, the 

energy of each individual segment is calculated to form a 

vector which is a discrete representation of the signal 

frequency information and comprises a set of individual 

features.  

For a discrete signal with N samples T(N), the 

energy of short segments measured at point n may be 

identified in three ways [26], [27]: 

 � = ∑ ܶሺ�ሻଶ�௜=ଵ                                                               (2) 

 � = ∑ log ܶሺ�ሻଶ�௜=ଵ                                                         (3) 

 � = ∑ |ܶሺ�ሻ|�௜=ଵ                                                               (4) 

 

In this work, the traditional definition established 

by equation (2) was adopted. 

 

c) Smoothing 

Smoothing allows obtaining an approximate 

representation that keeps the general structure and the 

main features of the original signal as well as the tendency 

and the cyclical components while avoiding random 

variations. In general, taxonomy of smoothing methods 

comprises two groups: average methods and exponential 

methods. The drawback of average-based methods in 

general is assuming that there is no tendency in the data. 

Because of this, in this work, the exponential method to 

smooth the original signal was used, defined in this way: 

 x̂i+ଵ = αxi + ሺͳ − αሻsi                                                    (5) 

 

where, ̂ݔ௜is the smoothed value,  ߙ is the smoothing 

constant Ͳ < ߙ < ͳ, the value ݔ௜ is the i-th value of the 

data set and ݏ௜ the last smoothed value. 

Once the smoothed version is obtained, a single 

value is adopted, corresponding to the maximum point of 

the smoothed function which coincides with the central 

frequency of the spectrum. 

 

Classification algorithm 

Once pre-processing is done and after extracting 

the features, they are entered into a classifier, which will 

allow identifying the type of vessel. Classification 

techniques shall be robust regarding the presence of 

ambient noise, the noise introduced by the capturing 

device, the capturing depth of the signal, water 

temperature changes and the noise produced by biological 

organisms, among others.  

In this work, classification techniques have been 

selected by means of Artificial Neural Networks (ANN) 

and Support Vector Machines (SVM). These techniques 

allow classifying non-linear and noisy data. 

 

Back propagation artificial neural network 

Neural networks with backward propagation or 

back propagation use hyperplanes for complex region 

separation in the n-dimensional space, by assigning each 

input pattern to a determined region. For a three-layer 

perceptron, the input units distribute the inputs to the 

hidden layer units. Theequationsthat describe this 

distribution are: 

ℎ௝ݔ  = ∑ ௜��௜=ଵݔ௜௝ݓ                                                               (6) 

ℎ௝ݕ  =  (7)                                                                             (ℎ௝ݔ)݂

௢௞ݔ  = ∑ ℎ௝�ೕ௝=ଵݔ௞௝ݓ ௢௞ݕ (8)                                                           = ݂ሺݔ௢௞ሻ                                                                   (9) 

 

Where xi is the value of the i-th input unit, wij is the 

associated weight between the j-th hidden neuron and the 

i-th input unit. NI is the total number of inputs, xhj is the 

total input to the j-th hidden neuron, ݂(ሺ∙ሻ)is the 

transference function, yhj is the output value of the j-th 

hidden neuron, wkj is the associated weight between the k-

th output neuron and the j-th hidden neuron. Nj is the total 

number of hidden neurons, xok is the total input at the k-th 

output neuron, and yok is the output value of the k-th output 

neuron. Typically, the transition function is a sigmoid 

function, which can be unipolar and continuous (see 

Equation 10) or bipolar continuous (see Equation 11). 

 ݂ሺݔሻ = ଵଵ+�−�                                                                  (10) 

 ݂ሺݔሻ = ଵ−�−�ଵ+�−�                                                                  (11) 

 

The total network error, denoted by E, is defined 

as: 

 � = ଵଶ ∑ ∑ �,௢௞ݕ) − ௞,�)ଶ�ೖ௞=ଵ�೎�=ଵݐ                                      (12) 

 

where yok,c is the current value of the k-th output neuron for 

the c-th input pattern, tk,c is the desired value of the k-th 

output neuron for the c-th input pattern, Nk is the total 

number of output neurons, Nc is the total number of input 
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patterns. To minimize the error E regarding the weights, 

the gradient descent method is applied, the weights are 

updated according to: 

ݏ௞௝ሺݓ∆  + ͳሻ = −� ∑ ���௪ೖೕ�೎�=ଵ +  ሻ                   (13)ݏ௞௝ሺݓ∆ߚ

ݏ௝௜ሺݓ∆  + ͳሻ = −� ∑ ���௪ೕ೔�೎�=ଵ +  ሻ                      (14)ݏ௝௜ሺݓ∆ߚ

 ���௪ೖೕ = ሺݕ௢௞ − ௢௞ሺͳݕ௞ሻݐ − ℎ௝ݕ௢௞ሻݕ                                (15) 

 

whereݏ represents the current iteration of the evaluation 

and ݏ + ͳ is the following iteration of the evaluation, η is 

the learning rate, and ߚ is the moment factor.  

