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1. Introduction

Traffic engineering on a given network is the task of determining how traffic commodities must be routed in
order to maintain an optimal performance. In this work, we aim to optimize routing by minimizing the num-
ber of routing hops, which has a positive impact on the delay provided by the network to traffic commodities,
while ensuring some desired survivability guarantees.
In [1], we have considered the network design of MPLS over WDMnetworks. In that work, we have con-
sidered a given undirected networkG = (V, E) whereV is the set of WDM nodes andE is the set of
physical connections (fibers) between WDM nodes, and also a set S ⊂ V of traffic MPLS nodes (named
Label Switched Routers or LSRs) that are origins/destinations of commodities each of which with demand
tpq, p, q ∈ S(p < q). The design task was the determination of the number and routes of the WDM light-
paths and the location of core LSRs. Each WDM lightpath had anassociated cost which was proportional
to the length of its minimum length path onG. Each core LSR potential location had an associated given
cost. The aim of the network design task was to minimize the total network cost, while guaranteeing the
existence ofD node disjoint hop-constrained paths for every commodity, accommodating a given demand
matrixT = [tpq], p, q ∈ S(p < q). The hop-constrained paths account for a maximum number of hops that
the design solution must guarantee. TheD node disjoint paths, together with the capacity assigned toeach
path, account for the degree of survivability that the design solution must guarantee.
There are two reasons to apply traffic engineering on pre-dimensioned networks. One is that the commodity
paths given by a minimum cost network design solution might not be the optimal ones (the design model
defines a maximum number of hops for each path but in the designsolution these values might be improved).
Second, the commodity demand values used on the design task are usually estimations that might be different
from the traffic that is to be supported by the network when it is put in operation.
Therefore, let a network design solution be represented by anetworkN = (X, U), where the node setX is
the set of all LSRs (the traffic and the core LSRs) and edge setU is the set of pairs of LSRs with lightpaths
connecting them (be represents the total capacity of the lightpaths on edgee ∈ U ). This solution supports all
commodities of the given estimated demand matrixT for certain values ofH (the maximum number of hops
between anyp, q ∈ S, p < q), D andβ (a percentage coefficient associated with the survivability scheme
that will be further explained below). Now, consider a new demand matrixR = [rpq] which is different from
the estimatedT . In this work, we generate eachrpq value randomly with a uniform distribution between
(1 − δ)tpq and(1 + δ)tpq, consideringδ = 0.05, 0.1, 0.15 or 0.2 to accommodate different error degrees in
the estimation of the initial traffic matrix.
We consider a traffic engineering problem of routing the new demands (rpq) over the dimensioned network
N = (X, U) complying with the installed bandwidth (be) on each edge ofU and guaranteeingD node dis-
joint hop-constrained paths for every commodity. An optimal routing is the one that minimizes i) the average
number of hops or ii) the largest number of hops, between all pairs of nodesp, q ∈ S(p < q).

Either considering the objective i) or ii), we assume there is a maximum allowable number of hops for each
commodity, denoted byH∗ = H . This value has been given as an input of the previous problem[1]. For all
p, q ∈ S, p < q, we can generically modelD hop constrained paths as follows:



{

(i, j) : fpq
ij > 0 containsD (p, q) − H∗ − paths

}

, p, q ∈ S

wherefpq
ij represents the number of paths fromp to q traversing edge{i, j} in the direction fromi to j, and

a (p, q) − H∗ − path is a sequence of at mostH∗ arcs{(i1, j1), ..., (ik, jk)} such thati1 = p, jk = q and
js = is+1 for s = 1, , k − 1. Following [2], we can describe these generic constraints using a single set of
variables for each commodity,whpq

ij , representing the number of(p, q) − H∗ − paths traversing edge{i, j}
in the direction fromi to j, in thehth position. Hence, for allp, q ∈ S, p < q, the model representingD
hop-constrained paths fromp to q can now be defined as:

∑

j∈X

w1pq
pj = D for all p, q ∈ S

∑

j∈X

w2pq
ij = w1pq

pi for all i 6= p; p, q ∈ S

∑

j∈X

wh+1,pq
ij −

∑

m∈X

whpq
mi = 0 for all i 6= p; h = 2, ..., H∗ − 1; p, q ∈ S

(1)
∑

j∈X

wH∗pq
jq = D for all p, q ∈ S

whpq
ij , whpq

ji ∈ {0, 1, ..., D} for all e = {i, j} ∈ U ; h = 1, ..., H∗; p, q ∈ S

whpq
qq ∈ {0, 1, ..., D} for all h = 2, ..., H∗; p, q ∈ S

This model contains "loop" variableswhpq
qq (h = 2, ..., H∗) to represent situations when some of theD

(p, q)−H∗−paths contain fewer thanH∗ arcs (that is,whpq
jq = 1 for somej ∈ V \{q} and1 ≤ h ≤ H∗−1).

We divide our study according to two survivability schemes (see [1]): Path Diversity and Path Protection. The
first scheme is appropriate when the network operator aims toenhance demand protection but total protection
is not a requirement; the latter scheme is preferred when total demand protection is needed.

