
EiGLasso: Scalable Estimation of Cartesian Product of Sparse Inverse
Covariance Matrices

Jun Ho Yoon
Computational Biology Department

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Seyoung Kim
Computational Biology Department

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In this paper, we address the problem of jointly
modeling dependencies across samples and
across multiple features, where each set of de-
pendencies is modeled as an inverse covariance
matrix. In particular, we study a matrix Gaus-
sian distribution with the Kronecker sum of
sample-wise and feature-wise inverse covari-
ances. While the Kronecker sum has been used
as an intuitively more appealing convex alterna-
tive to the Kronecker product of two inverse co-
variances, the existing methods do not scale to
large datasets. We introduce EiGLasso, a highly
efficient optimization method for estimating the
Kronecker-sum-structured inverse covariance
matrix from matrix-variate data. We describe
an alternative simpler approach for handling the
non-identifiability of parameters than the one
used in previous work. Using simulated and
real data, we show our approach leads to one or
two orders of magnitude speedup.

1 INTRODUCTION

One common assumption in statistical models for multi-
variate data is that samples, each consisting of multiple
and often high-dimensional features, are drawn identi-
cally and independently from a multivariate distribution.
These models typically focus on modeling dependencies
across features, assuming samples are independent of
each other. However, often samples as well as features
are correlated. For example, in tumor expression data
collected from many cancer patients for tens of thousands
of genes, genes in the same pathways have correlated
expression patterns and patients with the same or similar
subtypes of cancer exhibit correlated gene expression pat-
terns (Dai et al., 2015). Another example can be found

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

in multivariate time-series data such as temporally corre-
lated stock prices for related companies (King, 1966) or
a sequence of images in video data (Kalchbrenner et al.,
2017). In order to fully explain the correlation structure
in matrix data, it is necessary to model row-wise correla-
tion across samples and column-wise correlation across
features jointly.

The matrix Gaussian distribution has been widely used for
jointly modeling row-wise and column-wise dependen-
cies in data, as it is a natural generalization of multivariate
Gaussian distribution to matrix-variate data (Dawid, 1981;
Dutilleul, 1999; Gupta and Nagar, 1999). It uses the Kro-
necker product of two inverse covariance matrices, each
corresponding to graphs for sample-wise and feature-wise
dependencies, as the inverse covariance of multivariate
Gaussian distribution (Leng and Tang, 2012; Tsiligkaridis
and Hero, 2013; Zhou, 2014). The data log-likelihood
based on this model is not jointly convex with respect
to the two inverse covariance parameters but bi-convex.
Thus, a flip-flop style optimization has been used to es-
timate the row-wise parameter fixing the column-wise
parameter and vice versa until convergence.

More recently, a different matrix Gaussian distribution
based on the Kronecker sum of row and column graphs
has been introduced as a sparse and convex substitute for
Kronecker product (Kalaitzis et al., 2013; Greenewald
et al., 2019). The Kronecker sum of two graphs has an
intuitively more appealing structure than the Kronecker-
product counterpart, as it represents a sparse Cartesian
product of the two graphs (Hammack et al., 2011). Bi-
GLasso (Kalaitzis et al., 2013) estimated this model in a
flip-flop manner using GLasso (Friedman et al., 2007)
as a subroutine and alternately optimized for one of
the two graphs fixing the other until convergence. Ter-
aLasso (Greenewald et al., 2019) significantly improved
the computation time of BiGLasso using a gradient-based
method (Beck and Teboulle, 2009); however, it is still
significantly slower than the state-of-the-art optimiza-
tion methods such as QUIC (Hsieh et al., 2014) and

BIG&QUIC (Hsieh et al., 2013) for a Gaussian graph-
ical model for a single graph. One of the key chal-
lenges in the estimation of this model arises from the
non-identifiability of the diagonal elements of row and
column graphs. While BiGLasso did not estimate these
diagonal elements, TeraLasso proposed a strategy for esti-
mating them through identifiable reparameterization.

Here, we introduce a new optimization method, called
eigen graphical Lasso (EiGLasso), for estimating the
matrix Gaussian distribution with a Kronecker-sum-
structured inverse covariance matrix. EiGLasso improves
upon TeraLasso with a significantly more efficient op-
timization method and with a simpler strategy for esti-
mating the non-identifiable diagonal elements of row and
column graphs. Toward efficient optimization, EiGLasso
combines the simplicity of the flip-flop style optimiza-
tion of the Kronecker-product models and the efficiency
of QUIC for estimating sparse Gaussian graphical mod-
els (Hsieh et al., 2014). EiGLasso simplifies each flip-flop
optimization problem by exploiting the inflated structure
in the Cartesian product of two graphs and further reduces
computation time by exploiting the eigen-structure of the
gradient and Hessian of the log-likelihood function. This
leads to an algorithm that is significantly more efficient
than BiGLasso and TeraLasso.

In addition, we provide results that shed new insights into
the non-identifiability of the diagonal elements of row
and column graphs in Kronecker-sum model. While Ter-
aLasso introduced an identifiable reparameterization and
projected the gradient into this reparameterized space in
each iteration, in EiGLasso we show it is sufficient to use
a far simpler strategy of adjusting the diagonal elements
to an identifiable representation once after convergence,
a strategy similar to the one used for Kronecker-product
models (Yin and Li, 2012). Because the non-identifiability
of these parameters does not affect the gradient and Hes-
sian required for optimization, EiGLasso proceeds with-
out being concerned with the non-identifiability during
estimation. In our experiments, we demonstrate EiGLasso
has one or two orders-of-magnitude speed-up compared to
TeraLasso across problems of different sizes and recovers
the true parameters with higher accuracy than TeraLasso.

