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Abstract

While feedback loops are known to play im-
portant roles in many complex systems, their
existence is ignored in a large part of the causal
discovery literature, as systems are typically
assumed to be acyclic from the outset. When
applying causal discovery algorithms designed
for the acyclic setting on data generated by
a system that involves feedback, one would
not expect to obtain correct results. In this
work, we show that—surprisingly—the out-
put of the Fast Causal Inference (FCI) algo-
rithm is correct if it is applied to observational
data generated by a system that involves feed-
back. More specifically, we prove that for ob-
servational data generated by a simple and σ-
faithful Structural Causal Model (SCM), FCI
is sound and complete, and can be used to con-
sistently estimate (i) the presence and absence
of causal relations, (ii) the presence and ab-
sence of direct causal relations, (iii) the ab-
sence of confounders, and (iv) the absence
of specific cycles in the causal graph of the
SCM. We extend these results to constraint-
based causal discovery algorithms that exploit
certain forms of background knowledge, in-
cluding the causally sufficient setting (e.g., the
PC algorithm) and the Joint Causal Inference
setting (e.g., the FCI-JCI algorithm).

1 INTRODUCTION

Causal discovery, i.e., establishing the presence or ab-
sence of causal relationships between observed variables,
is an important activity in many scientific disciplines.
Typical approaches to causal discovery from observa-
tional data are either score-based, or constraint-based (or
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a combination of the two). The more generally applica-
ble constraint-based approach, which we focus on in this
work, is based on exploiting information in conditional
independences in the observed data to draw conclusions
about the possible underlying causal structure.

Although many systems of interest in various applica-
tion domains involve feedback loops or other types of
cyclic causal relationships (for example, in economical,
biological, chemical, physical, control and climatolog-
ical systems), most of the existing literature on causal
discovery from observational data ignores this and as-
sumes from the outset that the underlying causal system
is acyclic. Nonetheless, several algorithms have been de-
veloped specifically for the cyclic setting. For example,
quite some work has been done for linear systems (e.g.,
Richardson and Spirtes, 1999; Lacerda et al., 2008; Hyt-
tinen et al., 2010, 2012; Rothenhäusler et al., 2015).

More generally applicable are causal discovery algo-
rithms that exploit conditional independence constraints,
without assuming certain restrictions on the parameteri-
zations of the causal models (such as linearity). Pioneer-
ing work in this area was done by Richardson (1996b),
resulting in the CCD algorithm, the first constraint-based
causal discovery algorithm shown to be applicable in a
cyclic setting (see also Richardson, 1996a; Richardson
and Spirtes, 1999). It was shown to be sound under
the assumptions of causal sufficiency, the d-separation
Markov property, and d-faithfulness. More recently,
other algorithms that are sound under these assumptions
(except for the requirement of causal sufficiency) were
proposed (Hyttinen et al., 2014; Strobl, 2018).

However, it was already noted by Spirtes (1994, 1995)
that the d-separation Markov property assumption can
be too strong in general, and he proposed an alternative
criterion, making use of the so-called “collapsed graph”
construction. More recently, an alternative formulation
in terms of the σ-separation criterion was introduced,
and the corresponding Markov property was shown to



hold in a very general setting (Forré and Mooij, 2017).
Whereas the Markov property based on σ-separation ap-
plies under mild assumptions, the stronger Markov prop-
erty based on d-separation is limited to more specific set-
tings (e.g., continuous variables with linear relations, or
discrete variables, or the acyclic case) (Forré and Mooij,
2017). As discussed in (Forré and Mooij, 2017; Bongers
et al., 2020), the σ-separation Markov property seems ap-
propriate for a wide class of cyclic structural causal mod-
els with non-linear functional relationships between non-
discrete variables, for example structural causal mod-
els corresponding to the equilibrium states of dynami-
cal systems governed by random differential equations
(Bongers and Mooij, 2018).

Apart from a Markov property, constraint-based causal
discovery algorithms need to make some type of faith-
fulness assumption. A natural extension of the common
faithfulness assumption used in the acyclic setting is ob-
tained by replacing d-separation by σ-separation, that
we refer to as σ-faithfulness. Forré and Mooij (2018)
proposed a constraint-based causal discovery algorithm
that is sound and complete, assuming the σ-separation
Markov property in combination with the σ-faithfulness
assumption. However, their algorithm is limited in prac-
tice to about 5–7 variables because of the combinato-
rial explosion in the number of possible causal graphs
with increasing number of variables. Interestingly, un-
der the additional assumption of causal sufficiency, the
CCD algorithm is also sound under these assumptions
(as already noted in Section 4.5 of Richardson, 1996b).
Other causal discovery algorithms (LCD (Cooper, 1997),
ICP (Peters et al., 2016) and Y-structures (Mani, 2006)),
all originally designed for the acyclic setting, have been
shown to be sound also in the σ-separation setting (Mooij
et al., 2020). The most general scenario (under the
additional assumption of causal sufficiency, however)
is addressed by the NL-CCD algorithm (Chapter 4 in
Richardson, 1996b), which was shown to be sound un-
der the assumptions of the σ-separation Markov property
together with the (weaker) d-faithfulness assumption.

