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Abstract

Graphs are ubiquitous in modelling relational
structures. Recent endeavours in machine learn-
ing for graph structured data have led to many
architectures and learning algorithms. How-
ever, the graph used by these algorithms is of-
ten constructed based on inaccurate modelling
assumptions and/or noisy data. As a result, it
fails to represent the true relationships between
nodes. A Bayesian framework which targets
posterior inference of the graph by considering
it as a random quantity can be beneficial. In
this paper, we propose a novel non-parametric
graph model for constructing the posterior dis-
tribution of graph adjacency matrices. The pro-
posed model is flexible in the sense that it can
effectively take into account the output of graph
based learning algorithms that target specific
tasks. In addition, model inference scales well
to large graphs. We demonstrate the advantages
of this model in three different problem set-
tings: node classification, link prediction and
recommendation.

1 INTRODUCTION

Growing interest in inference tasks involving networks
has prompted the need for learning architectures adapted
to graph-structured data. As a result, numerous models
have been proposed for addressing various graph based
learning tasks such as classification, link prediction, and
recommendation. These approaches process the observed
graph as if it depicts the true relationship among the nodes.
In practice, the observed graphs are formed based on
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imperfect observations and incorrect modelling assump-
tions. Spurious edges might be formed and important
links might be deleted. The vast majority of existing algo-
rithms cannot take the uncertainty of the graph structure
into account during training as there is no mechanism for
removing spurious edges and/or adding informative edges
in the observed graph.

Several algorithms that do address this uncertainty by
incorporating a graph learning component have been pro-
posed recently (Zhang et al., 2019; Ma et al., 2019; Tiao
et al., 2019; Jiang et al., 2019). These methods have lim-
itations, either involving parametric graph models that
restrict their applicability or being focused on the task of
node classification.

In this work, we propose a non-parametric graph inference
technique which is incorporated in a Bayesian framework
to tackle node and/or edge level learning tasks. Our ap-
proach has the following key benefits. First, it generalizes
the applicability of the Bayesian techniques outside the
realm of parametric modelling. Second, flexible, task spe-
cific graph learning can be achieved; this makes effective
use of the outputs of existing graph-learning techniques to
improve upon them. Third, the graph learning procedure
scales well to large graphs, in contrast to the increased
difficulty of parametric approaches.

We conduct extensive experiments to demonstrate the use-
fulness of our model for three different graph related tasks.
In a node classification setting we observed increased ac-
curacy for settings where the amount of labeled data is
very limited. For the setting of unsupervised learning, we
show that incorporating a graph learning step when per-
forming variational modelling of the graph structure with
auto-encoder models leads to better link prediction. Fi-
nally, a Bayesian approach based on our proposed model
improves recall for existing state-of-the-art graph-based
recommender system architectures.



2 RELATED WORK

Topology uncertainty in graph neural networks:
The most closely related work to our proposed approach
is a group of recent techniques that jointly perform infer-
ence of the graph while addressing a learning task such
as node classification. The recently proposed Bayesian
GCN (Zhang et al., 2019) provides a general, principled
framework to deal with the issue of uncertainty on graphs.
Similar ideas are considered in (Ma et al., 2019), where
variational inference is used to learn the graph structure.
This formulation allows consideration of additional data
such as features and labels when performing graph infer-
ence, but the technique is still tied to a parametric model.
In (Tiao et al., 2019), the authors take a non-parametric
approach, but their probabilistic formulation is focused
on improving only very noisy graphs. In (Jiang et al.,
2019), simultaneous optimization of the graph structure
along with the learning task is considered. In all of these
works, only the node classification task has been explored.
Our methodology extends the applicability of these meth-
ods by combining the Bayesian framework with a more
flexible non-parametric graph model.

Graph learning: Multiple algorithms have been pro-
posed that focus exclusively on learning graph connectiv-
ity based on observed data (Dong et al., 2016; Kalofolias,
2016). These works differ from ours in that the end goal
is topology inference. These algorithms typically appeal
to a smoothness criterion for the graph. Although these
methods provide useful graphs, they have O(N2) com-
plexity. As a result, many do not scale well to large
graphs. Approximate nearest neighbour (A-NN) graph
learning (Malkov and Yashunin, 2020) has O(N logN)
complexity, which is more suitable for large scale appli-
cations, but the learned graph generally has poor qual-
ity compared to the k-NN graph. A more recent method
in (Kalofolias and Perraudin, 2019) introduces an approxi-
mate graph learning algorithm which provides an efficient
trade off between runtime and the quality of the solution.
We build on this method for our inference procedure, but
our graph model is tailored to the specific learning task
we address.