2 RELATED WORK

2.1 KRONECKER-PRODUCT INVERSE
COVARIANCE

The matrix Gaussian distribution generalizes a multivari-
ate Gaussian distribution. It models the distribution of
a q × p matrix random variable Y ∼ MN (M ,Ψ,Θ),
where M is a q × p mean, Θ is a p× p positive definite
matrix modeling column-wise dependencies in Y , and Ψ

is a q× q positive definite matrices representing row-wise
dependencies in Y . This distribution can be also written
as multivariate Gaussian with Kronecker product:

vec(Y) ∼ N
(
vec(M), (Θ⊗Ψ)−1

)
,

where ⊗ is the Kronecker-product operator, vec(·) is the
vec-operator that stacks the columns of a matrix into a
vector. Throughout the paper we assume zero mean as we
focus on the covariance structure.

Maximum likelihood estimation has been widely used
to estimate the parameters Ψ and Θ of this model. The
data log-likelihood is not jointly convex in Ψ and Θ but
bi-convex with respect to one parameter given the other.
The log-likelihood is maximized in a flip-flop fashion
for Ψ given Θ and for Θ given Ψ in each iteration until
convergence. The parameters are not fully identifiable as
Θ⊗Ψ = (cΘ)⊗ (1

cΨ) for any positive constant c. Thus,
after convergence, Θ and Ψ are rescaled as Θ ← cΘ
and Ψ ← 1

cΨ with some constant c such that the (1,1)
element Θ11 of Θ is equal to 1 (Yin and Li, 2012).

2.2 KRONECKER-SUM INVERSE
COVARIANCE

A Gaussian distribution for a matrix variable with
Kronecker-sum inverse covariance has been proposed
to model a sparse lattice structure in the Cartesian prod-
uct of two graphs Θ and Ψ (Kalaitzis et al., 2013). In
the Kronecker-product model, even when Θ and Ψ are
sparse, Θ⊗Ψ is often dense; for example, an edge Ψij

in graph Ψ induces edges in Θ ⊗Ψ between the same
two column nodes even if they arise from different row
nodes in graph Θ. In contrast, the Kronecker sum of Θ
and Ψ, defined as

Θ⊕Ψ , Θ⊗ Iq + Ip ⊗Ψ,

results in a network over pq nodes in the Cartesian prod-
uct of the two graphs, where an edge Ψij in Ψ induces
edges in Θ⊕Ψ only between the same two column nodes
arising from the same row node in Θ. The Gaussian distri-
bution with Kronecker-sum-structured inverse covariance
is given as

vec(Y) ∼ N
(
vec(M), (Θ⊕Ψ)−1

)
. (1)

A generalization of this model into the Kronecker sum
of M inverse covariance matrices for M ≥ 2 has been
discussed (see Section 1.2 in Greenewald et al. (2019)).

BiGLasso (Kalaitzis et al., 2013) and TeraLasso (Gree-
newald et al., 2019) have considered the problem of ob-
taining a sparse estimate of Θ and Ψ in Eq. (1) by
minimizing the `1-regularized negative log-likelihood of
data. Given data {Y 1, . . . ,Y n}, where Y i ∈ Rq×p for

i = 1, . . . , n for n observations, BiGLasso and TeraLasso
solve the following convex optimization problem:

argmin
Θ⊕Ψ�0

g(Θ,Ψ) + hΘ(Θ) + hΨ(Ψ), (2)

where

g(Θ,Ψ) = q tr(SΘ) + p tr(TΨ)− log |Θ⊕Ψ|

hΘ(Θ) = qγΘ‖Θ‖1,off, hΨ(Ψ) = pγΨ‖Ψ‖1,off,

given the sample covariances S , 1
nq

∑n
i=1 Y

iTY i and
T , 1

np

∑n
i=1 Y

iY iT .

One of the key challenges in estimating this model stems
from the non-identifiability of diagonals of Θ and Ψ: for
an arbitrary constant c we have

Θ⊕Ψ = (Θ− cIp)⊕ (Ψ + cIq) .

BiGLasso did not estimate the diagonals of Θ and Ψ.
TeraLasso formed an identifiable representation

Θ̄⊕ Ψ̄ + τIpq, (3)

where τ = tr(Θ⊕Ψ)
pq , Θ̄ = Θ− tr(Θ)

p Ip, Ψ̄ = Ψ− tr(Ψ)
q Iq ,

enforcing the constraint tr(Θ̄) = tr(Ψ̄) = 0. Then, dur-
ing estimation with a gradient-based method, TeraLasso
projected the gradient to this reparameterized Kronecker-
sum space in each iteration. For efficient computation and
projection of the gradient, TeraLasso eigendecomposed
Θ and Ψ: Θ = QΘΛΘQT

Θ, where QΘ ∈ Rp×p is an or-
thonormal matrix whose ith column is the ith eigenvector
of Θ and ΛΘ ∈ Rp×p is a diagonal matrix of p eigenval-
ues, and similarly, Ψ = QΨΛΨQT

Ψ. While TeraLasso
is significantly faster than BiGLasso, it does not scale
to graphs with more than a few hundred nodes. In the
next section, we propose a significantly faster algorithm
to solve Eq. (2) and a simpler approach to handling the
non-identifiability of the diagonal elements of Θ and Ψ.