2. Survivability Schemes and Optimization Criterias

In the Path Diversity scheme, the demandrpq of each commodityp, q ∈ S(p < q) is equally split by the
D node disjoint paths. This scheme ensures that a percentage of the total demand,(D − 1)/D × 100%, is
guaranteed if a single network element fails (the most likely failure case). WhenD = 2, each of both paths
betweenp andq support half ofrpq (β = 1/2) and, thus,50% of the total demand is always protected. When
D = 3, each path supports one third ofrpq (β = 1/3) and, so,66% of the total demand is protected.
Under this survivability scheme, all theD node disjoint paths carry traffic between any pair of nodesp, q ∈
S(p < q) which implies that all theD×|S|× (|S|−1)/2 paths are subject to the optimization criteria, either
considering i) or ii).
Minimizing the average number of hops is equivalent to maximizing the sum of the loop variables: a path
from p to q with fewer arcs makes more loops at nodeq:
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Minimize
∑

p,q∈S

∑

{i,j}∈U

∑

h=1,...,H∗

whpq
ij ⇐⇒ Maximize

∑

p,q∈S

∑

h=2,...,H∗

whpq
qq

subject to:

(1)
∑

i∈X

∑

h=1,...,H∗

whpq
ij ≤ 1 for all j ∈ X\{p, q}; p, q ∈ S (2)

∑

p,q∈S

βrpq





∑

h=1,...,H∗

whpq
ij +

∑

h=1,...,H∗

whpq
ji



 ≤ be for all e = {i, j} ∈ U (3)

This model contains the previously described flow conservation constraints(1). The following group of
constraints(2) guarantee that theD paths between any pair of nodesp, q ∈ S(p < q) are node disjoint, while
constraints(3) prescribe that the traffic matrix routing must comply with the installed capacity on each edge
of U .

To define an appropriate objective function for the largest number of hops minimization criteria, for each
commodity we need a way to identify how many hops are contained in the worst case path among theD
paths supporting that commodity. We do it using the loop variables. To better understand the proposed for-
mulation for this criteria, consider example 1 below: two commodities (with originsp andp′, and respective
destinationsq andq′), D = 2, H∗ = 4 and where the values associated with the arcs represent the position
in which they are being traversed:

1

1

q

2

1

1

1

q
′

3

1

Example 1

For the first commodity we havew2pq
qq = 1 andw3pq

qq = w4pq
qq = 2, and, for the second, we havew2p′q′

q′q′ =

w3p′q′

q′q′ = 1 andw4p′q′

q′q′ = 2. Consider binary variablesV hpq indicating whether 2 loops are performed at
nodeq in positionh from p to q, for all h = 2, 3, 4. If V hpq = 1, then we know that the "worst" path (the
path with the largest number of hops) betweenp andq reaches nodeq afterh − 1 hops at most.
In this example, we want to haveV 3pq = V 4pq = 1, V 2pq = 0 for the first commodity and, for the second
commodity,V 4p′q′

= 1 andV 2p′q′

= V 3p′q′

= 0. Note that for each commodity the sum of the correspond-
ing variables,

∑

h=2,...,H∗ V hpq, can be interpreted as indicating "how early" the worst pathbetweenp andq

reaches nodeq. Furthermore, if we bound below quantities
∑

h=2,...,H∗ V hpq by an integer variableV and
we maximizeV , then we are forcing the worst paths to reachq as "early" as possible, thus minimizing the
largest number of hops of the worst path fromp to q. The integer variableV can be interpreted as how early
the worst of all paths arrives at its destination node (in theexample,V = 1). Moreover, note thatV hpq can
only be 1 ifwhpq

qq = 2 and, so, we must consider the binding constraints2.V hpq ≤ whpq
qq , for all h = 2, 3, 4.

Generalizing, for either D = 2 or D = 3, we define:

V hpq =

{

1, if D loops are performed at nodeq in positionh, from p to q
0, otherwise

, p, q ∈ S; h = 2, ..., H∗

The problem that minimizes the largest number of hops can, now, be defined as:
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Maximize V

subject to:

(1), (2), (3)

D.V hpq ≤ whpq
qq for all p, q ∈ S; h = 2, ..., H∗

∑

h=2,...,H∗

V hpq ≥ V for all p, q ∈ S

V hpq ∈ {0, 1} for all p, q ∈ S; h = 2, ..., H∗

V ≥ 0 and integer

The Path Protection survivability scheme ensures that theD node disjoint paths between any pair of nodes
p, q ∈ S(p < q) support a capacity such that if one path fails, the remainingones must accommodate the
total demand.
For D = 2, each path is able to support the total demand (β = 1).In this case, the best path (the one with
fewer number of hops) is used as the service path (the commodity demand is support by this path) and the
other path is used as a protection (backup) path (it is used whenever the service path fails).
ForD = 3, each path is able to support half the demand (β = 1/2). In this case, the two best paths (the ones
with fewer number of hops) are used as service paths (the total demand is equally split by the two service
paths) and the other path is used as a protection (backup) path (it is used whenever one of the service paths
fails).
Note that the protection paths do not support traffic under normal network operation. They support traffic
when a failure occurs and only during the period until the failure is fixed. Therefore, we consider the mini-
mization of the number of hops only on the service paths.
Considering the average number of hops minimization criteria, since forD = 2 we have one service path per
commodity, we want to minimize the average number of hops of the "best" path supporting each commodity,
that is, we just want to consider the path with the least number of hops between the two paths supporting
each commodity. ForD = 3, we have two service paths and thus we consider the two best paths of each
commodity for the average minimization purpose.
In order to motivate the next model consider, forD = 2, the following example with two commodities,
H∗ = 4 and where the values associated with the arcs represent the position in which they are being tra-
versed:

1

1

q

2

1

1

1

q
′

3

2

Example 2

In this example, for the first commodity we havew2pq
qq = 1 andw3pq

qq = w4pq
qq = 2, and, for the second one,

w2p′q′

q′q′ = 0, w3p′q′

q′q′ = 1 andw4p′q′

q′q′ = 2. For each commodity, we want to know "when" the best path reaches
its destination node, regardless of how the worst path performs. That is, if the first loop that is made at node
q is in position2, then we must be able to use this information. Thus, considerbinary variablesV hpq as
follows:

V hpq =

{

1, if at least a loop is performed at nodeq in positionh, from p to q
0, otherwise

, p, q ∈ S; h = 2, ..., H∗
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In this example, for the first commodity, we must haveV 2pq = V 3pq = V 4pq = 1. We can impose
these values upper bounding theV hpq variables by thewhpq

qq variables, for allh = 2, 3, 4, and maximizing
∑

h=2,...,H∗ V hpq. Note that this sum can be interpreted as how early the best path fromp to q arrives at node

q. For the second commodity, considering similar constraints and adding
∑

h=2,...,H∗ V hp′q′

to the objective

function, we obtainV 3p′q′

= V 4p′q′

= 1.
ForD = 3, we are interested in the two best paths supporting each commodity. Similarly to the caseD = 2,
we will use theV hpq variables to detect "when" the two best paths reach their destination node. However, the
meaning of those variables will slightly differ from that ofcaseD = 2. Consider the next example with three
commodities,H∗ = 4 and where the values associated with the arcs represent, again, the position in which
they are being traversed:

1

1

1

q

4

3

1

1

1

1

q
′

4

3

2

1

1

1

q
′′

3

2

1

Example 3

We follow the same idea as inD = 2, that is, we upper bound theV hpq variables by thewhpq
qq variables, for all

h = 2, 3, 4, and maximize
∑

h=2,...,H∗ V hpq, but we now let theV hpq variables assume values in{0, 1, 2}.
Hence,

∑

h=2,...,H∗ V hpq represents the number of loops performed at nodeq (by the two best paths fromp
to q). We can interpret each variable as a filter: that is, if, fromp to q, k loops are performed at nodeq in
positionh, thenV hpq = min{k, 2} (note that, forD = 2, we can also interpret theV hpq variables as filters
and in that caseV hpq = min{k, 1}).
The problem that minimizes the average number of hops, for eitherD = 2 or D = 3, can now be stated as
follows:

Maximize
∑

p,q∈S

∑

h=2,...,H∗

V hpq

subject to:

(1), (2), (3)

V hpq ≤ whpq
qq for all p, q ∈ S; h = 2, ..., H∗

V hpq ∈ {0, 1, ..., D − 1} for all p, q ∈ S; h = 2, ..., H∗

Considering now the largest number of hops minimization criteria under the Path Protection scheme, the
situation differs from that of the Path Diversity scheme in the sense that: whenD = 2, we want to minimize
the largest number of hops of the best path (service path) of every commodity; and, whenD = 3, we want to
minimize the largest number of hops of the worst path betweenthe best two paths of every commodity.
Consider examples 2 and 3. The idea is to set a binary variableV hpq to 1 only if: the best path fromp to q
performs a loop at nodeq in positionh, for D = 2; the worst of the two best paths fromp to q performs a
loop at nodeq in positionh, for D = 3. If our aim is to minimize the largest number of hops, the formulation
to this problem becomes as follows:
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Maximize V

subject to:

(1), (2), (3)

(D − 1).V hpq ≤ whpq
qq for all p, q ∈ S; h = 2, ..., H∗

∑

h=2,...,H∗

V hpq ≥ V for all p, q ∈ S

V hpq ∈ {0, 1} for all p, q ∈ S; h = 2, ..., H∗

V ≥ 0 and integer

For D = 2,
∑

h=2,...,H∗ V hpq represents how early the best path fromp to q arrives at nodeq, whereas for
D = 3 it represents how early the worst of the two best paths fromp to q arrives at nodeq. If we want to min-
imize the largest number of hops, we then have to upper bound an integer variableV by

∑

h=2,...,H∗ V hpq,
for all p, q ∈ S, and maximizeV .

On an extended version of this paper, we will provide more insight on the proposed formulations, considering
the survivability schemes and the two optimization criteria described on this version, and we will also present
our computational results.
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