 

Support vector machine classifier 

Support Vector Machines are used for 

classification and regression. SVMs use machine learning 

theories to maximize the prediction accuracy while 

avoiding data overfitting. 

Let us consider a linearly separable training data 

set, composed by N vectors called patterns, of the type ሺݔଵ, ,ଵሻݕ ሺݔଶ, ,ଶሻݕ … , ሺݔ� , ௜ݔ ሻwhere�ݕ ∈ ܴ௡; � =ͳ, … , ݈. Each scalar ݕ௜ ∈ {+ͳ, −ͳ}. Since it is a 

separable problem, there is a hyperplane defined by its 

vector. An SVM is a binary classifier that assigns a ݕ௜ tag 

to the ݔ input vector of each class. The main idea of 

SVMs is to build a decision hyperplane between two 

linearly-separable classes and to maximize the distance 

interval between the two classes (see Figure-3). 
 

 
 

Figure-3. SVM classification scheme, H is the 

classification hyperplane, W is the normal vector to the 

hyperplane, m is the minimum distance between positive 

and negative hyperplanes. 

 

The mathematical model of the given 

classification hyperplane ݉ = ଶ‖௪‖ is to maximize 
ଶ‖௪‖. In a 

mathematical sense, this is equivalent to minimizing ଵଶ  .ଶ and is convenient from a computational standpoint‖ݓ‖

To this end, Lagrange multipliers are used, in such a way 

that a Lagrangian function ̃ܮሺߙሻ must be built (see 

equation 16). 

ሻߙሺܮ̃  = ∑ ௜ߙ − ଵଶ ∑ ∑ �௜ݔ)௝ݕ௜ݕ௝ߙ௜ߙ ∙ ௝)௡௝=ଵ௡௜=ଵ௡௜=ଵݔ           (16) 

 

Finally, W can be calculated by using the terms ݓ ,ߙ = ∑ ௜௡௜=ଵݔ௜ݕ௜ߙ , with ܾ = −ଵଶ ݓ ∙ [ܺ௥ + ܺ௦], where ܺ௥ 

and ܺ௦ are a pair of support vectors, one of each class.  

Ideally, the model should produce a hyperplane 

that separates completely the data from the classes, 

grouped in two categories. However, a separation that 

completely meets these criteria does not always happen. If 

it does, the model cannot be generalized to other data and 

will correspond to overfitting. Thus, the model includes 

the parameter C which controls the compensation between 

training errors and rigid margins, which creates a soft 

margin that admits some classification errors. The problem 

of the classification hyperplane is reformulated in the 

following way:  ݉�݊ {ଵଶ ܹ ∙ ܹ + ܿ ∑ �௜௡௜=ଵ };   

subject to ݕ௜ሺݔ�ݓ௜ + ܾሻ ≥ ͳ − �௜;                                (17) � = ͳ, . . . , ݊; �௜ ≥ Ͳ, � = ͳ, . . . , ݊ 

 

If the data from the classes do not allow to do a 

linear separation in the input space, we consider the input 

vector mapping x in a greater dimension space ܴ௠, called 

feature spaceT, that is provided with a scalar product and 

which allows to do a linear separation in ܴ௠; but it 

represents a non-linear hyperplane ܴ௡, by using the 

Lagrange multipliers we have  

ሻߙሺܮ̃  = ∑ ௜ߙ − ଵଶ ∑ ∑ ௝ݕ௜ݕ௝ߙ௜ߙ ቀ∅ሺݔ௜ሻ ∙ ቁ௡௝=ଵ௡௜=ଵ௡௜=ଵ(௝ݔ)∅          (18) 

 

The calculation of ∅ሺݔ௜ሻ ∙ ∅ሺݔ௝ሻ is 

computationally expensive because m is much greater than 

n. The solution is to use the kernel functions, which cause 

that the scalar product appears in the space of features T 

but by making the calculation in the input space, which 

causes that it is not necessary to know ∅ሺݔ௜ሻsince݇(ݔ௜,ݔ௝) = ∅ሺݔ௜ሻ ∙ ∅ሺݔ௝ሻ. Therefore, ̃ܮሺߙሻis 

defined as: 

ሻߙሺܮ̃  = ∑ ௜ߙ − ଵଶ ∑ ∑ ௜ݔ)ܭ௝ݕ௜ݕ௝ߙ௜ߙ ∙ ௝)௡௝=ଵ௡௜=ଵ௡௜=ଵݔ         (19) 