Deep learning based graph generative models:
There is a large body of existing work for deep learn-
ing based graph generative models. In (Li et al., 2018;
Simonovsky and Komodakis, 2018; You et al., 2018; Liao
et al., 2019; Liu et al., 2019) various algorithms for graph
generation using VAEs, RNNs, and normalizing flow are
developed. These approaches are evaluated based on the
likelihood of sampled graphs and comparing graph char-
acteristics. Moreover these algorithms do not preserve
node identities, so sampled (inferred) graphs cannot be

directly used for node or edge level inference. Generative
adversarial networks (GANs) based approaches (Wang
et al., 2017; Bojchevski et al., 2018) are more successful
in sampling graphs similar to the observed one. How-
ever, these models have prohibitively high computational
complexity and their performance is heavily dependent
on hyperparameter tuning.

Node classification: A central learning task on graphs
is semi-supervised node classification. In general, the
most common approach is to incorporate graph filters
within deep learning algorithms. Early works (Duvenaud
et al., 2015; Defferrard et al., 2016) based their models
on theory from the graph signal processing community.
This approach led to more sophisticated graph convolu-
tion architectures (Kipf and Welling, 2017; Veličković
et al., 2018; Hamilton et al., 2017). More recent models
include (Zhuang and Ma, 2018; Wijesinghe and Wang,
2019). In (Tian et al., 2019), a learnable graph kernel
based on a data-driven similarity metric is considered for
node classification. Our graph learning framework can
be combined with these algorithms to augment perfor-
mance, particularly when there is a very limited amount
of labelled data.

Link prediction: Several algorithms based on autoen-
coders have been shown to perform extremely well for the
link prediction task (Kipf and Welling, 2016; Pan et al.,
2018; Grover et al., 2019; Mehta et al., 2019). These
techniques learn node embeddings in a (variational) au-
toencoder framework and model the probability of the
existence of an edge based on the closeness of the embed-
dings. We show how our method can be combined with
these strategies to deliver a small but consistent improve-
ment for the link prediction task.

Recommender systems: Recommender systems have
become a key factor to meet users’ diverse and person-
alized needs for online consumption platforms. The
most common approach is collaborative filtering (CF).
Recent works have incorporated graphs and GNNs to bet-
ter model the user-item interactions (van den Berg et al.,
2018; Ying et al., 2018; Wang et al., 2019; Sun et al.,
2019; Monti et al., 2017; Zheng et al., 2018).

Although the GNN-based recommendation models have
achieved impressive performance, existing methods re-
gard the provided user–item interaction records as ground
truth. In many practical settings, the user-item interaction
graph has spurious edges due to noisy information; on the
other hand, some potential user-item positive interactions
are missing because the item is never presented to the user.
This is falsely indicated as a negative interaction. Thus,
it is important to capture the uncertainty in the observed



user-item interaction graph. In the following methodology
section, we elaborate on how our graph learning approach
can alleviate this problem.

3 METHODOLOGY

3.1 NON-PARAMETRIC GRAPH LEARNING

In many learning tasks, often an observed graph Gobs pro-
vides additional structure to the given data D. The data D
can include feature vectors, labels, and other information,
depending on the task at hand. If Gobs is not readily avail-
able, it is often built from the data D and possibly other
side-information. In many cases, Gobs does not represent
the true relationship of the nodes as it is often formed
using inaccurate modelling assumptions and/or is con-
structed from noisy data. In several recent works (Zhang
et al., 2019; Ma et al., 2019; Tiao et al., 2019), it has been
shown that building a posterior model for the ‘true’ graph
G and incorporating it in the learning task is beneficial.

We propose a non-parametric generative model for the
adjacency matrix AG of the random undirected graph
G. AG is assumed to be a symmetric matrix with non-
negative entries. We emphasize that our model retains
the identities of the nodes and disallows permutations
of nodes (permutations of adjacency matrices are not
equivalent graphs when node identities are preserved).
This characteristic is essential for its use in node and edge
level inference tasks. We define the prior distribution for
G as

p(G) ∝


e(α1

> log(AG1)−β‖AG‖2F ) , if AG ≥ 0

AG = A>G

0 , otherwise .
(1)

The first term in the log prior is a logarithmic barrier
on the degree of the nodes which prevents any isolated
node in G. The second term is a regularizer based on
the Frobenius norm which encourages low weights for
the links. α and β are hyperparameters which control
the scale and sparsity of AG . In our model, the joint
likelihood of Gobs and D conditioned on G is:

p(Gobs,D|G) ∝ exp (−‖AG ◦D(Gobs,D)‖1,1) , (2)

where D(Gobs,D) ≥ 0 is a symmetric pairwise distance
matrix which encodes the dissimilarity between the nodes.
The symbol ◦ denotes the Hadamard product and ‖ · ‖1,1
denotes the elementwise `1 norm. The likelihood encour-
ages higher edge weights for the node pairs with lower
pairwise distances and vice versa.

