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Abstract

It is well known that the Fisher information
induces a Riemannian geometry on paramet-
ric families of probability density functions.
Following recent work, we consider the non-
parametric generalization of the Fisher geom-
etry. The resulting nonparametric Fisher ge-
ometry is shown to be equivalent to a familiar,
albeit infinite-dimensional, geometric object—
the sphere. By shifting focus away from den-
sity functions and toward square-root density
functions, one may calculate theoretical quan-
tities of interest with ease. More importantly,
the sphere of square-root densities is much
more computationally tractable. As discussed
here, this insight leads to a novel Bayesian
nonparametric density estimation model.

1 INTRODUCTION

The Fisher information—and the geometry it induces—
has been one of the unequivocal success stories of ge-
ometry in statistics. Building on recent work, we extend
the Fisher geometry beyond parametric statistical mod-
els and show that the resulting geometry is equivalent
to that of the infinite-dimensional sphere. The purpose
of this paper is to bring attention to this new perspec-
tive and to demonstrate its theoretical and methodolog-
ical consequences. As an application, we introduce the
χ2-process density prior, a flexible nonparametric model
for Bayesian density estimation that admits fast compu-
tation while requiring minimal assumptions.

The Fisher information matrix is canonical in statistics: it
is rooted in information theory (Gourieroux and Monfort,
1995); it appears in Jeffrey’s prior of Bayesian analysis
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(Jeffreys, 1946); and it plays a central role in Bayesian
and Frequentist asymptotics (Le Cam, 2012). Fisher ad-
vocated the importance of the information matrix in max-
imum likelihood estimation (Fisher, 1925). Fisher’s stu-
dent, Rao, was the first to place the information matrix
in a differential geometric context (Rao, 1945). Since
then, the differential geometric implications for paramet-
ric statistical models have been the subject of extensive
inquiry (Amari and Nagaoka, 2007). Recently, a num-
ber of researchers have drawn connections between the
Fisher geometry and the geometry of the infinite sphere
(Srivastava, Jermyn, and Joshi, 2007; Chen, Streets,
and Shahbaba, 2015; Itoh and Satoh, 2015; Kurtek and
Bharath, 2015; Srivastava and Klassen, 2016; Peter, Ran-
garajan, and Moyou, 2017). Much of this work has been
in the area of shape analysis and has focused on using the
Fisher geometry to measure distance between probabil-
ity densities. Bayesian uses for the nonparametric Fisher
geometry were featured in (Chen, Streets, and Shah-
baba, 2015), where Bayesian variational inference was
accomplished by minimizing the Fisher distance, and
in (Kurtek and Bharath, 2015), where the nonparamet-
ric Fisher geometry was used for sensitivity analysis of
Bayesian models. Here, we focus on fully Bayesian non-
parametric inference, including the generation of poste-
rior samples using Hamiltonian Monte Carlo (HMC). In
contrast to recent research, the geodesics associated with
the nonparametric Fisher geometry are used to efficiently
explore the MCMC state space and not to measure or
minimize the distance between density functions.

This paper, and other recent research in the Fisher geom-
etry, builds on the sub-field of square-root density esti-
mation. (Pinheiro and Vidakovic, 1997) used a wavelet
basis to estimate the square-root density by effectively
fitting the curve and then normalizing a sparse collec-
tion of wavelet coefficients, and (Müller and Vidakovic,
1998) introduced a Bayesian follow-up to this work.
Recently, (Hong and Gao, 2016) used Riemannian ge-
ometry to fit a square-root density model, but did not



make any connections to the Fisher geometry. More re-
cently (Peter, Rangarajan, and Moyou, 2017) performed
square-root density estimation for object recognition us-
ing minimum description length as fitting criterion and
used the nonparametric Fisher geometry to obtain a
closed-form expression of this criterion.

In this paper, we focus on the application of the nonpara-
metric Fisher geometry to Bayesian inference for prob-
ability densities. While the density function is the ob-
ject of interest, we instead model the square-root density
function, that is, the function the square of which inte-
grates to unity. We take a Bayesian nonparametric ap-
proach and endow the square-root density with a Gaus-
sian process (GP) prior (Williams and Rasmussen, 1996)
multiplied by a Dirac measure limiting its support to the
infinite-dimensional sphere. In order to maintain this re-
striction, it is useful to use the Karhunen-Loève (K-L)
expansion (Wang, 2008) of the GP prior as opposed to
its kernel representation. Every GP with bounded sec-
ond moment may be represented in terms of the eigen-
function expansion of its covariance operator, but this
(the K-L) expansion is only explicitly known for a few
classes of GPs (Wang, 2008). Still, the K-L expansion
has seen much recent success in the realm of Bayesian
inverse problems (Dashti and Stuart, 2013; Cotter et
al., 2013) and has been featured in infinite-dimensional
HMC and infinite manifold HMC (∞-mHMC) (Beskos
et al., 2016). The proposed application of the K-L expan-
sion to model the square-root density is unprecedented
and offers a probabilistic interpretation to the use of ba-
sis expansions for density estimation.