 

The most common Kernel functions are: 
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௜ݔ)ܭ , (௝ݔ = ሺݔ௜ ∙ ௜ݔ)ܭ ௝ሻ           (20)ݔ , (௝ݔ = [ሺݔ௜ ∙ ௝ሻݔ + ௜ݔ)ܭ (21)           [ܿ , (௝ݔ = ݁− ଵଶ�మ‖௫೔−௫ೕ‖మ
௜ݔ)ܭ (22)            , (௝ݔ = tanhሺܾሺݔ௜ ∙ ௝ሻݔ + ܿሻ           (23) 

 

RESULTS 

The tests were performed in a PC with an Intel 

Core i7 2.2 GHZ processor and 8GB RAM memory. The 

test applications were developed in MATLAB 7.0. A 

neural network with the features shown in Table 1 was 

built; these features were obtained after having tested 

different settings based on the number of samples and the 

components of these samples. An average time of 47 

seconds for training the network and an average time of 1 

second for signature recognition was used.  

 

Signal pre-processing 

Figure-4(a) presents an example of an analyzed 

spectrum and the result of the smoothing stage. Figure-

4(b) shows the estimated energy in each one of the 8 bands 

that subdivide the original signal and Figure 4(c) presents 

the central frequency and the smoothed average frequency. 

 

 

(a) 

 

(b) 

 

 

 

(c) 
 

Figure-4. (a) Signal spectrum, (b) Higher power spectral 

density frequency peaks and (c) Central frequency and 

smoothed average frequency. 

 

The method was tested with a data set of 110 

samples coming from 2 types of vessels and a data set of 

biological noises, distributed in the following way: 42 

samples from go-fast boats, 26 from merchant vessels and 

42 from biological noise. With the above samples, the 

average success percentage attained was 92%. Table-2 

shows the success percentages for each sample subset. 

 

Table-1. Building neural network configurations. 
 

Feature Value 

Number of layers 2 

Neurons in layer 1 20 

Neurons in layer 2 30 

Number of inputs 10 

Layer 1 activation function tansig 

Layer 1 activation function tansig 

Learning algorithm TRAINLM 

Number of classes to identify 4 

Number of training patterns 97 

Number of test patterns 33 

 

Table-2. Precision percentage during recognition. 
 

  % accuracy 

Source Samples RNA SVM 

Biologic (Dolphins) 42 90 90 

Merchant 26 92 92 

Go-fast boat 42 81 71 

Total 110 87 84 
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CONCLUSIONS 

This work describes a method for acoustic 

signature recognition of marine vessels. It was shown that 

the combined use of Fourier transform with neural 

networks and support vector machines attains an accuracy 

percentage of 92%. Results showed that with the 

computational implementation of the proposed method the 

recognition of a vessel from its acoustic signature takes 

one second approximately, which constitutes a great 

improvement over the time used by a human worker 

(around one minute). 

As future work, we plan to perform the 

development of a system that combines different 

classifiers and learning techniques, to increase recognition 

accuracy.  

 

ACKNOWLEDGEMENTS 

The authors thank two Colombian navy 

institutions: the Escuela Naval de Suboficiales de 

Barranquilla-ENSB- and the Flotilla de Submarinos de la 

Escuela Naval de Oficiales Almirante Padilla-ENAP-for 

all the support received from scuba divers and sonar 

operators, and for the acoustic-signal samples delivered.  

 

REFERENCES 

 

[1] Urick R.J. 1996. Principles of underwater sound. 3rd 

Edition, Editorial McGraw-Hill, New York, USA. 

[2] Regazzoni C., Tesei A., Tacconi G. 1994. A 

comparison between spectral and bispectral analysis 

for ship detection from acoustical time series. 

Acoustics, Speech and Signal Processing. 2(1): 289-

292. 

[3] Pflug L.A., Ioup G.E., Ioup J., Jackson P. 1997. 

Variability in higher order statistics of measured 

shallow-water shipping noise. IEEE Signal Processing 

Workshop on Higher-Order Statistics, Banff. pp. 400-

404. 

[4] Streilein W.W., Gaudiano, P., Carpenter G.A. 1998. A 

neural network for object recognition through sonar 

on a mobile robot. Intelligent Control (ISIC). Held 

jointly with IEEE International Symposium on 

Computational Intelligence in Robotics and 

Automation (CIRA), Intelligent Systems and 

Semiotics (ISAS), pp. 271-276, 14-17 September. 

[5] Lathi B.P. 1998. Signal Processing and Linear 

Systems. New York: Oxford University Press. 

[6] Fulop Sean A. and Fitz, Kelly. 2006. A Spectrogram 

for the Twenty-First Century. Acoustics Today. pp. 

