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Abstract

It is the thesis of this work that many computer software systems being built today are similar and should be built out of reus:
software components.

The appropriate use of software components is investigated by analogy to the classical engineering question of whether to b
object out of custom-made parts or standard parts and assemblies. The same analogy is used to explain some of the problel
previous work on reusable software. The result of reasoning with the engineering analogy is that the reuse of software result
from the reuse of analysis, design, and code; rather than just the reuse of code.

The concept of domain analysis is introduced to describe the activity of identifying the objects and operations of a class of sir
systems in a particular problem domain. A domain analysis is represented by a domain-specific language, a prettyprinter, so
source transformations, and software components.

A domain's software components map statements from the domain into other domains which are used to model the objects :
operations of the domain. Software components represent implementation choices. The components are managed using a r
interconnection language to insure usage constraints.

The source-to-source transformations represent domain-specific optimizations, independent of any implementation, which at
optimize statements in the domain. The transformations are useful primarily when the domain is used as a modeling domair
method of automatically producing metarules for a set of transformations is described. The metarules remove the burden of |
suggest individual transformations from the user.

A formal model of the usage constraints and modeling possibilities of a set of domains is presented. It is shown that the reus
guestion ("Can a particular domain-specific program be refined into an executable language using a given a set of domains®
answered using the formal model.

Experiments using a prototype system, Draco 1.0, which embodies the concepts described, are presented and the results di
largest example results in approximately 20 pages of source code and uses eight modeling domains. Each object and opera
resulting program may be explained by the system in terms of the program specification.

Related work in the areas of automatic programming, program generation, programming languages, software engineering, ¢
transformation systems is presented.

Finally, some future work in this area is outlined.
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Chapter 1 Introduction

The Software Crisis

Each year more than $50,000,000,000 are spent on software production and evolution in the Unité@iSteie8(. The

traditional term of "maintenance” for all work on a software system after it is initially constructed is misleading. We prefer the
"evolution" after Lehman8() Scacchi8QvanHorn8( to denote the repair, adaptation, and enhancement of a software system. T
huge sum is spent on something which cannot be seen, felt, touched, tasted or heard in the conventional sense. The intang
of software has caused much of the problem in its production. There is no sense feedback in the production of software. Ove
years, the problem of software production has been growing rapidly with the increased size of software systems. Today "pers
computers" threaten to be able to hold the largest software systems built. Unless techniques to create software increase drat
productivity, the future of computing will be very large software systems barely being able to use a fraction of the computing
extremely large computers.

By "software crisis," we mean that there is a demand for quality software which cannot be met with present methods of softw
construction. The judgement as to whether the software is needed or whether more software is better is not made here. Sorr
points which have brought about the software crisis are listed below:

The price/performance ratio of computing hardware has been decreasing about 20% péyryieaey79.

The total installed processing capacity is increasing at better than 40% pevigearsey79.

As computers become less expensive, they are used in more application areas all of which demand software.

The cost of software as a percentage cost of a total computing system has been steadily iitweasii@.[Software was
15% of the cost of a total computing system in 1955, it surpassed the percentage cost of hardware in 1967, and it is e
be 90% by 1985.

The cost of hardware as a percentage cost of a total computing system has been steadily dBoedasing [

The productivity of the software creation process has increased only 3%-8% per year for the last tweniy yeszrsy[7 9.
There is a shortage of qualified personnel to create softwene£79.

As the size of a software system grows, it becomes increasingly hard to construct.

All of these factors have combined to create a software crisis.

This dissertation describes a software production technique based on the concept of parts and assemblies. The concept has
successful in the production of standardized objects such as computer hardware. It is the goal of this work to increase softwe
construction productivity as a partial answer to the software crisis.

The Software Lifecycle

The beginning of the software crisis was heralded by the failure of some very large software systems to meet their analysis g
delivery dates in the 1960's. These systems failed regardless of the amount of money and manpower allocated to the project
failures led to a conference on the problem of software construction which marked the beginning of software engineeriig .
Studies of the process of software construction have identified the phases that a software project goes through and these ph
been combined into a model called the software lifecycle.