3 EiGLasso

We introduce EiGLasso for an efficient estimation of
sparse Θ and Ψ in Eq. (1). We perform a flip-flop,
optimizing for Θ fixing Ψ and optimizing for Ψ fixing
Θ until convergence. To estimate one network parame-
ter given the other, we adopt the strategy used in QUIC
for estimating sparse Gaussian graphical models. QUIC
employed the Newton’s method: in each Newton itera-
tion, the Newton direction was found by minimizing the
second-order approximation of the objective and the pa-
rameter was updated, based on this Newton direction and
the step size found by line search. Applying the same
strategy to estimate Θ given Ψ in the Kronecker-sum

model, we find the Newton direction by solving the fol-
lowing optimization problem:

DΘ = argmin
∆Θ

ĝ(∆Θ) + hΘ(Θ + ∆Θ), (4)

where ĝ(∆Θ) is the second-order approximation of
g(Θ,Ψ) in Eq. (2) with respect to Θ fixing Ψ

ĝ(∆Θ) , tr (∇Θg∆Θ) +
1

2
vec(∆Θ)T∇2

Θg vec(∆Θ)

and is given as

ĝ(∆Θ) = q tr
(
S∆Θ

)
− tr

(
W (∆Θ ⊗ Iq)

)
+

1

2
vec (∆Θ ⊗ Iq)

T
W ⊗W vec (∆Θ ⊗ Iq) , (5)

where W , (Θ⊕Ψ)−1. Eq. (4) can be solved efficiently
with coordinate descent. The same strategy can be used to
solve the symmetric optimization problem of estimating
Ψ given Θ.

The key challenges that arise in a direct application of
QUIC to learn the Kronecker-sum model are 1) the need
to compute the large matrix W of size pq × pq in the
gradient, which would require prohibitively expensive
computation time O(p3q3) to invert Θ⊕Ψ and storage
O(p2q2), 2) the need to handle the even larger matrix
W ⊗W of size p2q2 × p2q2 in the Hessian, and 3) the
need to deal with the non-identifiable diagonals of Θ and
Ψ. Below we describe how we address each of these
challenges and then present the full algorithm.

3.1 EFFICIENT COMPUTATION OF
GRADIENT AND HESSIAN

Collapsed form of gradient and Hessian We re-write
the second-order approximation in Eq. (5), which in-
volves the gradient W of size pq × pq and Hessian
W ⊗W of size p2q2 × p2q2, into a significantly more
compact form that involves the gradient WΘ of size p×p
and Hessian HΘ of size p2 × p2 as follows:

ĝ(∆Θ) = q tr
(
S∆Θ

)
− tr

(
WΘ∆Θ

)
+

1

2
vec(∆Θ)THΘ vec(∆Θ).

WΘ and HΘ above are given as

WΘ ,
q∑
i=1

(Ip ⊗ ei)
TW (Ip ⊗ ei) (6a)

HΘ ,
q∑
i=1

q∑
j=1

[
(Ip ⊗ ei ⊗ Ip ⊗ ei)

T

W ⊗W (Ip ⊗ ej ⊗ Ip ⊗ ej)
]
, (6b)

where ek is a vector of length q with 0’s except for 1 in
the kth element.

Furthermore, while a naive strategy would compute WΘ

and HΘ by collapsing W and W ⊗W as in Eq. (6),
the following theorem states that these collapsed forms
can be obtained without constructing W explicitly, using
eigendecomposition of Θ and Ψ (proof in Appendix).

Theorem 1. Given the eigendecomposition Θ =
QΘΛΘQT

Θ and Ψ = QΨΛΨQT
Ψ, the collapsed form

of the gradient WΘ and Hessian HΘ in Eq. (6) can be
computed as

WΘ =

q∑
k=1

Vk and HΘ =

q∑
k=1

Vk ⊗ Vk. (7)

where

Vk = QΘ (ΛΘ + λΨ,kIp)
−1

QT
Θ,

given λΨ,k, the kth eigenvalue of Ψ.

While TeraLasso also employed eigendecomposition of Θ
and Ψ, they did so for a different purpose. In TeraLasso,
this was done for an efficient projection of the gradient to
the reparameterized space in each iteration. In contrast,
EiGLasso makes use of the eigendecomposition for an
efficient computation of the gradient and Hessian for Θ
given Ψ in the original space. This in turn reveals new
insights into the eigen-structure of WΘ and HΘ that
decomposes into sum over q components arising from the
eigen-structure of Ψ. In the next section, Theorem 1 is
also used to show the identifiable parameterization needs
to be considered only once at convergence, not in every
iteration.

Efficient computation of gradient and approximate
Hessian From Eq. (7), the gradient WΘ can be com-
puted efficiently as follows:

WΘ = QΘ

(q∑
k=1

(ΛΘ + λΨ,kIp)
−1

)
QT

Θ.

WΘ can be pre-computed and stored at the beginning
of the coordinate descent optimization to solve Eq. (4);
thus, it is not necessary to maintain all Vk’s during the
coordinate descent updates.