One of the classic algorithms for constraint-based causal
discovery is the Fast Causal Inference (FCI) algorithm
(Spirtes et al., 1995, 1999; Zhang, 2008b). It was de-
signed for the acyclic case, assuming the d-separation
Markov property in combination with the d-faithfulness
assumption. Recently, it was observed that when run on
data generated by cyclic causal models, the accuracy of
FCI is actually comparable to its accuracy in the strictly
acyclic setting (Figures 25, 26, 29, 31, 32 in Mooij et al.,
2020). This is surprising, as it is commonly believed that
the application domain of FCI is limited to acyclic causal
systems, and one would expect such serious model mis-
specification to result in glaringly incorrect results.

In this work, we show that when FCI is applied on data
from a cyclic causal system that satisfies the σ-separation
Markov property and is σ-faithful, its output is still sound
and complete. Furthermore, we derive criteria for how to
read off various features from the partial ancestral graph
output by FCI (specifically, the absence or presence of
ancestral relations, direct relations, cyclic relations and
confounders). This provides a practical causal discovery
algorithm for that setting that is able to handle hundreds
or even thousands of variables as long as the underlying
causal model is sparse enough, and that is also applicable
in the presence of latent confounders. It thus forms a
significant improvement over the previous state-of-the-
art in causal discovery for the σ-separation setting.

The results we derive in this work are not limited to FCI,
but apply to any constraint-based causal discovery algo-
rithm that solves the same task as FCI does, i.e., that
estimates the directed partial ancestral graph from con-
ditional independences in the data, e.g., FCI+ (Claassen
et al., 2013) and CFCI (Colombo et al., 2012). Our re-
sults therefore make constraint-based causal discovery in
the presence of cycles as practical as it is in the acyclic
case, without requiring any modifications of the algo-
rithms. Our work also provides the first characteriza-
tion of the σ-Markov equivalence class of directed mixed
graphs. We extend our results to variants of algorithms
that exploit certain background knowledge, for example,
causal sufficiency (e.g., the PC algorithm, Spirtes et al.,
2000) or the Joint Causal Inference framework (e.g., the
FCI-JCI algorithm, Mooij et al., 2020). For simplicity,
we assume no selection bias in this work, but we expect
that our results can be extended to allow for that as well.

2 PRELIMINARIES

In Section A (Supplementary Material), we introduce our
notation and terminology and provide the reader with a
summary of the necessary definitions and results from
the graphical causal modeling and discovery literature.
For more details, we refer the reader to the literature
(Pearl, 2009; Spirtes et al., 2000; Richardson and Spirtes,
2002; Zhang, 2006, 2008b,a; Bongers et al., 2020; Forré
and Mooij, 2017). Here, we only give a short high-level
overview of the key notions because of space constraints.

There exists a variety of graphical representations of
causal models. Most popular are directed acyclic graphs
(DAGs), presumably because of their simplicity. DAGs
are appropriate under the assumptions of causal suffi-
ciency (i.e., there are no latent common causes of the ob-
served variables), acyclicity (absence of feedback loops)
and no selection bias (i.e., there is no implicit condi-
tioning on a common effect of the observed variables).
DAGs have many convenient properties, amongst which



a Markov property (which has different equivalent for-
mulations, the most prominent one being in terms of the
notion of d-separation) and a simple causal interpreta-
tion. A more general class of graphs are acyclic di-
rected mixed graphs (ADMGs). These make use of addi-
tional bidirected edges to represent latent confounding,
and have a similarly convenient Markov property (some-
times referred to as m-separation) and causal interpre-
tation. When also dropping the assumption of acyclic-
ity (thereby allowing for feedback), one can make use of
the more general class of directed mixed graphs (DMGs).
These graphs can be naturally associated with (possibly
cyclic) structural causal models (SCMs) and can repre-
sent feedback loops. The corresponding Markov prop-
erties and causal interpretation are more subtle (Bongers
et al., 2020) than in the acyclic case. Cyclic SCMs can be
used, e.g., to describe the causal semantics of the equi-
librium states of dynamical systems governed by random
differential equations (Bongers and Mooij, 2018).

In this work, we will restrict ourselves to the subclass
of simple SCMs, i.e., those SCMs for which any sub-
set of the structural equations has a unique solution for
the corresponding endogenous variables in terms of the
other variables appearing in these equations. Simple
SCMs admit (sufficiently weak) cyclic interactions but
retain many of the convenient properties of acyclic SCMs
(Bongers et al., 2020). They are a special case of modular
SCMs (Forré and Mooij, 2017). In particular, they satisfy
the σ-separation Markov property and their graphs have
an intuitive causal interpretation.1