Bayesian inference of the graph G involves sampling from
its posterior distribution. The space is high dimensional

(O(N2), whereN is the number of the nodes). Designing
a suitable sampling scheme (e.g., Markov Chain Monte
Carlo) in such a high dimensional space is extremely
challenging and computationally demanding for large
graphs. Instead we pursue maximum a posteriori estima-
tion, which is equivalent to approximating the posterior
by a point mass at the mode (MacKay, 1996). We solve
the following optimization problem:

Ĝ = argmax
G

p(G|Gobs,D) , (3)

which is equivalent to learning an N×N symmetric adja-
cency matrix of Ĝ.

AĜ = argmin
AG∈R+

N×N ,

AG=A>G

‖AG ◦D‖1,1 − α1> log(AG1)

+ β‖AG‖2F .
(4)

The optimization problem in (4) has been studied in the
context of graph learning from smooth signals. (Kalofo-
lias, 2016) adopts a primal-dual optimization technique
to solve this problem. However the complexity of this
approach scales as O(N2), which can be prohibitive for
large graphs. In this paper, we employ the scalable, ap-
proximate algorithm in (Kalofolias and Perraudin, 2019),
which has several advantages as follows. First, it can use
existing approximate nearest neighbour techniques, as
in (Malkov and Yashunin, 2020), to reduce the dimen-
sionality of the optimization problem. Second, the graph
learning has a computational complexity of O(N logN)
(the same as approximate nearest neighbour algorithms),
while the quality of the learned graph is comparable to
the state-of-the-art. Third, if we are not concerned about
the scale of the learned graph (which is typical in many
learning tasks we consider, since a normalized version
of the adjacency or Laplacian matrix is used), the ap-
proximate algorithm allows us to effectively use only one
hyperparameter instead of α and β to control the sparsity
of the solution and provides a useful heuristic for auto-
matically selecting a suitable value based on the desired
edge density of the solution.

In our work, we use this approximate algorithm for in-
ference of the graph G, which is subsequently used in
various learning tasks. Since, we have freedom in choos-
ing a functional form for D(·, ·), we can design suitable
distance metrics in a task specific manner. This flexibility
allows us to incorporate the graph learning step in diverse
tasks. In the next three subsections, we present how the
graph learning step can be applied to develop Bayesian
algorithms for node classification, link prediction and
recommendation systems.



3.2 NODE CLASSIFICATION

Problem Statement: We consider a semi-supervised
node classification problem for the nodes in Gobs. In this
setting we also have access to the node attributes X and
the labels in the training set YL. So, D = (X,YL). The
task is to predict the labels of the remaining nodes YL,
where L = V \ L.

Bayesian GCN – non-parametric model: (Zhang
et al., 2019) derive a Bayesian learning methodology
for GCNs by building a posterior model for G. Their
approach assumes that Gobs is sampled from a parametric
graph model. The graph model parameters are marginal-
ized to target inference of the graph posterior p(G|Gobs).
Although this approach is effective, it has several draw-
backs. The methodology lacks flexibility since a particu-
lar parametric model might not fit different types of graph.
Bayesian inference of the model parameters is often chal-
lenging for large graphs. Finally, parametric modelling of
graphs cannot use the information provided by the node
features X and training labels YL for inference of G.
Here, we propose to incorporate a non-parametric model
for inference of G in the BGCN framework. We aim to
compute the marginal posterior probability of the node
labels, which is obtained via marginalization with respect
to the graph G and GCN weights W:

p(Z|YL,X,Gobs) =
∫
p(Z|W,Gobs,X)p(W|YL,X,G)

p(G|Gobs,X,YL) dW dG . (5)

The categorical distribution of the node labels
p(Z|YL,X,Gobs) is modelled by applying a soft-
max function to the output of the last layer of the GCN.
The integral in (5) cannot be computed in a closed form,
so we employ Monte Carlo to approximate it as follows:

p(Z|YL,X,Gobs) ≈
1

S

S∑
s=1

p(Z|Ws,Gobs,X) . (6)

Here, we learn the maximum a posteriori (MAP) esti-
mate Ĝ = argmax

G
p(G|Gobs,X,YL) and subsequently

sample S weight matrices Ws from p(W|YL,X, Ĝ) by
training a Bayesian GCN using the graph Ĝ.

In order to perform the graph learning step, we need to
define a pairwise distance matrix D. For this application,
we propose to combine the output of a node embedding
algorithm and a base classifier to form D:

D(X,YL,Gobs) = D1(X,Gobs) + δD2(X,YL,Gobs) .
(7)

Here δ is a hyperparameter which controls the importance
of D2 relative to D1. The (i, j)’th entries of D1 and D2

are defined as follows:

D1,ij(X,Gobs) = ‖zi − zj‖2 , (8)

D2,ij(X,YL,Gobs) =
1

|Ni||Nj |
∑
k∈Ni

∑
l∈Nj

1(ĉk 6=ĉl) .