Due to the orthonormality of the eigenfunction basis,
the restriction to the (uncountably) infinite-dimensional
sphere translates to a restriction to the (countably)
infinite-dimensional sphere for the eigenvalues of the
GP. Then, following the precedent set in (Beskos et al.,
2016), the K-L expansion is truncated and the object
of inference is reduced to the posterior distribution of
a finite number of K-L coefficients restricted to a finite
sphere. This computation is quick and easy using spher-
ical HMC (Lan, Zhou, and Shahbaba, 2014). Thanks
to the basis representation, computational complexity
scales linearly with the number of data points, as op-
posed the cubic rate of the GP density sampler (Murray,
MacKay, and Adams, 2009). Moreover, we show that—
in the square-root density estimation context—spherical
HMC corresponds to Riemannian HMC in the infinite-
dimensional limit.

Squaring the GP square-root density prior gives a χ2-
process (cf. Rabier and Genz, 2014) density prior. We
illustrate the use of this prior for a number of problems.
The model is flexible and its posterior draws provide

plausible realizations of the uncertainty inherent in the
density estimation problem. Besides a recent application
to Bayesian quadrature (Gunter et al., 2014), we are un-
aware of statistical applications for the χ2-process and
are therefore pleased to present its novel application to
Bayesian density estimation. In that sense, our method
can be considered as an alternative to Dirichlet Process
Mixture Models (DPMM), which are commonly used for
nonparametric Bayesian estimation. DPMMs convolve
the Dirichlet process with a smooth distribution, in effect
constructing an infinite mixture model (Antoniak, 1974).
More recently, (Murray, MacKay, and Adams, 2009)
proposed a new method, called Gaussian Process Density
Sampler (GPDS), offering a similar amount of flexibil-
ity as the DPMM but having an arguably simpler frame-
work. Nonetheless, inference for DPMM requires an ad-
vanced Gibbs sampling routine (Neal, 2000), and infer-
ence for the GPDS requires exchange sampling to han-
dle the unit-integral restriction on the GP model (Mur-
ray, MacKay, and Adams, 2009). In contrast, the model
we propose here can be computed using generic spheri-
cal HMC (Lan, Zhou, and Shahbaba, 2014) or geodesic
Monte Carlo (Byrne and Girolami, 2013) algorithms.

In summary, the contributions of this paper are as fol-
lows:

• we review a nonparametric generalization of the
Fisher geometry and show its relationship to the
infinite-dimensional (L2) sphere, the space of
square-root density functions;

• we derive the geodesics on the L2 sphere and use
these geodesics to formalize the relationship be-
tween Riemannian HMC and infinite-dimensional
spherical HMC;

• focusing on Bayesian nonparametric density esti-
mation, we demonstrate the practical benefits to
modeling the square-root density function. The re-
sulting χ2-process density prior performs well for a
variety of problems and is efficiently computed us-
ing spherical HMC.

The rest of the paper is organized in the following way.
In Section 2 we review the parametric Fisher geometry,
present a nonparametric extension of the Fisher geome-
try, and derive key results by relating this geometry to the
infinite-dimensional sphere. Section 3 presents the χ2-
process density prior along with some necessary tools,
such as the Karhunen-Loève expansion. In Section 4, we
discuss efficient Bayesian inference for the model and re-
late Riemannian HMC to infinite-dimensional spherical
HMC. Section 5 relates our method to the Cox process
Cox, 1955. Empirical results are presented in Section 6.



Finally, in Section 7 we discuss model limitations and
possible extensions. All proofs are placed in the Supple-
ment.

2 THE NONPARAMETRIC FISHER
GEOMETRY

2.1 THE PARAMETRIC FISHER GEOMETRY

Given data x in domain D, it is often useful to spec-
ify a probabilistic model S = {pθ = p(x, θ) | θ =[
θ1, . . . , θp

]
}, where θ is a vector parameterizing the

model and taking values in the continuous parameter
space Θ. Then at any point θ ∈ Θ, the Fisher infor-
mation is the expectation of the negative log-likelihood
Hessian:

I(θ) = −Ex
(∂2`(θ)
∂θ∂θT

)
= −

∫
D

∂2`(θ)

∂θ∂θT
p(x|θ)µ(dx) ,

where `(θ) = log p(x|θ). The Fisher information en-
codes second-order functional information about `(θ).
This fact explains the use of the Fisher information as a
gradient preconditioning matrix in both (the Frequentist)
Fisher scoring (Longford, 1987) and (the Bayesian) Rie-
mannian HMC (Girolami and Calderhead, 2011). The
Fisher information may also be written as the expected
outer product of the score vector ∂ log p(x|θ)/∂θ:

I(θ) = Ex
((∂`(θ)

∂θ

)(∂`(θ)
∂θ

)T)
=

∫
D

(∂`(θ)
∂θ

)(∂`(θ)
∂θ

)T
p(x|θ)µ(dx) .