For acyclic constraint-based causal discovery, ADMGs
provide a more fine-grained representation than neces-
sary, because one can only recover the Markov equiva-
lence class of ADMGs from conditional independences
in observational data. A less expressive class of graphs,
maximal ancestral graphs (MAGs), was introduced by
Richardson and Spirtes (2002). Each ADMG induces
a MAG and each MAG represents a set of ADMGs.
The mapping from ADMG to MAG preserves the d-
separations and the (non-)ancestral relations. Contrary to
ADMGs, MAGs have at most a single edge connecting
any pair of distinct variables. One of the key properties
that distinguishes MAGs from ADMGs is that Markov-
equivalent MAGs have the same adjacencies. In addition
to being able to handle latent variables, MAGs can also
represent implicit conditioning on a subset of the vari-

1The σ-separation criterion is very similar to the d-
separation criterion, with the only difference being that σ-
separation has as an additional condition for a non-collider to
block a path that it has to point to a node in a different strongly
connected component. Two nodes in a DMG are said to be in
the same strongly connected component if and only if they are
both ancestor of each other.
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Figure 1: Relations between various representations.

ables, making use of undirected edges. Therefore, they
can be used to represent both latent variables and selec-
tion bias.

It is often convenient when performing causal reasoning
or discovery to be able to represent a set of hypothetical
MAGs in a compact way. For these reasons, partial an-
cestral graphs (PAGs) were introduced (Zhang, 2006).2

The usual way to think about a PAG is as an object that
represents a set of MAGs. The (Augmented) Fast Causal
Inference (FCI) algorithm (Spirtes et al., 1995, 1999;
Zhang, 2008b) takes as input the conditional indepen-
dences that hold in the data (assumed to be d-Markov and
d-faithful w.r.t. a “true” ADMG), and outputs a PAG. As
shown in seminal work (Spirtes et al., 1995, 1999; Ali
et al., 2005; Zhang, 2008b), the FCI algorithm is sound
and complete, and the PAG output by FCI represents the
Markov equivalence class of the true ADMG.

In this work, we will for simplicity assume no selection
bias. This means that we can restrict ourselves to MAGs
without undirected edges, which we refer to as directed
MAGs (DMAGs), and PAGs without undirected or circle-
tail edges, which we refer to as directed PAGs (DPAGs).
Almost all proofs will be deferred to Section C (Supple-
mentary Material) because of space constraints.

3 EXTENSIONS TO THE CYCLIC
SETTING

The theory of MAGs and PAGs is rather intricate. A nat-
ural question is how this theory can be extended when the

2PAGs were originally introduced by Richardson (1996b)
in order to represent the output of the CCD algorithm. It was
conjectured by Richardson that PAGs could also be used to
represent the output of the FCI algorithm, which was origi-
nally formulated in terms of Partially Oriented Inducing Path
Graphs (POIPGs). This conjecture was proved subsequently
by Spirtes. Richardson (p. 102, 1996b) notes: “It is an open
question whether or not the set of symbols is sufficiently rich
to allow us to represent the class of cyclic graphs with latent
variables.” In the present work we turned full circle by rein-
terpreting PAGs as representing properties of DMGs, and have
thereby answered this question affirmatively.



assumption of acyclicity is dropped. This does not seem
to be straightforward at first sight. An obvious approach
would be to generalize the notion of MAGs by adding
edge types that represent cycles. However, it would prob-
ably require a lot of effort to rederive and reformulate the
known results about MAGs and PAGs in this more gen-
eral setting. In this work, we take another approach: we
represent a (possibly cyclic) DMG directly by a DPAG.
In order to make this idea precise, we first need to extend
the notion of inducing path to the cyclic setting. Our
strategy is illustrated in Figure 1.

3.1 INDUCING PATHS

We propose the following generalization of the notion of
inducing path (Definition 9) to the σ-separation setting:

Definition 1 Let G = 〈V, E ,F〉 be directed mixed graph
(DMG). An inducing path (walk) between two nodes
i, j ∈ V is a path (walk) in G between i and j on which
every collider is in ANG({i, j}), and each non-collider
on the path (walk), except i and j, only has outgoing
directed edges to neighboring nodes on the path (walk)
that lie in the same strongly connected component of G.

This is indeed the proper generalization, since it has the
following property.

Proposition 1 Let G = 〈V, E ,F〉 be a DMG and i, j two
distinct vertices in G. Then the following are equivalent:

(i) There is an inducing path in G between i and j;
(ii) There is an inducing walk in G between i and j;

(iii) i 6⊥σG j |Z for all Z ⊆ V \ {i, j}.

In words: there is an inducing walk (or path) between
two nodes in a DMG if and only if the two nodes can-
not be σ-separated by any subset of nodes that does not
contain either of the two nodes.

3.2 REPRESENTING DMGs BY DPAGs

The following definition forms the key to our approach.

Definition 2 Let P be a DPAG and G a DMG, both with
vertex set V . We say that P contains G if all of the fol-
lowing hold:

(i) two vertices i, j are adjacent in P if and only if
there is an inducing path between i, j in G;

(ii) if i ∗→ j in P (i.e., i → j in P or i ◦→ j in P or
i↔ j in P), then j /∈ ANG(i);

(iii) if i→ j in P then i ∈ ANG(j).