(9)

Here, zi is any suitable embedding of node i and ĉi is the
predicted label at node i obtained from the base classi-
fication algorithm. D1 measures pairwise dissimilarity
in terms of the observed topology and features and D2

summarizes the discrepancy of the node labels in the
neighbourhood. For the experiments, we choose the Vari-
ational Graph Auto-Encoder (VGAE) algorithm (Kipf
and Welling, 2016) as the node embedding method to
obtain the zi vectors and use the GCN proposed by (Kipf
and Welling, 2017) as the base classifier to obtain the ĉi
values. The neighbourhood of the i-th node is defined as:

Ni = {j|(i, j) ∈ EGobs} ∪ {i} .

Here, EGobs is the set of edges in Gobs. With the regard to
the choice of the hyperparameter δ, we observe that

δ =

max
i,j

D1,ij

max
i,j

D2,ij

works well in our experiments, although it can be tuned
via cross-validation if a validation set is available.

For the inference of GCN weights W, many existing al-
gorithms such as expectation propagation (Hernández-
Lobato and Adams, 2015), variational inference (Gal
and Ghahramani, 2016; Sun et al., 2017), and Markov
Chain Monte Carlo methods (Neal, 1992; Li et al., 2016)
can be employed. As in (Zhang et al., 2019), we train
a GCN on the inferred graph Ĝ and use Monte Carlo
dropout (Gal and Ghahramani, 2016). This is equivalent
to sampling Ws from a particular variational approxi-
mation of p(W|YL,X, Ĝ). The resulting algorithm is
provided in the supplementary material.

3.3 LINK PREDICTION

Problem statement: In this setting, some of the links
in Gobs are hidden or unobserved. The task is to predict
the unseen links based on the knowledge of the (partially)
observed Gobs and the node features X. Thus in this case,
the additional data beyond the graph is D = X.

Background: In existing works, the link prediction
problem is addressed by building deep learning based
generative models for graphs. In particular, various ar-
chitectures of graph variational auto-encoders (Kipf and



Welling, 2016; Grover et al., 2019; Mehta et al., 2019)
aim to learn the posterior distribution of the node embed-
ding Z conditioned on the observed graph Gobs and the
node features X. The inference model (encoder) often
uses simplifying assumptions (e.g. mean-field approxima-
tion over nodes or diagonal covariance structures) for the
parametric form of the approximate variational posterior
distribution q(Z|Gobs,X). Deep learning architectures
are used to learn the parameters of the model. The de-
coder is another deep learning model which explains how
the graph is generated from the embeddings, i.e., it param-
eterizes p(Gobs|Z,X). Typically the probability of a link
in these models is dependent on the similarity of the em-
bedding of the two incident nodes. Assuming a suitable
prior p(Z), the encoder and decoder is trained jointly to
minimize the KL divergence between q(Z|Gobs,X) and
the true posterior p(Z|Gobs,X). The learned embeddings
are evaluated based on an amortized link prediction task
for the unseen portion of the graph.

Proposed methodology – Bayesian VGAE: We con-
sider a Bayesian formulation, where we conduct Bayesian
inference of the graph G in the encoder. Let us introduce
a function J (G,Gobs) that returns a graph such that the
unobserved entries of the adjacency matrix of Gobs are re-
placed by the corresponding entries of G. We then model
the inference distribution as follows:

q(Z|Gobs,X) =

∫
q(Z|J (G,Gobs),X)p(G|Gobs,X)dG ,

≈ q(Z|J (Ĝ,Gobs),X) ,

where Ĝ = argmax
G

p(G|Gobs,X) is the MAP estimate

from the non-parametric model. The intuitive idea be-
hind this modeling is that if the non-parametric inference
provides a reasonable approximation of the unobserved
adjacency matrix entries, then an auto encoder trained
on a graph that incorporates these approximate entries
should learn better embeddings. For the graph learning
step, we form the distance matrix D using the output of
an auto-encoder as follows:

Dij(X,Gobs) = ‖Eq[zi]− Eq[zj ]‖2 . (10)

The resulting algorithm is summarized in the supplemen-
tary material.

3.4 RECOMMENDATION SYSTEMS

Problem statement: In this section we address a per-
sonalized item recommendation task based on historical
interaction data. We denote the set of users and items
by U and I respectively. The interaction between any
user u ∈ U and item i ∈ I is encoded as a link in a

bipartite graph Gobs. The task is to infer the unobserved
interactions (and to use these as predictions of future in-
teractions). Viewed in this light, the recommendation task
is a link prediction problem. However, in many cases,
predicting a personalized ranking for the items is impor-
tant (Rendle et al., 2009).