The Fisher information is symmetric positive definite at
any point θ ∈ Θ. Taking note of this fact, Rao (1945)
interpreted the Fisher information matrix as a Rieman-
nian metric tensor, i.e. a smoothly varying, symmetric
positive definite matrix defined over the parameter space
Θ. In this way, the Fisher information matrix induces a
Riemannian metric gθ(·, ·) over Θ satisfying

gθ(`i, `j) = Iij(θ) , and gθ(ψ, φ) =
∑
i,j

ψiφjIij(θ)

for `i = ∂`(θ)/∂θi, ψ =
∑p
k=1 ψ

k`k and φ =∑p
k=1 φ

k`k. Hence, the Fisher information may be
thought of as inducing a non-trival geometry on the oth-
erwise Euclidean parameter space Θ. There has been
much inquiry into the nature of the parametric Fisher
geometry. Efron used the Fisher geometry to prove
the second-order efficiency of the MLE for exponential
family models (Efron, 1978), and Amari and Nagaoka
(2007) has constructed a body of work around the Fisher

geometry and its dual connections. More recently, Giro-
lami and Calderhead (2011) successfully used the Fisher
geometry to guide the Hamiltonian flow of their Rieman-
nian HMC. In this paper, we take another tack by gener-
alizing the notion of the Fisher geometry to nonparamet-
ric models.

2.2 Beyond parametric models

We consider probability distributions over smooth man-
ifolds D, of which D ∼= Rd is a special case. Having
fixed a background measure µ, let

P :=

{
p : D → R | p ≥ 0,

∫
D
p(x)µ(dx) = 1

}
be the space of probability density functions over D.
That is, P is the set of Radon-Nikodym derivatives of
probability measures that are absolutely continuous with
respect to µ. The following construction is agnostic to
whether µ is the Lebesgue measure over D = Rd or the
Hausdorff measure over a general Riemannian manifold
D =M.

We deal with the space P and do not fix a parametric
model. Instead we give P the structure of an infinite
dimensional (formal) Riemannian manifold. First, we
think of it as a smooth manifold. Observe that for a given
p ∈ P , the tangent space can be identified with

TpP :=

{
φ ∈ C∞(D) |

∫
D
φ(x)µ(dx) = 0

}
.

This identification arises when one differentiates the unit
measure condition on probability density functions. That
is, for a smooth curve pt : (−ε, ε) → P satisfying
dpt/dt|t=0 = φ, we have

0 =
d

dt

∫
D
pt(x)µ(dx)

∣∣
t=0

=

∫
D

dpt
dt

(x)µ(dx)

=

∫
D
φ(x)µ(dx) .

Now that we have a smooth manifold and an associated
tangent space, we may define a Riemannian metric, i.e.
a smoothly varying, symmetric, non-degenerate, bilinear
function g(·, ·)p : TpP×TpP → {0}∪R+. Riemannian
metrics are useful for developing a notion of distance
on a manifold that does not depend on any embedding
in Euclidean space. One may define uncountably many
metrics on a general manifold, but we are interested in a
generalization of the parametric Fisher information met-
ric.

Definition 1. Given D, the nonparametric Fisher in-
formation metric on P(D) is (Srivastava, Jermyn, and



Joshi, 2007; Srivastava and Klassen, 2016)

gF (φ, ψ)p :=

∫
D

φ(x)ψ(x)

p(x)
µ(dx). (1)

This metric is a consistent generalization of the paramet-
ric Fisher information metric. To see this, consider the
parametric model p(x|θ), with θ as a vector. Then each
element θi of θ defines a curve Θi → P , where Θi is a
slice of Θ, and

Iij(θ) =

∫
D
`i`j p(x|θ)µ(dx)

=

∫
D

pi(x|θ)
p(x|θ)

pj(x|θ)
p(x|θ)

p(x|θ)µ(dx)

=

∫
D

pi(x|θ)pj(x|θ)
p(x|θ)

µ(dx) .