However, for the Hessian HΘ in Eq. (7), for large
p, explicitly precomputing and storing p2 × p2 matrix
HΘ is still expensive in terms of memory. An alter-
native approach of pre-computing and storing Vk’s for
k = 1, . . . , q and computing the elements of HΘ as
needed during the coordinate descent optimization in Eq.
(4) would be also prohibitively expensive in memory as

Algorithm 1: EiGLasso
input :Inputs Y ∈ Rq×p and regularization parameters

γΘ, γΨ
output :Parameters Θ,Ψ
Initialize Θ← Ip,Ψ← Iq
for t = 0, 1, . . . do

Estimate Θ:
Determine active sets
SΘ = {(i, j) | |∇Θijg| > qγΘ or Θij 6= 0}.

Compute DΘ via coordinate descent:
DΘ = arg min∆Θ

ĝ(∆Θ) + qγΘ||Θ + ∆Θ||1,off
over (i, j) ∈ SΘ.

Use Armijo-rule to compute a step-size αΘ such that
Θt+1 ⊕Ψ � 0, where Θt+1 = Θt + αΘDΘ and
update Θt+1.

Eigendecompose Θt+1 and compute the gradient
and Hessian for Ψ.

Estimate Ψ:
Proceed as if estimating Θ but symmetrically.
Check convergence.

Adjust the diagonal elements of Θ and Ψ according to
the preset trace ratio.

storing Vk’s would require space O(p2q). Hence, we pro-
pose to approximate HΘ based on the observation that the
smallest eigenvalues of Ψ contribute the most to the eigen-
values of HΘ, (ΛΘ + λΨIp)

−1 ⊗ (ΛΘ + λΨIp)
−1, as

can be seen in Eq. (7). Specifically, we sort the eigenval-
ues of Ψ in ascending order and use only {V1, . . . ,VK},
replacing the remaining q −K components with VK+1:

ĤΘ =

K∑
k=1

Vk ⊗ Vk + (q −K)VK+1 ⊗ VK+1. (8)

Note that dropping (q−K) eigenvalues and eigenvectors
in HΘ would amount to assuming that Ψ has (q − K)
eigenvalues of infinite magnitude. Thus, instead of drop-
ping these, we replace them with VK+1 in Eq. (8). We
demonstrate with simulations in Section 4 that often
K = 1 suffices.

3.2 HANDLING THE NON-IDENTIFIABILITY

We describe a simple approach to making the diagonal
elements of Θ and Ψ identifiable. We show it is suffi-
cient to identify the diagonals once after the convergence,
unlike in TeraLasso that identifies the diagonals in every
iteration during optimization.

We claim that assuming a fixed trace ratio tr(Ψ)/ tr(Θ)
= r is sufficient to make the diagonals identifiable. We
make use of the following fact:

tr(Θ⊕Ψ) = q tr(Θ) + p tr(Ψ), (9)

10-2 10-1 10+0 10+1 10+2 10+3

Time (sec)

103.5

104.0

104.5

105.0
O

b
je

c
ti
v
e

10-2 10-1 10+0 10+1 10+2 10+3

Time (sec)

103.5

104.0

104.5

105.0

O
b
je

c
ti
v
e

10-2 10-1 10+0 10+1 10+2 10+3

Time (sec)

103.5

104.0

104.5

105.0

O
b
je

c
ti
v
e

10-2 10-1 10+0 10+1 10+2 10+3

Time (sec)

103.5

104.0

104.5

105.0

105.5

O
b
je

c
ti
v
e

0 0.2 0.4 0.6 0.8 1

Precision

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

EiG K=1

EiG K=5

EiG K=10

EiG K=50

TeraLasso

10+0 10+1 10+2 10+3 10+4 10+5

Iteration

103.5

104.0

104.5

105.0

O
b

je
c
ti
v
e

10+0 10+1 10+2 10+3 10+4 10+5 10+6

Iteration

103.5

104.0

104.5

105.0

O
b

je
c
ti
v
e

10+0 10+1 10+2 10+3 10+4 10+5 10+6

Iteration

103.5

104.0

104.5

105.0

O
b

je
c
ti
v
e

10+0 10+1 10+2 10+3 10+4 10+5 10+6

Iteration

103.5

104.0

104.5

105.0

105.5

O
b

je
c
ti
v
e

Figure 1: Comparison of EiGLasso and TeraLasso on simulated data with random graphs of size 50×50. Left: objective
values over time (top) and over iterations (bottom) for data simulated from four random graphs (four columns). Right:
precision-recall curves for the sparse structure recovery of Θ and Ψ averaged over 10 simulated datasets. In EiGLasso,
K eigenvalues were used to approximate Hessian.

which can be directly verified by plugging in the defini-
tion of Kronecker sum to the left-hand side of the above
equation. Eq. (9) suggests we can distribute tr(Θ⊕Ψ) to
tr(Θ) and tr(Ψ) such that tr(Ψ)/ tr(Θ) = r to identify
the diagonals of Θ and Ψ. Given the estimates Θt and
Ψt at iteration t, we adjust the diagonals

Θt ← Θt + ctIp and Ψt ← Ψt − ctIq, (10)

where ct = tr(Ψt)−r tr(Θt)
q+rp is obtained by solving tr(Ψt −

ctIq)/ tr(Θt + ctIp) = r for ct.