It is only a slight variation on how PAGs are tradition-
ally interpreted, and agrees with the traditional (acyclic)
interpretation when restricting the DMGs to be acyclic.

3.3 ACYCLIFICATIONS

Inspired by the “collapsed graph” construction of Spirtes
(1994, 1995), Forré and Mooij (2017) introduced a no-
tion of acyclification for a class of graphical causal mod-
els termed HEDGes, but the same concept can be defined
for DMGs, which we will do here.

Definition 3 Given a DMG G = 〈V, E ,F〉. An acyclifi-
cation of G is an ADMG G′ = 〈V, E ′,F ′〉 with

(i) the same nodes V;
(ii) for any pair of nodes {i, j} such that i 6∈ SCG(j):

(a) i → j ∈ E ′ iff there exists a node k such that
k ∈ SCG(j) and i→ k ∈ E;

(b) i ↔ j ∈ F ′ iff there exists a node k such that
k ∈ SCG(j) and i↔ k ∈ F;

(iii) for any pair of distinct nodes {i, j} such that i ∈
SCG(j): i→ j ∈ E ′ or i← j ∈ E ′ or i↔ j ∈ F ′.

In words: all strongly connected components are made
fully-connected, edges between strongly connected com-
ponents are preserved, and any edge into a node in a
strongly connected component must be copied and made
adjacent to all nodes in the strongly connected compo-
nent. Note that a DMG may have multiple acyclifica-
tions. An example is given in Figure 2.

All acyclifications share certain “spurious” edges: the
additional incoming directed and adjacent bidirected
edges connecting nodes of two different strongly con-
nected components. These have no causal interpretation
but are necessary to correctly represent the σ-separation
properties as d-separation properties. The skeleton of
any acyclification G′ of G equals the skeleton of G plus
additional spurious adjacencies: the edges i −− j with
i ∗→ k and k ∈ SCG(j), and the edges i −− j with
i ∈ SCG(j) where i and j are not adjacent in G. These
“spurious edges” added in any acyclification of a DMG
G correspond with (non-trivial) inducing paths in G.

The “raison d’être” for acyclifications is that they are σ-
separation-equivalent to the original DMG, i.e., their σ-
independence models agree:

Proposition 2 For any DMG G and any acyclification
G′ of G, IMσ(G) = IMσ(G′) = IMd(G′).

One particular acyclification that we will make use of
repeatedly will be denoted Gacy, and is obtained by re-
placing all strongly connected components of G by fully-
connected bidirected components without any directed
edges (i.e., if i ∈ SCG(j) then i ↔ j in G′, but neither
i → j nor j → i in G′). Another useful set of acycli-
fications is obtained by replacing all strongly connected
components of G by arbitrary fully-connected DAGs, and
optionally adding an arbitrary set of bidirected edges.
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Figure 2: From left to right: Directed mixed graph G, two of its acyclifications (Gacy and G′) and the DPAG output by
FCI P = PFCI(IMσ(G)) = PFCI(IMd(G′)) = PFCI(IMd(Gacy)).

Other important properties of acyclifications are:

Proposition 3 Let G be a DMG and i, j two nodes in G.

(i) If i ∈ ANG(j) then there exists an acyclification G′
of G with i ∈ ANG′(j);

(ii) If i /∈ ANG(j) then i /∈ ANG′(j) for all acyclifica-
tions G′ of G;

(iii) There is an inducing path between i and j in G if
and only if there is an inducing path between i and
j in G′ for any acyclification G′ of G.

3.4 SOUNDNESS AND COMPLETENESS

In the acyclic setting, the FCI algorithm was shown to
be sound and complete (Zhang, 2008b). The notion of
acyclifications, together with their elementary properties
(Propositions 2 and 3) allows us to easily extend these
soundness and completeness results to the σ-separation
setting (allowing for cycles).

Consider FCI as a mapping PFCI from independence
models (on variables V) to DPAGs (with vertex set V),
which maps the independence model of a DMG G to the
DPAG PFCI(IMσ(G)).

Theorem 1 In the σ-separation setting (but without se-
lection bias), FCI is

(i) sound: for all DMGs G, PFCI(IMσ(G)) contains G;
(ii) arrowhead complete: for all DMGs G: if i /∈

ANG̃(j) for any DMG G̃ that is σ-Markov equiv-
alent to G, then there is an arrowhead i ←∗ j in
PFCI(IMσ(G));

(iii) tail complete: for all DMGs G, if i ∈ ANG̃(j) in
any DMG G̃ that is σ-Markov equivalent to G, then
there is a tail i→ j in PFCI(IMσ(G));

(iv) Markov complete: for all DMGs G1 and G2, G1 is
σ-Markov equivalent to G2 iff PFCI(IMσ(G1)) =
PFCI(IMσ(G2)).