Here, we have adopted the shorthand pi(x|θ) =
∂p(x|θ)/∂θi. Expressed in a more invariant fashion, in-
terpreting a model as a map θ : Θ→ P , one has that the
parametric Fisher metric is induced by the nonparame-
teric Fisher metric, i.e.

θ∗gF = gθ.

In what follows we make a nontrivial change of vari-
ables suggested by this geometric picture which provides
various theoretical and computational simplifications. In
particular, for various reasons the manifold P equipped
with Riemannian metric (1) is not particularly easy to
deal with. In order to calculate geometric quantities of
interest (e.g. geodesics, distances), we shift focus to the
L2 unit sphere, i.e. the space of square-root density func-
tions

Q :=

{
q : D → R |

∫
D
q(x)2 µ(dx) = 1

}
.

This space, which is identified with P by a simple
transformation indicated below, provides a much simpler
backdrop for calculations. This infinite-dimensional L2

sphere is a surprisingly familiar object. Its tangent spaces
and geodesics are formally the exact same as those of the
finite dimensional sphere Sn−1, the only difference be-
ing the replacement of the Euclidean inner product with
the integral inner product of L2:

〈f, h〉L2 =

∫
D
f(x)h(x)µ(dx) .

Remarkably, this simpler space is isometric to the space
of density functions equipped with the nonparameteric
Fisher metric defined above. See the supplementary file
for more information along with some basic results.

As we will see below, not only is the L2 sphere Q more
theoretically tractable, it also turns out to be more com-
putationally tractable. In the following sections, we take
advantage of these two kinds of tractability to construct
a Bayesian nonparametric model on Q and use it for an
application in density estimation.

3 THE CHI-SQUARE PROCESS PRIOR

In this section, we transition from the theoretical to the
methodological aspects of the nonparametric Fisher ge-
ometry. We find that the square-root representation q =√
p is of use practically as well as theoretically. Here

we focus on its natural application for density estimation
and show that Bayesian density estimation can be much
easier when one shifts focus to the sphere of square-root
densities.

Suppose we want to attribute a smooth density function
to observed data x1, . . . , xn on finite domain D ⊂ Rd
and recall the definitions (from Section 2) of the space
of density functions and the space of square-root density
functions:

P :=
{
p : D → R | p ≥ 0,

∫
D p(x)µ(dx) = 1

}
Q :=

{
q : D → R |

∫
D q(x)2 µ(dx) = 1

}
,

respectively. We want to find a suitable element p(·) ∈
P(D), the space of functions over domain D. Although
this space contains the functions of interest, we opt to
deal with the space Q of square-root densities instead.
As stated in the prior section, Q is the unit sphere in the
infinite-dimensional Hilbert space L2(D). We model the
square-root density with a GP prior (or a Gaussian mea-
sure in L2) multiplied by the Dirac measure restricting
the function to the unit sphere:

q ∼ GP × δq(Q) . (2)

It turns out that it is much easier to enforce the con-
straint given by Dirac measure δq(Q) than it is to en-
force the corresponding constraint δp(P) (as is done for
the GPDS). To do so, however, we do not represent the
GP prior using its kernel representation as is commonly
done in the literature. We opt instead to represent q in
terms of the eigenvalues and orthonormal eigenfunctions
of its covariance operator.

3.1 KARHUNEN-LOÈVE REPRESENTATION

In order to tractably enforce the constraint δq(Q) in (2),
it is helpful to write q as a function (or linear sum of
functions) for which we know the values of both∫

D
q(x)µ(dx) and

∫
D
q(x)2µ(dx) .



This condition is satisfied by representing random func-
tion q as a linear combination of orthonormal basis func-
tions. The K-L representation (Wang, 2008) provides
a canonical way of doing so and thus links our fully
probabilistic approach to other square-root density meth-
ods that rely on a basis (Pinheiro and Vidakovic, 1997;
Müller and Vidakovic, 1998; Hong and Gao, 2016). Let
u(·) ∼ GP(0,K(·)) be a mean zero Gaussian process
over domain D with covariance operator K(·). Then u
admits a K-L expansion of the form

u(·) =

∞∑
i=1

ui φi(·), ui
ind∼ N(0, λ2i ), (3)

where the λis and the φis are respectively the eigenvalues
and eigenfunctions of operator K. That is to say, they
satisfy

K(φi)(x
′) =

∫
k(x, x′)φi(x)µ(dx) = λiφi(x

′)

where k(·, ·) is the usual covariance kernel. The eigen-
values are decreasing and their sum-of-squares is finite:
λi+1 < λi,

∑∞
i=1 λ

2
i < ∞. Finally, the eigenfunctions

form an orthonormal basis of L2:∫
φi(x)φj(x)µ(dx) = 0, and

∫
φ2i (x)µ(dx) = 1 .