For each user u, if there is an observed interaction with
item i and an unobserved interaction with item j, we
write that i >u j in the training set. The introduced re-
lation i >u j implies that user u prefers item i to item j.
This interaction training data leads to a set of rankings
{>u}trn for each user u over the training set of triples:
{(u, i, j) : (u, i) ∈ Gobs, (u, j) /∈ Gobs}. We denote these
rankings for all users in U as {>U}trn. This training data
is used to learn a model parameterized by W. The gen-
eralization capability is tested by ranking, for each user
u, all (u, i, j) such that both (u, i) and (u, j) /∈ Gobs.
We denote the rankings for a specific user in this test
set {(u, i, j) : (u, i) /∈ Gobs, (u, j) /∈ Gobs} as {>u}test.
The collection of all such rankings for all users is de-
noted {>U}test In this paper, we propose to incorporate
Bayesian inference of graph G in the Bayesian Person-
alized Ranking (BPR) loss formulation (Rendle et al.,
2009). A brief review of the BPR loss is provided for
completeness.

Background – BPR loss: Many existing graph based
deep learning recommender systems (Sun et al., 2019;
Wang et al., 2019; Ying et al., 2018) learn an embedding
eu(W,Gobs) for user u and ei(W,Gobs) for item i and
model the probability that user u prefers item i to item j
as follows:

p(i >u j|Gobs,W) = σ(eu · ei − eu · ej) .

Here σ(·) is the sigmoid function and · is the inner prod-
uct. Our goal is to compute:

p({>U}test|{>U}train,Gobs) =
∫
p({>U}test|Gobs,W)

p(W|{>U}train,Gobs)dW , (11)

but this integral is not tractable. In practice, we assume
a prior N (0, λ−1I) for W and model the preferences of
different users as independent. We can then consider a
MAP estimate of W:

Ŵ = argmax
W

p(W|{>U}train,Gobs) ,

= argmax
W

p(W)p({>U}train,Gobs|W) ,

= argmax
W

(
− λ

2
||W||2+∑

(u,i,j)∈{>U}trn

log (σ(eu · ei − eu · ·ej)
)
.



This is equivalent to minimizing the BPR loss, where the
positive pool {(u, i) : (u, i) ∈ Gobs} and negative pool
{(u, j) : (u, j) /∈ Gobs} are created according to Gobs.
Once the MAP estimate has been obtained, we assess the
performance by ranking the test set triples using Ŵ.

Non-parametric model – Bayesian graph recom-
mender system: In the Bayesian setting, ranking is
conducted by considering an expectation with respect
to the posterior distribution of the graph G from the non-
parametric model p(G|Gobs, {>U}train). We need to eval-
uate the posterior probability of ranking in the test set.
Let us introduce the graph G̃ = Jr(G,Gobs), which is
obtained via a function Jr that combines the information
in G and Gobs. We specify the function Jr that we employ
in our methodology more precisely below. We can then
write the posterior probability of the ranking of the test
set as follows:

p({>U}test|{>U}train,Gobs) =
∫
p({>U}test|Gobs,W)

p(W|{>U}train, G̃)p(G|Gobs, {>U}train) dG dW .
(12)

We approximate the integrals with respect to the posteriors
of G and W by the MAP estimates to obtain:

p({>U}test|{>U}train,Gobs) ≈ p({>U}test|Gobs,Ŵ) .
(13)

To calculate this approximation we first perform
the non-parametric graph learning to obtain Ĝ =
argmax
G

p(G|Gobs, {>u}train), then compute the new

graph G̃ = Jr(Ĝ,Gobs) and minimize the BPR loss to
form the estimate of the weights

Ŵ = argmax
W

p(W|{>u}train, G̃) (14)

according to the positive and negative pool defined by this
new graph G̃ = Jr(Ĝ,Gobs).

Since the dot product measures the similarity between the
embeddings in the proposed recommender system archi-
tecture, we use the pairwise cosine distance between the
learned embedding of a base node embedding algorithm
for learning a bipartite graph.

Du,i({>U}train,Gobs) = 1− eu · ei
||eu||2||ei||2

. (15)

Here, the eu’s and ei’s are obtained from the node em-
bedding algorithm. Since in Gobs, none of the test set
user-item interactions are present, they are all included
in the negative pool. We use the estimated graph Ĝ to
remove potentially positive interactions in the test set

from the negative pool. This is achieved by constructing
J (Ĝ,Gobs) as follows. We identify a fraction of links
with the highest edge weights in Ĝ and subsequently re-
move them form the negative pool of interactions for the
Bayesian approach. The number of links to be removed
is decided based on examining the performance on a vali-
dation set. The resulting algorithm is summarized in the
supplementary material.