In the special case with r = q/p, our strategy above
reduces to the identifiable reparameterization used in Ter-
aLasso. At the end of each iteration t, TeraLasso applies
the reparameterization in Eq. (3) and evenly distributes
τt = tr(Θt⊕Ψt)

pq in Eq. (3) across the two parameters:

Θt ← Θt − tr(Θt)

p
Ip +

τt
2
Ip

= Θt + ctIp from Eq. (9)

and similarly for Ψt. These updates are identical to our
adjustment in Eq. (10).

The adjustments made to the diagonal elements of the
parameters in Eq. (10) leave the gradient and Hessian in
Eqs. (7) and (8) unchanged. Eq. (10) leaves the eigenvec-
tors of Θt and Ψt the same but changes the eigenvalues
ΛΘt ← ΛΘt + ctI for Θt and ΛΨt ← ΛΨt − ctI for
Ψt. However, this change in the eigenvalues does not
affect the eigenvalues of Vk in the gradient and Hessian
in Eq. (7), as can be seen from

((ΛΘt + ctIp) + (λΨt,k − ct)Ip)−1

= (ΛΘt + λΨt,kIp)
−1
.

Since the update in Eq. (10) does not affect the gradient
and Hessian, it follows that the update in Eq. (10) affects
neither the Newton direction found in Eq. (4) nor the step-
size found from line search. Thus, unlike in TeraLasso,
it is sufficient to perform the adjusment in Eq. (9) only
once, after the convergence in EiGLasso.

3.3 THE FULL ALGORITHM

Putting together the time- and memory-efficient strategies
for obtaining the gradient and Hessian and the strategies
for handling non-identifiability as described in the previ-
ous sections, we provide the pseudocode for EiGLasso
in Algorithm 1. We adopt other strategies in QUIC for
improving computation time, such as updating only the
parameters in the active set during the coordinate descent
optimization. The details of the coordinate descent update
are discussed in Appendix.

4 EXPERIMENTS

We compared the performance of our EiGLasso with that
of TeraLasso (Greenewald et al., 2019) on simulated and
real data. We implemented EiGLasso in C++ with the se-
quential version of Intel Math Kernel Library. We down-
loaded the authors’ implementation of TeraLasso and
modified it to perform more iterations during line search,
when the safe-step approach suggested by the authors
failed to find a step-size that satisfies the positive definite
condition on Θ⊕Ψ. All experiments were run on a single
core of Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz.

10-2 10-1 10+0 10+1 10+2 10+3 10+4

Time (sec)

104.0

104.5

105.0

105.5
O

b
je

c
ti
v
e

10-2 10-1 10+0 10+1 10+2 10+3 10+4

Time (sec)

104.0

104.5

105.0

105.5

106.0

O
b
je

c
ti
v
e

10-2 10-1 10+0 10+1 10+2 10+3 10+4

Time (sec)

104.0

104.5

105.0

105.5

O
b
je

c
ti
v
e

10-2 10-1 10+0 10+1 10+2 10+3 10+4

Time (sec)

104.0

104.5

105.0

105.5

O
b
je

c
ti
v
e

0 0.2 0.4 0.6 0.8 1

Precision

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

EiG K=1

EiG K=5

EiG K=10

EiG K=50

EiG K=100

TeraLasso

10+0 10+1 10+2 10+3 10+4 10+5 10+6

Iteration

104.0

104.5

105.0

105.5

O
b

je
c
ti
v
e

10+0 10+1 10+2 10+3 10+4 10+5 10+6

Iteration

104.0

104.5

105.0

105.5

106.0

O
b

je
c
ti
v
e

10+0 10+1 10+2 10+3 10+4 10+5 10+6

Iteration

104.0

104.5

105.0

105.5

O
b

je
c
ti
v
e

10+0 10+1 10+2 10+3 10+4 10+5

Iteration

104.0

104.5

105.0

105.5

O
b

je
c
ti
v
e

Figure 2: Comparison of EiGLasso and TeraLasso on data simulated from random graphs of size 100 × 100. Left:
objective values over time (top) and over iterations (bottom) for four simulated datasets (four columns). Right: precision-
recall curves for the sparse structure recovery of Θ and Ψ averaged over 10 simulated datasets. In EiGLasso, K
eigenvalues were used to approximate Hessian.

10-2 10-1 10+0 10+1 10+2 10+3 10+4

Time (sec)

104.0

104.5

105.0

105.5

106.0

106.5

O
b

je
c
ti
v
e

10-2 10-1 10+0 10+1 10+2 10+3 10+4

Time (sec)

104.0

104.5

105.0

105.5

106.0

106.5

O
b
je

c
ti
v
e

10-2 10-1 10+0 10+1 10+2 10+3 10+4

Time (sec)

104.0

104.5

105.0

105.5

106.0

106.5

O
b

je
c
ti
v
e

10-2 10-1 10+0 10+1 10+2 10+3 10+4

Time (sec)

104.0

104.5

105.0

105.5

106.0

O
b
je

c
ti
v
e

0 0.2 0.4 0.6 0.8 1

Precision

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

EiG K=1

EiG K=5

EiG K=10

EiG K=50

EiG K=100

TeraLasso

10+0 10+1 10+2 10+3 10+4 10+5 10+6

Iteration

104.0

104.5

105.0

105.5

106.0

106.5

O
b

je
c
ti
v
e

10+0 10+1 10+2 10+3 10+4 10+5 10+6

Iteration

104.0

104.5

105.0

105.5

106.0

106.5

O
b

je
c
ti
v
e

10+0 10+1 10+2 10+3 10+4 10+5 10+6

Iteration

104.0

104.5

105.0

105.5

106.0

106.5

O
b

je
c
ti
v
e

10+0 10+1 10+2 10+3 10+4 10+5 10+6

Iteration

104.0

104.5

105.0

105.5

106.0

O
b

je
c
ti
v
e

Figure 3: Comparison of EiGLasso and TeraLasso on data simulated from block graphs of size 100×100. Left: objective
values over time (top) and over iterations (bottom) for four simulated datasets (four columns). Right: precision-recall
curves for the sparse structure recovery of Θ and Ψ averaged over 10 simulated datasets. In EiGLasso, K eigenvalues
were used to approximate Hessian.