In this paper, we model q as belonging to the Matérn
class of GPs. For the Matérn class, a closed-form or-
thonormal basis may be obtained from the eigenfunc-
tions of the Laplacian (Chung, 2013; Beskos et al.,
2016). The covariance operator is given by

K = σ2(α−∆)−s , (4)

where α and σ2 are positively constrained scale param-
eters, s is a smoothness parameter, and ∆ is the Lapla-
cian

∑d
i=1 ∂

2
i . The eigenvalues and eigenfunctions cor-

responding to this covariance operator depend on the
area and dimensionality of domain D and are presented
in Section 6 below. It should be noted that the decision to
use the Matérn class is entirely dictated by ease of com-
putation and does not preclude other classes of GP from
being used in future applications.

3.2 THE MODEL

The proposed density model is Bayesian nonparametric,
i.e. we place a prior distribution on a set of functions
and eschew a restrictive parametric form. Given data
x = (x1, · · · , xN ) ∈ D, we obtain a posterior distri-
bution, which is itself a distribution over the same set
of functions and is absolutely continuous with respect to
the specified prior distribution. As stated above, the prior

π(q) on square-root density q ∈ Q is a GP multiplied by
the Dirac measure on the L2 sphere. Following (3), the
prior for q and the likelihood of the data x given q are
given by

π(q) ∝δq(Q)

∞∏
i=1

exp
(
− q2i /(2λ2i )

)
,

π(x|q) =

N∏
n=1

q2(xn) ,

since q is the square-root density. This prior can also be
interpreted as arising from an infinite-dimensional Bing-
ham distribution on the coefficients (Dryden, 2005). The
posterior distribution on q is then given by

π(q|x) =
π(x|q)π(q)∫
Q π(x|q)π(q) dq

∝ π(q)

N∏
n=1

q2(xn) .

Suppressing the Dirac measure, the log-posterior given
data x1:N may be written in terms of the K-L expansion
of q:

log π(q|x) ∝
N∑
n=1

log q(xn)2 − 1

2

∞∑
i=1

q2i /λ
2
i

= 2

N∑
n=1

log |q(xn)| − 1

2

∞∑
i=1

q2i /λ
2
i

= 2

N∑
n=1

log |
∞∑
i=1

qiφi(xn)| − 1

2

∞∑
i=1

q2i /λ
2
i .

By modelling the square-root density q with a GP prior,
we model the density function p with a χ2-process prior.
Modeling the density p as a χ2-process, we automati-
cally enforce the non-negativity requirement for proba-
bility density functions. On the other hand, χ2-processes
are not restricted to have unit integrals. We therefore rely
on a geometric HMC inference scheme to restrict pro-
posals to the L2 sphere. This is discussed in details in
Section 4.

4 INFERENCE

Inference for the χ2-process density model is relatively
straightforward and amenable to advanced HMC meth-
ods. In Section 4.1, we show that, in this context, infinite-
dimensional spherical HMC is equivalent to Riemannian
HMC using the parametric Fisher information. In prac-
tice, we follow Beskos et al. (2016) and truncate the K-L
expansion of the GP square-root density prior for an in-
teger I using truncation operator TI :

TI
(
q(x)

)
= TI

( ∞∑
i=0

qi φi(x)
)

=

I∑
i=0

qi φi(x) .



Due to the orthonormality of the basis φi, the unit inte-
gral constraint on TI(q)2 translates directly to a spherical
constraint on the random coefficients qI = (q0, · · · , qI).
That is,

1 =

∫
D
TI
(
q(x)

)2
µ(dx) =

∫
D

( I∑
i=0

qi φi(x)
)2
µ(dx)

=

I∑
i=0

q2i

∫
φi(x)2µ(dx) =

I∑
i=0

q2i

where the penultimate equality is given by the orthog-
onality of the basis elements and the last equality is on
account of the basis elements being normal. Thus, infer-
ence can be performed over the coefficients qI by us-
ing spherical HMC (Lan, Zhou, and Shahbaba, 2014)
on the sphere SI . Both of these methods augment the
state space with an auxiliary velocity variable v (satisfy-
ing vT qI = 0) and simulate from a Hamiltonian system
by splitting (Shahbaba et al., 2014) the Hamiltonian of
interest (H) into two Hamiltonians (H1 +H2):

H(qI , v) = − log π(qI) +
1

2
G(qI) +

1

2
vT v

H1(qI , v) = − log π(qI) +
1

2
G(qI)

H2(qI , v) =
1

2
vT v .