4 EXPERIMENTS

4.1 NODE CLASSIFICATION

We consider a semi-supervised node classification task on
three benchmark citation networks Cora, Citeseer (Sen
et al., 2008) and Pubmed (Namata et al., 2012). The
details of the datasets are included in the supplementary
material. The attribute vector at a node is a sparse bag-of-
words extracted from the keywords in the article and the
label denotes the research topic addressed in the article.
We consider three different experimental settings where
we have 5, 10 and 20 labeled nodes per class in the train-
ing set. In each setting, we conduct 50 trials based on ran-
dom splitting of the data and random initialization of the
learnable weights. We compare the proposed BGCN with
the ChebyNet (Defferrard et al., 2016), the GCN (Kipf
and Welling, 2017), the GAT (Veličković et al., 2018),
the DFNET (Wijesinghe and Wang, 2019) (for only Cora
and Citeseer due to runtime considerations), the SBM-
GCN (Ma et al., 2019) and the BGCN in (Zhang et al.,
2019). The hyperparameters for the GCN are set to those
reported in (Kipf and Welling, 2017) and the same values
are used for the BGCNs. We report the average classifica-
tion accuracies along with their standard errors in Table 1.
For each setting, we conduct a Wilcoxon signed rank test
to determine whether the best performing algorithm is
significantly better than the second-best. Results in bold
font indicate statistical significance at the 5% level.

The results in Table 1 show that the proposed BGCN
with non-parametric modelling of the graph achieves
either higher or competitive accuracies in most cases.
The relative improvement compared to the GCN is more
significant if the labelled data is scarce. Comparison
with the BGCN approach based on parametric modelling
in (Zhang et al., 2019) demonstrates that better or compa-
rable accuracies can be achieved from this model, even
if we do not target modelling the community structure
of the graph explicitly. From Figure 1, we observe that
in most cases, for the Cora and the Citeseer datasets, the
proposed BGCN algorithm corrects more misclassifica-
tions of the GCN for low degree nodes. The same trend is
observed for the Pubmed dataset. The empirical success
of the GCN is primarily due to aggregating information



Table 1: Accuracy of semi-supervised node classification.

Algorithms 5 labels 10 labels 20 labels

C
or

a

ChebyNet 61.7±6.8 72.5±3.4 78.8±1.6
GCN 70.0±3.7 76.0±2.2 79.8±1.8
GAT 70.4±3.7 76.6±2.8 79.9±1.8
DFNET-ATT 72.3±2.9 75.8 ±1.7 79.3±1.8
SBM-GCN 46.0±19 74.4±10 82.6±0.2
BGCN 74.6±2.8 77.5±2.6 80.2±1.5
BGCN (ours) 74.2±2.8 76.9±2.2 78.8±1.7

C
ite

se
er

ChebyNet 58.5±4.8 65.8±2.8 67.5±1.9
GCN 58.5±4.7 65.4±2.6 67.8±2.3
GAT 56.7±5.1 64.1±3.3 67.6±2.3
DFNET-ATT 60.5±1.2 63.2 ±2.9 66.3±1.7
SBM-GCN 24.5±7.3 43.3±12 66.1±5.7
BGCN 63.0±4.8 69.9±2.3 71.1±1.8
BGCN (ours) 64.9±4.6 70.1±1.9 71.4±1.6

Pu
bm

ed

ChebyNet 62.7±6.9 68.6±5.0 74.3±3.0
GCN 69.7±4.5 73.9±3.4 77.5±2.5
GAT 68.0±4.8 72.6±3.6 76.4±3.0
SBM-GCN 59.0±10 67.8±6.9 74.6±4.5
BGCN 70.2±4.5 73.3±3.1 76.0±2.6
BGCN (ours) 71.1±4.4 74.6±3.6 77.6±2.9

with neighbors. As the low degree nodes have less oppor-
tunity to aggregate, performance is worse at these nodes.
The proposed BGCN approach generates many additional
links between similar nodes (Fig. 2). This improves learn-
ing, particularly at low degree nodes.

In Figure 2, we compare the adjacency matrix (AĜ) of
the MAP estimate graph Ĝ with the observed adjacency
matrix AGobs for the Cora dataset. This reveals that com-
pared to AGobs , AĜ has denser connectivity among the
nodes with the same label. This provides a rationale of
why the proposed BGCN outperforms the GCN in most
cases.