If we view the lifetime of a software system as consisting of the phases requirements analysis, design, coding, integration an
and evolution, then typical costs of the different phaBesoks74 Boehm73 excluding requirements analysis are shown in figure
This early view of the lifecycle serves our purpose here but it is important to note that more recent views of the Hifscyass, [
Scacchi8pPare more sensitive to the needs of the organization requesting the system, the dynamics of the organization buildi
system, and the information processing abilities of the people developing the system.

9% design

6% coding

15% integration and testing
70% evolution

Figure 1. Cost of Lifecycle Phases

If a tool is developed to aid the production of software, its impact depends on the importance of the lifecycle phases it affects
coding tool has the least impact while an evolution tool has the most impact. Previously, evolution was termed "maintenance
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regarded as an activity after system construction which only corrected errors in the system. In reality, it has been shown that
evolution time is spent revising the goals of the system and only about 10% of the total evolution effort is spent correcting err
[Lientz80d. The remaining 90% of the evolution phase is a reiteration of the other lifecycle phases.

It is difficult to test high-impact tools for software production for three reasons. One reason is that the tools are used in a con
social setting where not all the users are motivated by a desire for high software production. A second reason is that produci
software is very expensive and the data collection required is an added expense to an already expensive process. The third
testing high-impact tools is that there are no really good system quality metrics with which to judge the resulting system built
the tool. It is difficult to judge the worth of the resulting system to the organization which desired it. Many requests for "maint
on a completed system may mean either that the system was built poorly with many errors or that it was built well enough th.
users see enhancements which could make a good system even better.

The software production technique described in this dissertation is, in our view, a high-impact tool which inherits the difficulti
testing mentioned above. We have not attempted to statistically verify an increase in software productivity or judge the "good
the systems resulting from the use of the tool. Such a study should be a requirement before any technique is ever used in pr:

The Parts-and-Assemblies Concept

The idea of using standard parts and forming them into assemblies is a very old idea.

"Eli Whitney of New Haven Conn. received an order for a large number of guns in 1789. Instead of hiring a large
number of individual gunsmiths, he designed interchangeable parts and made jigs and fixtures so that relatively
unskilled people could make the parts. He missed his delivery schedule, but he is credited with having invented the
parts-and-assemblies approach with re-usable parts. The principles and techniques of the parts-and-assemblies
approach have since become well known, and automated support for the documentation exists throughout industry."

[Edwards7#

The parts-and-assemblies approach has been used extensively in engineering and is one of the techniques which has enabl
hardware engineers to increase the power and capacity of computers in a short time. Henry Ford combined the idea of parts
assemblies with the idea of an assembly line to make model-T Fords. It is important here to understand that the parts-and-a:
idea does not infer the use of assembly lines.

There are two basic approaches to building things. The craftsman approach relies on a highly skilled craftsman to build an o
raw materials. The raw materials are fashioned into custom parts and fitted together to form custom assemblies. The parts-¢
assemblies approach relies on already built standard parts and standard assemblies of parts to be combined to form the obj¢
the approaches has its good and bad points.

The Craftsman Approach

With the craftsman approach, the custom parts and assemblies are tailored to the specific problem at hand. These custom
represent a very efficient implementation; probably better than could be built from standard parts. Given the time, aatvedgsna
builds a better object than one constructed from standard parts. By "better" here we mean more responsive to the goals of cc
[Alexander64. The craftsman approach has its drawbacks in that craftsmen are expensive to employ and hard to find. Any s)
built by a craftsman is a custom system and will require custom maintenance. This means that the maintenance must be don
craftsman who must shape new custom parts to fit with the old custom parts in an object.

The Parts-and-Assemblies Approach

The parts-and-assemblies approach offers cheaper construction costs since the object is built from pre-built standard parts. .
assembly is a structure of standard parts which cooperate to perform a single function. The use of standard parts and assen
supply some knowledge about the failure modes and limits of the parts. This information is unavailable with custom parts. Us
standard parts also creates a language for discussion of future objects and extensions to objects currently under constructiol
parts-and-assemblies approach has its drawbacks in that the design of useful standard parts and assemblies is very expens
requires craftsman experience. Also, once a set of standard parts is created it may not suffice to construct all the objects des

The Nature of Parts and Assemblies
From a different viewpoint, an assembly is a part.