Here π is the posterior distribution and G is the canoni-
cal Riemann tensor for the sphere (Lan, Zhou, and Shah-
baba, 2014). Simulating from H1 involves a small per-
turbation of the velocity by the gradient of H1 with re-
spect to qI ; simulating H2 involves moving along the
sphere’s geodesics in the direction v. This last fact is
relevant to the discussion of the following section.

The computational bottlenecks for both HMC and spher-
ical HMC are the likelihood evaluations (within the
accept-reject step) and the gradient evaluations (within
the discretized trajectory). For our model, both likeli-
hood and gradient evaluations require a single summa-
tion over N terms, each a simple function of the N ob-
servations individually. Thus, the complexity is linear
in the number of data points (O(N)). This is orders
faster than the O(N3) computations required to perform
inference for the GPDS (Murray, MacKay, and Adams,
2009). However, in a big data setting, even linear com-
plexity might prove too costly. In such case, we recom-
mend performing these summations using a binary re-
duction on a GPU with O(log2(N)) complexity (Hol-
brook et al., 2020).

4.1 INFERENCE IN THE LIMIT

We note that both spherical HMC uses geodesic flows
on the finite dimensional sphere to propose new Markov

chain states. Since these flows are formally equivalent
to the geodesic flows on the L2 sphere (see Section 2)
and since the natural geometry on L2 is equivalent to
the nonparametric Fisher geometry, it is worth asking
whether these inference schemes are adapted to the non-
parametric Fisher geometry in a similar way to Rieman-
nian HMC’s adaptation to the parametric Fisher geome-
try.

Indeed this is the case, and it is a simple consequence of
Proposition 1 in the supplementary file and the isomet-
ric relationship between square-integrable functions and
square-summable sequences induced by any orthonor-
mal basis {φi}∞i=1 with completion L2. Denote the space
of square-summable sequences and its sphere

`2 =

{
q = {qi}∞i=1

∣∣ 〈q, q〉`2 =

∞∑
i=1

q2i <∞

}
,

S∞ =

{
q ∈ `2

∣∣ 〈q, q〉`2 =

∞∑
i=1

q2i = 1

}
.

Then it follows from the orthonormality of {φi}∞i=1 that
(L2, 〈·, ·〉L2) ∼= (`2, 〈·, ·〉`2), since for any arbitrary func-
tion q = q(·) ∈ L2,

〈q, q〉L2 =

∫
q(x)2µ(dx) =

∫ ( ∞∑
i=1

qiφi(x)
)2
µ(dx)

=

∞∑
i=1

q2i = 〈q, q〉`2 .

It is an immediate result that the respective spheres are
also isometric, i.e. (Q, 〈·, ·〉L2) ∼= (S∞, 〈·, ·〉`2), and
hence, by Proposition 1, the following result holds.

Lemma 1. Given an orthonormal basis forL2, the space
of density functions equipped with the Fisher metric is
isometric to the sphere S∞ with its natural Euclidean
metric, i.e. (P, gF (·, ·)) ∼= (S∞, 〈·, ·〉`2). (See the sup-
plementary file for the proof.)

Our goal is to show that spherical HMC can be adapted
to the nonparametric Fisher geometry in the infinite-
dimensional limit. Given that the geodesic paths fol-
lowed by spherical HMC converge to geodesics on S∞,
Lemma 35 will imply that these paths correspond to
geodesics on (P, gF (·, ·)).

Lemma 2. Geodesic flows on the finite sphere SI−1
converge to geodesic flows on the infinite-dimensional
sphere S∞ as I → ∞. (See the supplementary file for
the proof.)

We are now ready to connect Riemannian HMC and
spherical HMC in the infinite-dimensional limit (where
the latter is applied to the square-root density estimation



problem). To make this relationship as clear as possi-
ble, we introduce a different (but equivalent) definition
of a geodesic based on the calculus of variations (in con-
trast to the null acceleration definition from Lemma 1).
Assume that two points A and B are close together in
a small open set of Riemannian manifold (M, g(·, ·)).
Let Γ : [a, b] × (−ε, ε) → M be a family of curves
γs : [a, b] → M satisfying γs(a) = A and γs(b) = B
for all s ∈ (−ε, ε). Then γ is a geodesic if it minimizes
the energy functional

E(γ) =
1

2

∫ b

a

gγ(t)
(
γ̇(t), γ̇(t)

)
dt ,

and thus satisfies d
dsE(γs) = 0 .