4.2 LINK PREDICTION

We consider a link prediction task to demonstrate the
usefulness of the learned embeddings from the Bayesian
approach. We split the links in 85/5/10% for training,
validation and testing respectively. The validation and
test sets contain the same number of non-links as links.
During model training, the links in the validation and
test sets are hidden while the node features are unaltered.
We compare the Bayesian approach with the GAE and
VGAE (Kipf and Welling, 2016), the GRAPHITE-AE and
VAE (Grover et al., 2019) and the DGLFRM (Mehta et al.,
2019) models. The hyperparameters of these baseline
algorithms are selected according to the corresponding
papers. Other common baselines, e.g. spectral Cluster-
ing (Tang and Liu, 2011), Deepwalk (Perozzi et al., 2014)
and node2vec (Grover and Leskovec, 2016) are not in-

Figure 1: Boxplots of different categories of nodes in
the Cora and Citeseer datasets based on the classification
results of the GCN and the proposed BGCN algorithms.
The two groups are formed by thresholding the degree of
the nodes in the test set at the median value.

cluded since it has been demonstrated that the baselines
we include significantly outperform them. We incorpo-
rate the non-parametric graph inference technique in the
existing auto-encoders to build a Bayesian version of
these algorithms. The Area Under the ROC Curve (AUC)
and the Average Precision (AP) score are used as perfor-
mance metrics. Table 2 shows the mean AUC and AP,
together with standard errors, based on 50 trials. Each
trial corresponds to a random split of the graph and a
random initialization of the learnable parameters. We
conduct a Wilcoxon signed rank test to determine the sta-
tistical significance of the improvement compared to the
corresponding base model. Results in bold font indicate
settings where the test declares a significance at the 5%
level.

From the results in Table 2, we observe the proposed
approach improves link prediction performance for the
Cora and Citeseer datasets compared to the baseline auto-
encoder models. The improvement is small but consistent
over almost all of the random trials. No improvement
is observed for Pubmed. To examine this further, we
conducted an experiment where the ground-truth for the



Figure 2: (a) the observed adjacency matrix (AGobs) and
(b) the MAP estimate of adjacency matrix (AĜ) from the
non-parametric model for the Cora dataset. The node are
reordered based on labels. The red lines show the class
boundaries.
test set was provided to the autoencoders. The perfor-
mance does not change from the reported values; this
suggests that the models have reached accuracy limits for
the Pubmed dataset.

4.3 RECOMMENDATION SYSTEMS

We investigate the performance of the proposed Bayesian
method on four real-world and publicly available datasets:
ML100K, Amazon-Books, Amazon-CDs and Yelp2018.
For each dataset, we conduct pre-processing to ensure
that each node in the dataset has sufficient interactions.
We consider two threshold values th1 and th2, and filter
out those users and those items with fewer than th1 and
th2 interactions, respectively. For each user, we split each
dataset’s existing interaction records into training, valida-
tion and test set with the ratio of 70/10/20. We evaluate
the model performance using Recall@k and NDCG@k,
which are the coverage of true items in the top-k recom-
mendations, and a measure of recommendation ranking
quality, respectively. Details of statistics of each dataset
after the preprocessing step and the definitions of the eval-
uation metrics are included in the supplementary material.

We apply our proposed Bayesian graph-based recommen-

Table 2: Area Under the ROC Curve (AUC) and Average
Precision (AP) score for link prediction (in %).

Algorithm Cora Citeseer Pubmed

AUC

GAE 91.5±0.9 89.4±1.5 96.2±0.2
BGAE 91.8±0.8 89.6±1.6 96.2±0.2
VGAE 91.8±0.9 90.7±1.0 94.5±0.7
BVGAE 92.2±0.8 91.2±1.0 94.4±0.7
Graphite-AE 92.0±0.9 90.8±1.1 96.0±0.4
BGraphite-AE 92.4±0.9 91.1±1.1 96.0±0.4
Graphite-VAE 92.3±0.8 90.9±1.1 95.2±0.4
BGraphite-VAE 92.7±0.8 91.4±1.1 95.2±0.4
DGLFRM 93.1±0.6 93.9±0.7 95.9±0.1
BDGLFRM 93.2±0.6 94.1±0.7 95.9±0.2

AP

GAE 92.6±0.9 90.0±1.7 96.3±0.3
BGAE 92.8 ± 0.9 90.2±1.7 96.3±0.2
VGAE 92.9±0.7 92.0±1.0 94.7±0.6
BVGAE 93.3±0.7 92.5±1.0 94.6±0.6
Graphite-AE 92.8±0.9 91.6±1.1 96.0±0.4
BGraphite-AE 93.1±0.9 92.0±1.1 96.0±0.4
Graphite-VAE 93.3±0.7 92.1±1.0 95.3±0.4
BGraphite-VAE 93.7±0.7 92.6±1.0 95.3±0.4
DGLFRM 93.8±0.6 94.5±0.7 96.4±0.1
BDGLFRM 93.9±0.6 94.7±0.7 96.3±0.1

dation formulation to two recent graph-based recommen-
dation models: the MGCCF (Sun et al., 2019) and the
NGCF (Wang et al., 2019).