26-32. 

[7] Chen C., Lee J., Lin M. 1998. Classification of 

underwater signals using wavelet transforms and 

neural networks, Math. Comput. Model. 27(2): 47-60. 

[8] Soares-Filho W., Seixas J.M., Caloba L.P. 2002. 

Enlarging neural class detection capacity in passive 

sonar systems. IEEE Int. Symp. On Circuits and 

Systems, Scottsdale. 3(1): 105-108. 

[9] Howell B.P., Wood S., Koksal S. 2003. Passive sonar 

recognition and analysis using hybrid neural 

networks. IEEE Oceans, San Diego. 4: 1917-1924. 

[10] Kang C., Zhang X., Zahang A., Lin H. 2004. 

Underwater acoustic targets classification using welch 

spectrum estimation and neural networks, Adv. 

Neural Netw.  3173: 930-935. 

[11] Eom K., Wellman M., Srour N., Hillis D., Chellappa 

R. 1997. Acoustic target classification using 

multiscale methods. Sensors and Electron Devices 

Symp. University of Maryland, College Park, MD. 

[12] Huang J., Zhao J., Xie Y. 1997. Source classification 

using pole method of AR model. IEEE Int. Conf. on 

Acoustics, Speech and Signal Processing, Munich. 1: 

567-570. 

[13] Baran R.H., Coughlin J.P. 1991. A neural network for 

target classification using passive sonar. Proc. Conf. 

on Analysis of Neural Network Applications. pp. 188-

198. 

[14] Meister J. 1993. A neural network harmonic family 

classifier, J. Acous. Soc. Am. 93(3): 1488-1495. 

[15] Park K.-C., Lee P.-H., Park J.-N., Yoon J.-R. 2006. 

Neural networks for automatic classification of ship-

radiated noise, Jpn J. Appl. Phys. Part 1. 45(5): 4859-

4861. 

[16] Chen C-H., Lee J-D., Lin M-C. 2000. Classification 

of Underwater Signals Using Neural Networks. 

Tamkang Journal of Science and Engineering. 3(1): 

31-48. 

[17] LI Si C, YANG D-s., JIN L-p. 2009. Classifying ships 

by their acoustic signals with a cross-bispectrum 



                               VOL. 10, NO 20, NOVEMBER, 2015                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      9639 

algorithm and a radial basis function neural network 

Journal of Marine Science and Application. 8(1): 53-

57. 

[18] Chung K., Sutin, A., Sedunov, A., Bruno M. 2011. 

DEMON: Acoustic Ship Signature Measurements in 

an Urban Harbor Advances in Acoustics and 

Vibration, Hindawi Publishing Corporation. 2011(1): 

1-13. 

[19] Lobo V., Moura P.F. 1995. Ship noise classification 

using Kohonen Networks. Engineering applications of 

artificial neural networks International conference; 1
st
, 

Engineering applications of artificial neural networks, 

in Proc. of EANN 95, pp. 601-604. 

[20] Yang S., Li Z., Wang X. 2002. Ship recognition via 

its radiated sound: The fractal based approaches 

Acoustical Society of America. 112(1).  

[21] Kuçukbayrak M., Gunes O., Grade Jr., ARICA N. 

2009. Underwater Acoustic Signal Recognition 

Methods. Journal of Naval Science and Engineering. 

5(3): 64-78. 

[22] Averbucha A., Zheludeva V., Neittaanmäkib P., 

Wartiainenb P., Huomanc K., Jansonc K. 2011. 

Acoustic Detection and Classification of River Boats. 

Applied Acoustics. 72(1): 22-34. 

[23] Chen S., Zhang H. 2011. Detection of Underwater 

Acoustic from Ship Noise Based on WPT Method. 

Chaos-Fractals Theories and Applications (IWCFTA), 

2011 Fourth International Workshop on. pp. 324-327. 

[24] Palshikar G. 2009. Simple algorithms for peak 

detection in time-series. In: Proceedings of 1
st
 IIMA 

International Conference on Advanced Data Analysis, 

Business Analytics and Intelligence, Ahmedabad, 

India. 

[25] D. Enqing L. Guizhong, Z. Yatong, c. Yu. 2002. 

Voice Activity Detection Based on Short-Time 

Energy and Noise Spectrum Adaptation, 6
th 

International Conference on Signal Processing. 

[26] L.R. Rabiner and M.R. Sambur. 1975. An Algorithm 

for Determining the Endpoints of Isolated Utterances, 

Bell Syst. Tech. J. 54: 297-315.  

[27] Yang Xingjun. 1995. Digital Processing of Speech 

Signal. Publishing House of Electronics Industry. 