For a parametric family of distributions Pθ equipped
with the Fisher metric, the parametric Fisher energy
takes the form

E(θ) =
1

2

∫ b

a

gθ(t)
(
θ̇(t), θ̇(t)

)
F
dt

=
1

2

∫ b

a

∇θ`(θ(t))T I(θ(t))−1∇θ`(θ(t)) dt ,

where I(θ) is the Fisher information, and `(θ) =
log p(θ). On the other hand by Lemmas 1 and 5, the
nonparametric Fisher energy for a family of curves in P
takes the form

E(p) =
1

2

∫ b

a

gp(t)
(
ṗ(t), ṗ(t)

)
F
dt

=
1

2

∫ b

a

〈q̇(t), q̇(t)〉L2 dt

=
1

2

∫ b

a

〈q̇(t), q̇(t)〉`2 dt

where q =
√
p =

∑∞
i=1 qiφi(·).

Theorem 1. Let q(·) =
√
p(·) ∈ Q be a square-root

density function with expansion satisfying

q(·) =

∞∑
i=1

qiφi(·) , and

1 =

∫
D
q(x)2 µ(dx) =

∞∑
i=1

q2i ,

with random, real-valued coefficients qi, i = 1, . . . ,∞.
Then, in the infinite-dimensional limit, spherical HMC
follows the nonparametric Fisher metric’s geodesic flows
in the same way that Riemannian HMC follows the
Fisher metric’s geodesic flows over the parametric fam-
ily of distributions Pθ. (See the supplementary file for
the proof).

5 RELATIONSHIP TO THE COX
PROCESS

The χ2-process density prior may be used to model the
intensity function of a Cox process (Cox, 1955). The
Cox process is a point process over a given domain such
that each realization at point t is drawn from a Poisson
distribution with intensity µ(s), where intensity function
µ(·) is itself a random process over the same given do-
main. Cox processes are useful for the analysis of spatial
and time series data. Given µ(·), the likelihood of such
data {sn}Nn=1 is given by

p
(
{sn}Nn=1|µ(·)

)
= exp

(
−
∫
D
µ(s) ds

)
×

N∏
n=1

µ(sn) .

(5)

Bayesian inference on µ(·) requires the calculation of
two integrals, that over the parameter space and that from
Equation (5). We make the latter integral trivial by mod-
eling the intensity function as the product of a density
function and a positively constrained random variable:

µ(s) = M × p(s) = M × q(s)2 .

In this case, the likelihood p
(
{sn}Nn=1|µ(·)

)
may be

written as

exp
(
−
∫
D
Mq(s)2 ds

)
×

N∏
n=1

Mq(sn)2,

which is equal to

exp(−M)MN
N∏
n=1

q(sn)2 .

Since the likelihood factors in M and q(·), it follows that
the two random variables will be independent in poste-
rior distribution if they are specified to be independent
in prior distribution. Indeed, M may even be given a
conjugate prior: it is easy to see that

M ∼ Γ(a, b) , implies M |N ∼ Γ(a+N, b+ 1) .

Sampling from the joint posterior of µ(·) is as simple as
independently sampling M from its posterior and q2(·)
from the χ2-process density sampler and then multiply-
ing the two together. Such a model should be used with
care. As a function of the data, the posterior distribution
of M solely depends on N , which is itself a single real-
ization from a Poisson distribution. Thus, our χ2-process
density prior for the Cox process is useful in situations
where ample prior information on M is available.
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Figure 1: Each plot shows 100 posterior draws from the
χ2-process density sampler. 1,000 data samples were
drawn from a different beta distribution for each plot.
The generating pdf is given in red, and the red hash
marks describe the actual data produced.

6 EMPIRICAL RESULTS

Here we apply the χ2-process density model to both sim-
ulated and real-world data. As stated in Section 3.1, the
eigen-pairs corresponding to the GP with covariance op-
erator (4) depend on both the dimension and the area
of D. When D is the one-dimensional unit interval, the
eigen-pairs are given by

λ2i = σ2(α+ π2i2)−s , and φi(x) =
√

2 cos(π i x) ,

for i ≥ 0. For the two-dimensional unit square D =
[0, 1]× [0, 1], the eigen-pairs are given by

λ2i = σ2
(
α+ π2(i21 + i22)

)−s
,

φi(x) = 2 cos(π i1 x1) cos(π i2 x2) ,

for i1, i2 ≥ 0, where i1 and i2 are indices for the first
and second dimensions of the domain respectively. See
Beskos et al. (2016) for a similar approach.