4.1 SIMULATED DATA

We compared EiGLasso and TeraLasso on data simu-
lated from the known Θ and Ψ, assuming two types
of graph structures, random graphs and block-diagonal
graphs. To set the true p× p matrix Θ with random graph
structure, we first generated a sparse p× p matrix A by
assigning {−1, 0, 1} to each element with probabilities
{ 1−ρ

2 , ρ, 1−ρ
2 }. We chose ρ such that the number of off-

diagonal non-zero elements is p. To ensure Θ is positive
definite, we set Θ to AAT after adding σ + 10−4 with
σ ∼ Unif(0, 0.1) to each diagonal element. To set Θ
with block-diagonal structure, we generated 10 blocks of
identical size p

10 ×
p
10 in the same way as random graphs

and aligned the blocks along the diagonals of Θ. We set

the true Ψ similarly. Given these true parameters, we
simulated matrix-variate data from Gaussian distribution
with inverse covariance Θ⊕Ψ.

We evaluated EiGLasso with Hessian approximated with
different number of eigenvalues K ∈ {1, 5, 10, 50, 100}
and TeraLasso on computation time and on the accuracy
of recovering the true graph structures. We ran EiGLasso
until the decrease in the objective function satisfies the
condition

∣∣∣ ft−ft−1

ft

∣∣∣ < ε. Applying the same convergence
criterion terminated TeraLasso at suboptimal objective
with far inferior estimate of the parameters, so we let it run
until it reached similar objective value of EiGLasso. We
evaluated the accuracy of graph structure recovery using
precision and recall curves averaged over 10 datasets.

10-2 10-1 10+0 10+1 10+2

Time (sec)

104.0

104.5

105.0

105.5

106.0
O

b
je

c
ti
v
e

Figure 4: Convergence of EiGLasso for different regular-
ization parameters. EiGLasso was run on a single dataset
generated from random graphs with size 100 × 100 for
Θ and Ψ, using 20 different regularization parameters
ranging from 0.05 to 1.0 (red to blue curves).

(a) (b) (c)

Figure 5: Comparison of the graph structures recoverd
by EiGLasso and TeraLasso using simulated data. (a)
True 100 × 100 random graphs for Θ in two simulated
datasets (top and bottom). Estimated Θ are shown for (b)
EiGLasso with K = 1 eigenvalue and (c) TeraLasso.

Our results show that across different graph types and
sizes, our algorithm consistently converges one or two
orders of magnitude faster in significantly fewer itera-
tions than TeraLasso (Figs. 1-3, left). We make several
observations on how the number of eigenvalues K used
in Hessian approximation affects the convergence of Ei-
GLasso. First, EiGLasso is faster than TeraLasso, even
when it uses the exact Hessian. Second, the trade-off is
that with largerK, EiGLasso converges in fewer iterations
but usually takes more time because each iteration is more

(a) (b) (c)

Figure 6: Comparison of graph structures recovered by
EiGLasso with different Hessian approximations using
simulated data. (a) True 1000× 1000 block graph for Θ.
Estimated Θ with (b) K = 1 and (c) K = 5 eigenvalues.

expensive. Overall, we found K = 1 suffices and is the
best choice for K in practice, because it reached the same
solution with less memory and time. The convergence
of EiGLasso is consistent as we vary the regularization
parameters that control the level of sparsity (Fig. 4).

EiGLasso outperformed TeraLasso even when K = 1 on
graph structure recovery (Figs. 1-3, right; Fig. 5). In
addition, EiGLasso with K = 1 provided nearly identical
accuracy as EiGLasso with exact Hessian (Figs. 1-3,
right) and with K = 5 (Fig. 6). Overall, EiGLasso with
Hessian approximation with K = 1 reaches the optimum
significantly faster than EiGLasso with more eigenvalues
and TeraLasso without sacrificing accuracy.

For larger graphs with p = q = 1000, on which Ter-
aLasso could not run within a day, we applied EiGLasso
with K = 1 and 5. EiGLasso with K = 1 converged
substantially faster than EiGLasso with K = 5 (Figs. 7
and 8, left), with almost no sacrifice in accuracy as can be
seen from the two completely overlapping precision-recall
curves (Figs. 7 and 8, right).

4.2 REAL DATA

We obtained historical daily close price data of the S&P
500 constituents from Yahoo! Finance (q = 306 com-
panies and p = 2517 days). We preprocessed the data
and chose two different numbers of days (p = 100 and
p = 2516). We compared EiGLasso and TeraLasso only
on the smaller data, because TeraLasso did not converge
within 24 hours on the larger one. On the smaller dataset,
TeraLasso took 656 seconds and EiGLasso took 13 sec-
onds. On the larger dataset, EiGLasso recovered depen-
dencies among 306 companies that match the human an-
notation of the clusters of companies (Fig. 9).