"We understand complex things by systematically breaking them into successively simpler parts and understanding hi
3
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these parts fit together locally. Thus, we have different levels of understanding, and each of these levels corresponds
anabstraction of the detail at the level it is composed from. For example, at one level of abstraction, we deal with an
integer without considering whether it is represented in binary notation or two's complement, etc., while at deeper
levels this representation may be important. At more abstract levels the precise value of the integer is not important
except as it relates to other dat&hith74

Thus, an assembly at a different level of abstraction becomes a part. This idea will become important later when we discuss
problems encountered by previous work on software parts.

From the discussion of the pros and cons of the craftsman and the parts-and-assemblies approaches, it is apparent that the
assemblies approach is appropriate only to those situations where many similar objects are to be built. Otherwise, the cost o
the standard parts by a craftsman is much greater than the cost saved by using standard parts. If an object to be built is a or
custom object it should be built by a craftsman; otherwise it should be determined if the parts-and-assemblies approach couls
effective.

Partsand Assembliesin Computing

Historically, software construction has taken the craftsman approach. In the early days of computing, the software systems w
of-a-kind and the craftsman approach was the natural approach. Today quite a few software systems being built by the craft:
approach are similar. In particular, the construction of system software (text editors, assemblers, compilers, etc.), business ¢
processing systems (inventory, accounting, billing, etc.), and simple process control systems are all areas where many thous
similar systems exist. It is not at all clear that the constructors of these systems are craftsmen. In fact, with the rapidly incree
numbers of analysts and programmeiisiiitz8( it is doubtful that the constructors of these systems are craftsmen. In our view,
high cost of custom software systems has never been clearly represented since the use of standard parts and assemblies to
cost systems has not been an alternative.

Historically, hardware construction has taken the parts-and-assemblies approach. Even though early computers were one-of
the parts-and-assemblies approach was the natural choice since hardware failures were a major problem and the approach
excellent technique for organizing maintenance. The machines were maintained by replacing assemblies and studying the fi
modes of the parts and assemblies. This same maintenance technique is still in use today.

In the next chapter we shall discuss the problems of using the parts-and-assemblies concept in the construction of software.
under the assumption that many software systems being constructed today are similar, we shall outline a method for constru
software using parts and assemblies and advocate its use in the construction of similar systems.

Chapter 2 Software Construction Using Parts and Assemblies

Softwar e Components

The purpose of this dissertation is to apply the parts-and-assemblies concept to software construction. A software componen
analogous to a part. From our discussio@lirapter ] this means that a component can be viewesither a part or an assembly
depending on the level of abstraction of the vidvparticular component usually changes from a part to an assembly of subparts
the level of abstraction is decreased. The duality of a component is a very important concept. The failure to deal with this du:
caused some problems with earlier work on reusable software.

The major problem with earlier work on reusable software is the representation of the software to be reused. In program libre
programs to be reused are represented by an external reference name which can be resolved by a linkage editor. While a fu
description of each program is usually given in a reference manual for the library, the documentation for a library program se
gives the actual code or discusses the implementation decisions. The lack of this information prohibits a potential user of a li
program from viewing it as anything other than a part. If the user can treat a library program as an isolated part in his develc
system then the program library will be successful. Mathematical function libraries fit well into this context.

Usually, however, a user wishes to change or extend the function and implementation of a program to be reused. These mo
require a view of the program as an assembly of subparts and a part of many assemblies. To decrease the level of abstractic
library program to view it as an assembly of subparts requires information about the theory of operation of the program and
implementation decisions made in constructing the program. To increase the level of abstraction of a library program to view
of a collection of assemblies requires information about interconnections between programs in the library and implementatio
decisions defining common structures. None of this information is explicit in a simple program library. The burden is placed «
user of the library to extract this information.
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The view of software components as isolated parts also plagued early work on reusable code Gwdulé§ Corwin74. The
software components to be reused in this work are code modules hundreds of source lines long. With the code available a
knowledgeable human user could form an abstraction of a given code module by examining it, but this is difficult work requiri
amounts of knowledge from many domains. The problem of understanding a code module is exacerbated by the large size o
modules. The large size is required to help a potential user of a reusable code module set organize a program using a small
module names. If the average code size of a reusable code module is small, then there will be too many code module names
user to organize. If the average code size is large, then the code modules will turn out to be too inflexible to be used in a wid
systems without human examination and tailoring in each use. As with program libraries, the burden of organizing a specific
is placed on the user because even though the structure between the reusable code modules is more easily discerned than |
libraries, it is not completely explicit.