6.1 SIMULATED EXPERIMENTS

Figure 1 depicts 1,000 data points (red hash marks)
drawn from four different beta distributions (red) along
with 100 MCMC draws from the posterior distribution
based on the χ2-process density model. From left to right
and top to bottom, the beta distribution parameters are
(1, 1), (5, 2), (.5, .5), and (2, 2). Note that while the in-
dividual posterior draws adhere closely to the sampled
data, the variability in the posterior draws accounts for
uncertainty and gives good coverage to the true density.
The hyperparameter settings for the top-left plot is given
by (σ, α, s) = (.5, 1, 1), and (σ, α, s) = (.5, .5, .8) is
the hyperparameter setting for the rest. We set I = 30
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Figure 2: The contours (black) of the posterior median
from 1,000 draws of the χ2-process density sampler.
Each posterior is conditioned on 1,000 data points (red).

for each example, and 10,000 thinned MCMC iterations
were used to make each figure.

Figure 2 depicts 1,000 data points (red) drawn from
four different distributions on the unit square along with
the contours of the pointwise median of 1,000 posterior
draws from the χ2-process density model. The data in
the first three plots was generated using truncated Gaus-
sians and mixtures of truncated Gaussians. The data for
the last plot were generated by Gaussian noise added to
the uniform distribution on the circle. The model adapts
easily to multimodal and patterned data samples. For all
examples, the hyperparameters were fixed to (σ, α, s) =
(.9, .1, 1.1), and 0 ≤ i1, i2 ≤ 5 for each example.

6.2 REAL-WORLD EXPERIMENTS

Figure 3 features the British coal mine disaster data set,
in which the dates of 191 disasters are recorded between
the years of 1851 and 1967. In both plots, the dates are
given in red. Two comparisons are implied by the figure.
The first is a comparison between the variability of 100
posterior draws based on 191 data points (left plot) with
the variability in 100 posterior draws based on 1,000 data
points, as in Figure 1. One sees much less variability in
the latter. The other comparison is between the close fit
exhibited in the posterior draws of the left plot compared
to the smooth fit shown by the pointwise quantiles (me-
dian, black; .25, blue; .75, blue). As we can see, our
method is valid for modeling densities without periodic
tendencies, despite the specific form of the basis. Both
plots are based on 10,000 thinned MCMC iterations,
with hyperparameter settings (σ, α, s) = (.5, .5, .8) with
I = 30.

Figure 4 features Hutchings’ bramble canes data (red)
(Hutchings, 1978), consisting of the locations of 823
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Figure 3: Coal mining disasters data: the left figure
shows 100 posterior draws from the χ2-process density
model (gray) over 191 vertical lines (red) marking the
precise date of each disaster. The right figure shows the
pointwise median (black) for the same sample as well as
pointwise quantile bands (blue).

bramble canes in a square plot. The left figure contains
a heatmap of the pointwise posterior mean of the χ2-
process density model, where black pertains to low den-
sity and white pertains to high density. Finally, a single
contour (blue) at density level 0.3 divides the majority
of points from areas of extremely low density. The hy-
perparameters were set to (σ, α, s) = (2, .01, 1.1) with
0 ≤ i1, i2 ≤ 5, and the posterior sample featured 10,000
MCMC iterations. The right figure features 823 draws
from the posterior predictive distribution of the χ2 pro-
cess density model. Each draw from the posterior predic-
tive distribution was obtained by randomly selecting one
posterior draw from the χ2 process density model. Since
this single posterior sample is itself a density function,
one can then sample from its corresponding distribution
using a rejection sampling scheme. There is a remark-
able similarity between the posterior predictive sample
(right, black) and the bramble canes data (left, red).

7 DISCUSSION

We have presented a nonparametric extension to the
parametric Fisher geometry and showed that this gen-
eralization is consistent with its parametric predecessor.
To do so, the set of probability density functions over a
given domain was defined to be an infinite-dimensional
smooth manifold where each point is itself a density
function. This manifold becomes a Riemannian mani-
fold when equipped with the nonparametric Fisher in-
formation metric and is then identified with the infinite-
dimensional sphere. We demonstrated one application
of this approach in the form of Bayesian nonparamet-
ric density estimation. The resulting χ2-process den-
sity model is flexible and computationally efficient: it is
amenable to HMC and, in comparison to the cubic scal-
ing of GP competitors, scales linearly in the number of
data points. Of course, there is nothing a priori restrict-
ing the prior to be Gaussian. Also, an important next step
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Figure 4: Hutchings’ bramble canes data: the first figure
depicts the 823 bramble canes (red), a heatmap of the
pointwise posterior mean (black is low, white is high),
and a single contour at density 0.3 (blue) including all but
a few points. The second figure shows 823 draws from
the χ2-process density posterior predictive distribution.

is placing a prior on the number of basis functions to use,
as is done in (Cotter et al., 2013).

The theoretical and methodological results presented in
this paper are merely first steps in exploiting the simple
geometry implied by the nonparametric Fisher metric.
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