Proof sketch: The main idea is the following (see
also Figure 1). For all DMGs G, IMσ(G) = IMd(G′)
for any acyclification G′ of G (Proposition 2). Hence
FCI maps any acyclification G′ of G to the same DPAG

PFCI(IMσ(G)), and thereby any conclusion we draw
about these acyclifications can be transferred back to a
conclusion about G by means of Proposition 3. A com-
plete proof is given in Section C of the Supplementary
Material. �

Note that these definitions of soundness and complete-
ness reduce to their acyclic counterparts (Zhang, 2008b)
when restricting to ADMGs. In particular, the soundness
and Markov completeness properties together imply that
the DPAG PFCI(IMσ(G)) output by FCI, when given as
input the σ-independence model of a DMG G, represents
the σ-Markov equivalence class of G. In other words,
FCI provides a characterization of the σ-Markov equiva-
lence class of a DMG. This is, to the best of our knowl-
edge, the first such characterization.

In order to read off the independence model from the
DPAG PFCI(IMσ(G)), one can follow the same proce-
dure as in the acyclic case: first construct a representa-
tive DMAG (for details, see Zhang (2008b)) and then ap-
ply the d-separation criterion to this DMAG. While the
soundness of FCI (Theorem 1(i)) allows us to read off
some (non-)ancestral relations from the DPAG output by
FCI, this is by far not all causal information that is iden-
tifiable from the σ-Markov equivalence class. In the fol-
lowing sections, we will discuss how various causal fea-
tures can be identified from DPAGs.

3.5 IDENTIFIABLE (NON-)ANCESTRAL
RELATIONS

Zhang (2006) conjectured the soundness and completess
of a criterion to read off all invariant ancestral relations
from a complete DPAG, i.e., to identify the ancestral re-
lations that are present in all Markov equivalent ADMGs
that are represented by a complete DPAG. Roumpelaki
et al. (2016) proved soundness of the criterion.3 We ex-
tend Theorem 3.1 in (Roumpelaki et al., 2016) to DPAGs
and DMGs:

3They also claim to have proved completeness, but their
proof is flawed: the last part of the proof that aims to prove
that u, v are non-adjacent appears to be incomplete.



Proposition 4 Let G be a DMG, and let P be a DPAG
that contains G, and such that all unshielded triples in
P have been oriented according to FCI ruleR0 (Zhang,
2008b) using IMσ(G). For two nodes i 6= j ∈ P: If

• there is a directed path from i to j in P , or
• there exist uncovered possibly directed paths (see

Definition 13) from i to j in P of the form i, u, . . . , j
and i, v, . . . , j such that u, v are distinct non-
adjacent nodes in P ,

then i ∈ ANG(j), i.e., i is ancestor of j according to G.

As an example, from the (complete) DPAG in Figure 2 it
follows that X2 ∈ ANG(X4), and X2 ∈ ANG(X7).

Zhang (2006, p. 137) provides a sound and complete cri-
terion to read off definite non-ancestors from a complete
DPAG, assuming acyclicity. We can directly extend this
criterion to DPAGs and DMGs:

Proposition 5 Let G be a DMG, and let P be a DPAG
that contains G. For two nodes i 6= j ∈ P: if there is no
possibly directed path from i to j in P then i /∈ ANG(j).

As an example, from the DPAG in Figure 2 we can read
off that X8 cannot be ancestor of X1 in G, nor the other
way around. However, X3 ◦−◦ X6 → X7 is a possibly
directed path in the DPAG, and soX3 may be (and in this
case is) ancestor of X7 in G.

3.6 IDENTIFIABLE NON-CONFOUNDED
PAIRS

While in ADMGs and DMGs confounding is indicated
by bidirected edges, in DPAGs confounding can also
“hide” behind directed edges. The following notion is
of key importance in this regard:

Definition 4 (Zhang (2008a)) A directed edge i → j in
a DMAG is said to be visible if there is a node k not
adjacent to j, such that either there is an edge between
k and i that is into i, or there is a collider path between
k and i that is into i and every collider on the path is
a parent of j. Otherwise i → j is said to be invisible.
The same notion applies to a DPAG, but is then called
definitely visible (and its negation possibly invisible).

For example, in the DPAG in Figure 2, edge X6 → X7

is definitely visible (by virtue of X2 → X6), as are all
edges X2 → {X3, X4, X5, X6} (by virtue of X8 ◦→
X2, or X9 ◦→ X2).

The notion of (in)visibility is closely related with con-
founding, as shown in Lemma 9 and 10 in Zhang
(2008a). To generalize this, we make use of the follow-
ing Lemma.

Lemma 1 Let P be a DPAG that contains DMG G, and
let k ∗→ i be an edge in P that is into i. Then there
exists an inducing walk in G between k and i that is into
i. If k ↔ i in P , then there exists an inducing walk in G
between k and i that is both into k and into i.

This allows us to generalize Lemma 9 in (Zhang, 2008a)
to the cyclic setting (with almost identical proof).

Lemma 2 Let P be a DPAG, and i→ j a directed edge
in P . If i → j is definitely visible in P , then for all
DMGs G contained in P , there exists no inducing walk
between i and j in G that is into i.

This provides us with a sufficient condition to read off
unconfounded pairs of nodes from DPAGs:

Proposition 6 Let P be a DMAG and G be a DMG con-
tained in P . Let i 6= j be two nodes in P . If i and j are
not adjacent in P , or if there is a directed edge i → j
in P that is definitely visible in P , then i ↔ j is absent
from G.