5 CONCLUSION

In this paper, we introduced EiGLasso for an efficient
estimation of the Kronecker-sum inverse covariance ma-

10+1 10+2 10+3 10+4

Time (sec)

106.0

106.5

107.0

107.5

108.0
O

b
je

c
ti
v
e

10+1 10+2 10+3

Time (sec)

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+1 10+2 10+3

Time (sec)

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+1 10+2 10+3

Time (sec)

106.0

106.5

107.0

107.5

108.0

O
b

je
c
ti
v
e

0 0.2 0.4 0.6 0.8 1

Precision

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

EiG K=1

EiG K=5

10+0 10+1 10+2

Iteration

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+0 10+1

Iteration

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+0 10+1

Iteration

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+0 10+1

Iteration

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

Figure 7: The performance of EiGLasso on simulated data with random graphs of size 1000× 1000. Left: objective
values over time (top) and over iterations (bottom) for four simulated datasets (four columns). Right: precision-recall
curves for the sparse structure recovery of Θ and Ψ averaged over 10 simulated datasets. In EiGLasso, K eigenvalues
were used to approximate Hessian.

10+1 10+2 10+3

Time (sec)

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+1 10+2 10+3

Time (sec)

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+1 10+2 10+3

Time (sec)

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+1 10+2 10+3

Time (sec)

106.0

106.5

107.0

107.5

108.0

O
b

je
c
ti
v
e

0 0.2 0.4 0.6 0.8 1

Precision

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

EiG K=1

EiG K=5

10+0 10+1

Iteration

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+0 10+1

Iteration

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+0 10+1

Iteration

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

10+0 10+1

Iteration

106.0

106.5

107.0

107.5

108.0

O
b
je

c
ti
v
e

Figure 8: The performance of EiGLasso on simulated data with block graphs of size 1000 × 1000. Left: objective
values over time (top) and over iterations (bottom) for four simulated datasets (four columns). Right: precision-recall
curves for the sparse structure recovery of Θ and Ψ averaged over 10 simulated datasets. In EiGLasso, K eigenvalues
were used to approximate Hessian.

trix. We described a new approach for handling the non-
identifiable diagonal elements of the parameters. Our
future work includes providing a theoretical justification
of the low-rank approximation of Hessian and extend-
ing EiGLasso to incorporate the block-wise optimization
used in BIG&QUIC (Hsieh et al., 2013) to lift memory
constraint in QUIC (Hsieh et al., 2014).

Acknowledgements

This work was supported by NIH 1R21HG011116 and
NSF CAREER Award MCB-1149885. This work used
the Extreme Science and Engineering Discovery Environ-
ment (XSEDE), which is supported by NSF ACI-1548562

and ACI-1445606.

Appendix

Proof of Theorem 1

Proof. The Kronecker sum of Θ and Ψ can be written
using the eigendecomposition of Θ and Ψ as follows:

Θ⊕Ψ = (QΘ ⊗QΨ)(ΛΘ ⊕ΛΨ)(QΘ ⊗QΨ)T .

Then, the inverse of Θ⊕Ψ is given as

W = (Θ⊕Ψ)−1

Figure 9: Graph over companies estimated by EiGLasso
from S&P 500 close price data. Data from 306 companies
over 2,516 days were used. Only the off-diagonals of the
estimated graph matrix are shown.

= (QΘ ⊗QΨ)(ΛΘ ⊕ΛΨ)−1(QΘ ⊗QΨ)T .

Let qΘ,i and qΨ,i be the ith eigenvectors of Θ and Ψ,
given as the ith columns of QΘ and QΨ. Let λW,lk =

1
λΘ,l+λΨ,k

. Then, we can re-write W above as follows:

W =

p∑
l=1

q∑
k=1

λW,lk(qΘ,l ⊗ qΨ,k)(qΘ,l ⊗ qΨ,k)T .

To prove for the gradient, we begin with Eq. (6a) and
substitute W with its eigendecomposition. Let qΨ,ki be
the ith element of qΨ,k. Then, we have

WΘ =

q∑
i=1

(Ip ⊗ ei)
TW (Ip ⊗ ei)

=

q∑
i=1

p∑
l=1

q∑
k=1

λW,lk(qΨ,kiqΘ,l)(qΨ,kiqΘ,l)
T

=

p∑
l=1

q∑
k=1

(λΘ,l + λΨ,k)−1qΘ,lq
T
Θ,l

=

q∑
k=1

QΘ (ΛΘ + λΨ,kIp)
−1

QT
Θ =

q∑
k=1

Vk.

The third line follows from the second line above since
Σiq

2
Ψ,ki = 1 by the orthonormality of eigenvectors.

To prove for the Hessian, we begin with Eq. (6b) and
again substitute W with its eigendecomposition:

HΘ =

q∑
i=1

q∑
j=1

[
(Ip ⊗ ei ⊗ Ip ⊗ ei)

T

W ⊗W (Ip ⊗ ej ⊗ Ip ⊗ ej)
]

=
∑
i,j

[
(Ip ⊗ ei)

TW (Ip ⊗ ej)

⊗ (Ip ⊗ ei)
TW (Ip ⊗ ej)

]
=
∑
i,j

[∑
l,k

λW,lk(qΨ,kiqΘ,l)(qΨ,kjqΘ,l)
T

⊗
∑
r,s

λW,rs(qΨ,siqΘ,r)(qΨ,sjqΘ,r)
T

]
=
∑
k

[∑
l

λW,lkqΘ,lq
T
Θ,l ⊗

∑
r

λW,rkqΘ,rq
T
Θ,r

]
=
∑
k

Vk ⊗ Vk.