We first train the two algorithms with early stopping pa-
tience of 50 epochs to get the embedding vectors for users
and items. These are used to calculate the pairwise cosine
distance metrics D for our proposed graph optimizer. We
refer to these original algorithms as “base models”. We
build our proposed models (BMGCCF and BNGCF) on
top of the base models via the following procedure. We
first apply edge dropping with a threshold τ to shrink each
dataset’s negative edge candidate set. We further train the
base models with this optimized negative edge pool with
an early stop patience of 100. For a fair comparison, to
obtain the baseline performance, we also conduct further
training of the models with the original negative edge
pool with the same early stop patience setting. We use
grid search to determine the percentage of the inferred
links with the highest edge weights to be removed from
the negative pool. A suitable value is chosen for each
dataset from {1, 2, 5, 10, 20}%.

We report the Recall@k and the NDCG@k (k =
10, 20) of the proposed Bayesian models (BMGCCF and
BNGCF) along with those of the base models MGCCF
and NGCF for four datasets in Table 3. We conduct
Wilcoxon signed rank test in each case to determine the
significance of the obtained result from the Bayesian
model over the corresponding base model. Bold num-



Table 3: Recall@10, NDCG@10, Recall@20 and NDCG@10 for the four datasets.

Amazon-CDs R@10 R@20 N@10 N@20 Yelp2018 R@10 R@20 N@10 N@20

MGCCF 10.1% 16.1% 13.1% 16.9% MGCCF 7.5% 12.7% 13.0% 17.4%
BMGCCF 10.6% 17.0% 13.4 % 17.3% BMGCCF 7.6% 13.0% 13.2% 17.7%

NGCF 8.1% 13.5% 11.4% 13.8% NGCF 6.6% 11.3% 11.5% 15.3%
BNGCF 9.9% 16.2% 12.8% 16.6% BNGCF 6.7% 11.4% 11.5% 15.5%

Amazon-Books R@10 R@20 N@10 N@20 ML100K R@10 R@20 N@10 N@20

MGCCF 10.3 % 16.6% 15.0 % 19.4% MGCCF 18.3% 29.4% 25.6% 30.9%
BMGCCF 10.3% 16.4% 14.8% 19.3% BMGCCF 18.4% 29.5% 25.9% 31.4%

NGCF 8.7% 14.5% 13.6% 17.8% NGCF 17.7% 29.0% 25.3% 30.3%
BNGCF 10.2% 16.8% 15.2% 19.6% BNGCF 17.7% 28.9% 25.2% 30.1%

bers indicate a statistically significant difference at 5%
level between the base model and the Bayesian version of
the algorithm. The advantages of our proposed Bayesian
framework can be observed for both base models and
across both evaluation metrics. For the much denser ML-
100K dataset, the procedure is less effective (and in some
cases ineffective). With many more edges in the observed
graph, the graph-based recommender system algorithms
already have considerable information. Although the in-
ferred graph does remove many incorrect edges from the
negative pool, this has only a minor impact on the learned
embeddings.
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Figure 3: Training curve for MGCCF vs. BMGCCF
(Amazon - CD).

The learning curve comparison for training the original
model and the Bayesian version of the model is shown in
Figure 3 for the Amazon CD dataset. We can observe that
with our proposed solution, the training converges much
faster. The Bayesian training framework also allows us to
avoid overfitting in this case.

Conventional recommendation training procedure, espe-
cially in the implicit recommendation setting, treat all of

the unobserved user-item interactions as negative feed-
back (demonstrating a lack of interest). Our proposed
approach aims to learn which of these unobserved inter-
actions are most likely to be false negatives. We analyze
the overlap between the edges that we remove from the
negative candidates set with the edges in the validation
and test set. As shown in Table 4, our proposed Bayesian
formulation is able to remove a significant percentage of
test and validation edges from the negative sample pool.

Table 4: Edge overlap of the inferred graph with the test
set.

Am. CDs Am. Books Yelp2018 ML100Ks

BMGCF 20.6% 17.9% 13.6% 12.3%
BNGCF 23.4% 30.0% 13.3% 62.1%

5 CONCLUSION

In this paper, we propose the use of non-parametric mod-
elling and inference of graphs for various learning tasks.
In the proposed model, a higher edge weight between
two nodes is more likely if the nodes are close in terms
of a distance metric. An appropriate distance metric can
be chosen depending on the learning task which results
in flexible, task-specific design of learning algorithms.
The proposed model is adapted to a Bayesian learning
framework which aims to account for graph uncertainty.
Experimental results demonstrate that the model can learn
useful graphs that improve performance significantly over
baseline algorithms for node classification, link predic-
tion, and recommendation.
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