For example, from the DPAG in Figure 2 one can infer
that there is no bidirected edge X2 ↔ X7 in the under-
lying DMG G, as the two nodes are not adjacent in the
DPAG, and also that there is no bidirected edge between
X2 and any node in {X3, X4, X5, X6} in G, as all these
edges are definitely visible in the DPAG.

3.7 IDENTIFYING DIRECT (NON-)CAUSES

Contrary to DMGs, a directed edge in a DPAG does not
necessarily correspond with a direct causal relation. The
following proposition provides sufficient conditions to
identify the absence of a directed edge from the DPAG.

Proposition 7 Let P be a DPAG that contains a DMG
G. For two nodes i 6= j in P , if i ←∗ j in P , or i and j
are not adjacent in P , then i→ j is not present in G.

The following proposition was inspired by Theorem 3 in
Borboudakis et al. (2012) and provides sufficient condi-
tions to conclude the presence of a directed edge from
the DPAG.

Proposition 8 Let P be a DPAG that contains a DMG
G. For two nodes i 6= j in P , if i→ j in P and:

(i) there does not exist a possibly directed path from i
to j in P that avoids the edge i→ j, or

(ii) if there is no inducing walk between i and j in
G that is both into i and j (for example, because
i → j is definitely visible in P), and for all ver-
tices k such that there is a possibly directed path
i ∗−−∗ k ∗−−∗ j from i to j in P , the edge k → j is



definitely visible in the DPAG P∗ obtained from P
by replacing the edge between k and j by k → j,

then i→ j is present in G.

As an example, the edge X2 → X3 in the DPAG in Fig-
ure 2 cannot be identified as being present in G because
both conditions are not satisfied: (i) because of the pos-
sibly directed path X2 → X4 ◦−◦ X3, (ii) because of the
same path where the edge X4 → X3 would be possibly
invisible if oriented in that way. Also the edgeX1 → X3

in the DPAG cannot be identified as being present in G.
The edge X6 → X7 in the DPAG, on the other hand, is
identifiably present in G.

3.8 IDENTIFIABLE NON-CYCLES

Strongly connected components in the DMG end up as
a specific pattern in the DPAG. This can be used as a
sufficient condition for identifying the absence of certain
cyclic causal relations in a complete DPAG.

Proposition 9 Let G be a DMG and denote by P =
PFCI(IMσ(G)) the corresponding complete DPAG out-
put by FCI. Let i 6= j be two nodes in P . If j ∈ SCG(i),
then i ◦−◦ j in P , and for all nodes k: k → i in P iff
k → j in P , and k ↔ i in P iff k ↔ j in P , and k ◦→ i
in P iff k ◦→ j in P .

Hence, any pair of nodes that does not fit this pattern can-
not be part of a cycle in G. For example, in the complete
DPAG in Figure 2, only the nodes in {X3, X4, X5, X6}
might be part of a cycle. For all other pairs of nodes, it
follows from Proposition 9 that they cannot be part of a
cycle. This sufficient condition is also necessary:

Proposition 10 Let G be a DMG and denote by P =
PFCI(IMσ(G)) the corresponding complete DPAG out-
put by FCI. Let i 6= j be two nodes in P . If there is an
edge i ◦−◦ j in P , and all nodes k for which k ∗→ i is in
P also have an edge of the same type k ∗→ j (i.e., the two
edge marks at k are the same) in P , then there exists a
DMG G̃ with j ∈ SCG̃(i) that is σ-Markov equivalent to
G, but also a DMGH with j /∈ SCH(i) that is σ-Markov
equivalent to G.

In other words, under the conditions of this proposition,
it is not identifiable from P alone whether j and i are
part of a causal cycle.

4 EXTENSIONS FOR BACKGROUND
KNOWLEDGE

In this section, we discuss extensions of our results to sit-
uations in which available causal background knowledge
is taken into account by causal discovery algorithms.

Assume that we have certain background knowledge,
formalized as a Boolean function Ψ on the set of all
DMGs (indicating for each DMG whether it satisfies the
background knowledge). For example, one type of back-
ground knowledge commonly considered in the literature
(probably mainly for reasons of simplicity) is causal suf-
ficiency, which can be formalized by Ψ(G) = 1 iff G
contains no bidirected edges, and Ψ(G) = 0 otherwise.
A less trivial example of background knowledge are the
JCI Assumptions, which play a central role in the Joint
Causal Inference framework (Mooij et al., 2020) for per-
forming causal discovery from multiple datasets that cor-
respond with measurements of a system in different con-
texts (for example, a combination of observational and
different interventional datasets). The latter example will
be discussed in more detail in Section 4.3.

4.1 SOUNDNESS AND COMPLETENESS

We first extend the standard notions of soundness and
completeness to a setting that involves cycles and back-
ground knowledge (but no selection bias).