The fourth equality above follows from the orthonormality
of eigenvectors: Σi,jqΨ,kiqΨ,siqΨ,kjqΨ,sj is 1 if s = k
or 0 otherwise.

Coordinate descent optimization in EiGLasso

To solve the optimization problem in Eq. (4), we adopt
the strategy developed for Gaussian graphical models in
QUIC (Hsieh et al., 2014). In EiGLasso, solving Eq. (4)
for a single (i, j)th element in DΘ amounts to solving the
following optimization problem:

argmin
µ

µ
(
nSij −WΘ,ij +

K∑
k=1

vTk,iDΘvk,j

+ (q −K)vTK+1,iDΘvK+1,j

)
+
µ2

2

(K∑
k=1

V 2
k,ij + Vk,iiVk,jj

+ (q −K)
(
V 2
K+1,ij + VK+1,iiVK+1,jj

))
+ qγΘ||Θij +DΘ,ij + µ||1,off,

where vk,i is the ith column of Vk. The problem above
has a closed-form solution

µ = −c+ S
(
c− b

a
,
qγΘ
a

)
,

where a =
∑K
k=1 V

2
k,ij + Vk,iiVk,jj + (q − K)(

V 2
K+1,ij + VK+1,iiVK+1,jj

)
, b = nSij − WΘ,ij +∑K

k=1 v
T
k,iDΘvk,j ,+(q − K)vTK+1,iDΘvK+1,j , c =

Θij + DΘ,ij and S(z, r) = sign(z) max{|z| − r, 0} is
the soft-thresholding function.

References
Beck, A. and Teboulle, M. (2009). A fast iterative

shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sciences, 2:183–202.

Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., and Shi,
B. (2015). Breast cancer intrinsic subtype classification,
clinical use and future trends. American Journal of
Cancer Research, 5:2929–43.

Dawid, A. P. (1981). Some matrix-variate distribution
theory: Notational considerations and a Bayesian ap-
plication. Biometrika, 68(1):265–274.

Dutilleul, P. (1999). The MLE algorithm for the matrix
normal distribution. Journal of Statistical Computation
and Simulation, 64(2):105–123.

Friedman, J., Hastie, T., and Tibshirani, R. (2007). Sparse
inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3):432–441.

Greenewald, K., Zhou, S., and Hero III, A. (2019). Ten-
sor graphical lasso (TeraLasso). Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
81(5):901–931.

Gupta, A. and Nagar, D. (1999). Matrix Variate Distribu-
tions. Monographs and Surveys in Pure and Applied
Mathematics. Taylor & Francis.

Hammack, R., Imrich, W., and Klavzar, S. (2011). Hand-
book of Product Graphs, Second Edition. CRC Press,
Inc., USA, 2nd edition.

Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., and Ravikumar,
P. (2014). QUIC: Quadratic approximation for sparse
inverse covariance estimation. Journal of Machine
Learning Research, 15(83):2911–2947.

Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., Ravikumar,
P. K., and Poldrack, R. (2013). BIG & QUIC: Sparse
inverse covariance estimation for a million variables. In
Burges, C. J. C., Bottou, L., Welling, M., Ghahramani,
Z., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems 26, pages 3165–3173.
Curran Associates, Inc.

Kalaitzis, A., Lafferty, J., Lawrence, N. D., and Zhou, S.
(2013). The bigraphical lasso. In Dasgupta, S. and
McAllester, D., editors, Proceedings of the 30th Inter-
national Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pages
1229–1237, Atlanta, Georgia, USA. PMLR.

Kalchbrenner, N., van den Oord, A., Simonyan, K., Dani-
helka, I., Vinyals, O., Graves, A., and Kavukcuoglu,
K. (2017). Video pixel networks. In Precup, D. and
Teh, Y. W., editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages

1771–1779, International Convention Centre, Sydney,
Australia. PMLR.

King, B. F. (1966). Market and industry factors in stock
price behavior. The Journal of Business, 39(1):139–
190.

Leng, C. and Tang, C. Y. (2012). Sparse matrix graphical
models. Journal of the American Statistical Associa-
tion, 107(499):1187–1200.

Tsiligkaridis, T. and Hero, A. O. (2013). Covariance
estimation in high dimensions via Kronecker product
expansions. IEEE Transactions on Signal Processing,
61(21):5347–5360.

Yin, J. and Li, H. (2012). Model selection and estima-
tion in the matrix normal graphical model. Journal of
Multivariate Analysis, 107:119–140.

Zhou, S. (2014). Gemini: Graph estimation with matrix
variate normal instances. Ann. Statist., 42(2):532–562.

	INTRODUCTION
	RELATED WORK
	KRONECKER-PRODUCT INVERSE COVARIANCE
	KRONECKER-SUM INVERSE COVARIANCE

	EiGLasso
	EFFICIENT COMPUTATION OF GRADIENT AND HESSIAN
	HANDLING THE NON-IDENTIFIABILITY
	THE FULL ALGORITHM

	EXPERIMENTS
	SIMULATED DATA
	REAL DATA

	CONCLUSION