Definition 5 Under background knowledge Ψ, a map-
ping Φ from independence models to DPAGs is called:

• sound if for all DMGs G with Ψ(G) = 1:
Φ(IMσ(G)) contains G;
• arrowhead complete if for all DMGs G with Ψ(G) =

1: if i /∈ ANG̃(j) for any DMG G̃ with Ψ(G̃) = 1
that is σ-Markov equivalent to G, then there is an
arrowhead i←∗ j in Φ(IMσ(G));
• tail complete if for all DMGs G with Ψ(G) = 1: if
i ∈ ANG̃(j) in any DMG G̃ with Ψ(G̃) = 1 that is
σ-Markov equivalent to G, then there is a tail i→ j
in Φ(IMσ(G));
• Markov complete if for all DMGs G1,G2 with

Ψ(G1) = Ψ(G2) = 1: G1 is σ-Markov equivalent to
G2 iff Φ(IMσ(G1)) = Φ(IMσ(G2)).

It is called complete if it is both arrowhead complete and
tail complete.

Note that this reduces to the standard notions (Zhang,
2008b) if Ψ(G) = 1 iff G is acyclic, while it also reduces
to the notions in Theorem 1 if no background knowledge
is used (i.e., Ψ(G) = 1 for all G).

We assume that the background knowledge is compatible
with the acyclification in the following sense:

Assumption 1 For all DMGs G with Ψ(G) = 1, the fol-
lowing three conditions hold:

(i) There exists an acyclification G′ of G with Ψ(G′) =
1;

(ii) For all nodes i, j in G: if i ∈ ANG(j) then there



exists an acyclification G′ of G with Ψ(G′) = 1 such
that i ∈ ANG′(j);

(iii) For all nodes i, j in G: if i /∈ ANG(j) then
i /∈ ANG′(j) for all acyclifications G′ of G with
Ψ(G′) = 1.

For example, the background knowledge of “causal suf-
ficiency” satisfies this assumption, as well as the back-
ground knowledge of “acyclicity”.

The following result is straightforward given all the def-
initions, but is also quite powerful, as it allows us to
directly generalize existing acyclic soundness and com-
pleteness results (for certain background knowledge) to
the σ-separation setting.

Theorem 2 Let Ψ be background knowledge that satis-
fies Assumption 1 and let Φ be a mapping from indepen-
dence models to DPAGs. Then:

(i) If Φ is sound for background knowledge Ψ under
the additional assumption of acyclicity, then Φ is
sound for background knowledge Ψ.

(ii) If Φ is arrowhead (tail) complete for background
knowledge Ψ under the additional assumption of
acyclicity, then Φ is arrowhead (tail) complete for
background knowledge Ψ.

(iii) If Φ is sound and arrowhead complete for back-
ground knowledge Ψ under the additional assump-
tion of acyclicity, then Φ is Markov complete.

In the remainder of this section, we will apply this re-
sult to two types of background knowledge: causal suffi-
ciency, and the JCI assumptions.

4.2 CAUSAL SUFFICIENCY

We consider the (commonly assumed) background
knowledge of “causal sufficiency”. This is formalized
by Ψ(G) = 1 iff DMG G contains no bidirected edges.
For the acyclic setting, the well-known PC algorithm
(Spirtes et al., 2000), adapted with Meek’s orientation
rules (Meek, 1995a), was shown to be sound and com-
plete. It outputs a so-called Complete Partially Directed
Acyclic Graph (CPDAG), which can be interpreted also
as a DPAG (by replacing all undirected edges i −− j by
bicircle edges i ◦−◦ j). Because this particular back-
ground knowledge satisfies Assumption 1, we can apply
Theorem 2 to extend the existing acyclic soundness and
completeness results to the cyclic setting:

Corollary 1 The PC algorithm with Meek’s orientation
rules is sound, arrowhead complete, tail complete and
Markov complete (in the σ-separation setting without se-
lection bias).

We can therefore also apply Propositions 4, 5, to read off

the absence or presence of indirect causal relations from
the DPAG (obtained from the CPDAG) output by the PC
algorithm. Note that the presence or absence of direct
causal relations can be easily read off from the DPAG in
this case as they are in one-to-one correspondence with
directed edges in the DPAG.

4.3 JOINT CAUSAL INFERENCE

Recently, Mooij et al. (2020) proposed FCI-JCI, an ex-
tension of FCI that enables causal discovery from data
measured in different contexts (for example, if observa-
tional data as well as data corresponding to various in-
terventions is available). This is a particular implemen-
tation of the general Joint Causal Inference (JCI) frame-
work. For a detailed treatment, we refer the reader to
(Mooij et al., 2020); here we only give a brief summary
of the JCI assumptions that we need to extend our results
on FCI to FCI-JCI.

Definition 6 (JCI Assumptions) The data-generating
mechanism for a system in a context is described by
a simple SCM M with two types of endogenous vari-
ables: system variables {Xi}i∈I and context variables
{Ck}k∈K. Its graph G(M) has nodes I ∪ K (corre-
sponding to system variables and context variables,
respectively). The following (optional) JCI Assumptions
can be made about the graph G := G(M):

(1) Exogeneity: No system variable causes any context
variable, i.e., ∀k∈K∀i∈I : i→ k /∈ G.

(2) Randomization: No pair of context and system vari-
able is confounded, i.e., ∀k∈K∀i∈I : i↔ k /∈ G.

(3) Genericity: The induced subgraph G(M)K on the
context variables is of the following special form:
∀k 6=k′∈K : k ↔ k′ ∈ G ∧ k → k′ /∈ G.

The following Lemma is key to our extensions to the
cyclic σ-separation setting.

Lemma 3 If subset {1}, {1, 2}, or {1, 2, 3} of the JCI
Assumptions holds for a DMG G, then the same subset of
assumptions holds for any acyclification of G.

This trivially implies that these different combinations of
the JCI Assumptions satisfy Assumption 1. That allows
us to extend the existing acyclic soundness and complete-
ness results for FCI-JCI to the cyclic setting.

FCI-JCI was shown to be sound under the assumption of
acyclicity (Theorem 35, Mooij et al., 2020). This gives
with Theorem 2:

Corollary 2 For the background knowledge consisting
of JCI Assumptions ∅, {1}, {1, 2} or {1, 2, 3}, the
corresponding version of FCI-JCI is sound (in the σ-
separation setting without selection bias).



We can therefore also apply Propositions 5 and 6 to read
off the absence of indirect causal relations and confound-
ing from the DPAG output by the FCI-JCI algorithm, and
Propositions 7 and 8 to read off the absence or pres-
ence of direct causal relations. Furthermore, it is clear
from its definition that all unshielded triples in the DPAG
that FCI-JCI outputs have been oriented according to FCI
rule R0. Therefore, we can also apply Proposition 4 to
read off the presence of indirect causal relations from the
DPAG output by the FCI-JCI algorithm.

Under all three JCI assumptions, stronger results have
been derived. In particular, completeness of FCI-JCI has
been shown (Theorem 38 Mooij et al., 2020) under the
background knowledge of all three JCI Assumptions in
the acyclic setting. This gives with Theorem 2:

Corollary 3 For the background knowledge consisting
of JCI Assumptions {1, 2, 3}, the FCI-JCI algorithm is
arrowhead complete, tail complete and Markov complete
(in the σ-separation setting without selection bias).

An important feature of Joint Causal Inference under
JCI Assumptions {1, 2, 3} is that the direct (non-)targets
of interventions need not be known, but can be discov-
ered from the data. The sufficient condition provided in
Proposition 42 of Mooij et al. (2020) can be easily gen-
eralized to the σ-separation setting as well by observing
that under JCI Assumptions {1, 2, 3}, there cannot be an
inducing walk between a system node and a context node
that is into both, and then applying Proposition 7 and
Proposition 8. For details, see Proposition 12 in Sec-
tion B of the Supplementary Material.

Furthermore, also Proposition 9 that allows one to iden-
tify the absence of cycles can be extended to FCI-JCI
under JCI Assumptions {1, 2, 3}. For details, see Propo-
sition 13 in Section B of the Supplementary Material.

5 DISCUSSION AND CONCLUSION

We have shown that, surprisingly, the FCI algorithm and
several of its variants that were designed for the acyclic
setting need not be adapted but directly apply also in the
cyclic setting under the assumptions of the σ-Markov
property, σ-faithfulness, and the absence of selection
bias. Furthermore, we have provided sufficient condi-
tions to identify causal features from the DPAG output
by FCI and its variants. For convenience, we state this as
a corollary, collecting several of our results.

Corollary 4 Let M be a simple (possibly cyclic) SCM
with graph G(M) and assume that its distribution
PM(X) is σ-faithful w.r.t. the graph G(M). When us-
ing consistent conditional independence tests on an i.i.d.

sample of observational data from the induced distribu-
tion PM(X) ofM, FCI provides a consistent estimate P̂
of the DPAG PFCI(IMσ(G(M))) that represents the σ-
Markov equivalence class of G(M). From the estimated
DPAG P̂ , we obtain consistent estimates for: (i) the ab-
sence/presence of (possibly indirect) causal relations ac-
cording toM via Propositions 4 and 5; (ii) the absence
of confounders according to M via Proposition 6; (iii)
the absence/presence of direct causal relations accord-
ing to M via Propositions 7 and 8; (iv) the absence of
causal cycles according toM via Proposition 9.

A similar conclusion can be formulated for the FCI-JCI
algorithm (see Section B of the Supplementary Material).
Obviously, our results apply also in the acyclic setting
(where σ-separation reduces to d-separation).

One important limitation of the σ-faithfulness assump-
tion is that it excludes the linear and discrete cases. In
pioneering work Richardson (1996b) already proposed a
constraint-based causal discovery algorithm (NL-CCD)
that made use of the σ-separation Markov assump-
tion, while assuming only the d-faithfulness assumption
(which is weaker than the σ-faithfulness assumption). In
future work, we plan to investigate this setting as well, as
well as the possibility of extending our results to a setting
that does not rule out selection bias.
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