To avoid the problems encountered with program libraries and reusable code modules we will use the computer to handle a |
number of module names. Each name represents a small flexible software component described at a level of abstraction abc
programming language source code which will allow us to view the component as an assembly of subparts and a part of ass

In general it seems thtte key to reusable softwareisto reuse analysis and design; not code. In code, the structure of parts whict
make up the code has been removed and it is not divisible back into parts without extra knowledge. Thus, code can only be \
part. The analysis and design representations of a program make the structure and definition of parts used in the program e
Thus, analysis and design is capable of representing both the part view and assembly view while code can only represent th
In this chapter a method will be presented which extends the reusable parts theme into all phases of the software lifecycle re
just the coding phase.

An Overview of Draco

It has been a common practice to name new computer languages after stars. Since the system described in this dissertation
mechanism which manipulates special-purpose languages it seems only fitting to name it after a structure of stars, a galaxy.
Latin for dragon, is a dwarf elliptical galaxy in our local group of galaxies which is dominated by the large spiral galaxies Milk
and Andromeda. Draco is a small nearby companion of the Milky Way. At 1.2E+5 solar masses and 68 kiloparsecs from Ear
small size and close distance to home is well suited to the current system, Draco 1.0, which is a small prototype.

Objectives of this Research

The Draco system addresses itself to the routine production of many systems which are similar to each other. The goal of thi
to be able to build large, understandable, maintainable, documented systems which represent an error-free implementation
needs and desires. The particular approach the Draco system takes is the extension of the reusable parts-and-assemblies tl
analysis and design phases of software construction.

A Brief Description of Draco

Draco is an interactive system which enables a user to guide the refinement of a problem stated in a high-level, problem-dor
specific language into an efficient, low-level executable program. As the user guides the refinement of his problem he may m
individual modeling and implementation choices or rely on tactics (which he defines) to give guidelines for semi-automatic
refinement. Draco supplies mechanisms to enable the definition of problem domains as special-purpose, high-level language
manipulate statements in these languages into an executable form. The notations of these languages are the notations of th
domain. The user is not asked to learn a new, all-purpose language. When the user interacts with the system it uses the lan
domain. The user specifies his problem in terms of the objects and operations of the problem domain.

Example of What Draco Does

If an organization were interested in building many customized systems in a particular application area, say systems for aidil
agents, they would go out to travel agent offices and study the activities of travel agents. A model of the general activity of be
travel agent would be formed and the objects and operations of the activities identified. At this point, the analyst of the doma
travel agent systems would decide which general activities of a travel agent are appropriate to be included in travel agent sy:

The decision of which activities to include and which to exclude is crucial and will limit the range of systems which can be bu
the model later. If the model is too general it will be harder to specify a particular simple travel agent system. If the model is 1
narrow the model will not cover enough systems to make its construction worthwhile.

Once the analyst has decided on an appropriate model of travel agent activities, he specifies this model to the Draco system
5
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a special-purpose language specific to the domain of travel agents and their notations and actions.

The idea here isot to force all travel agents into the same mold by expecting them all to use the same system. If the model o
domain of travel agents is not general enough to cover the peculiarities which separate one travel agent's actions from anott
the model will fail.

The domain of travel agent systems is specified to Draco by giving its external-form syntax, guidelines for printing things in a
pleasing manner (prettyprinter), simplifying relations between the objects and operations, and semantics in terms of other dc
already known to Draco. Initially, Draco contains domains which represent conventional, executable computer languages.

Once the travel agent domain has been specified, systems analysts trying to describe a system for a particular travel agent r
model language as a guide. The use of domain-specific language as a guide by a systems analyst is the reuse of analysis.

Once the specification of a particular travel agent system is cast in the high-level language specific to travel agent systems, |
allow the user to make modeling, representation, and control-flow choices for the objects and operations specific to the trave
system at hand. The selection between implementation possibilities for a domain-specific language is the reuse of design.

Design choices refine the travel agent system into other modeling domains and the simplifying relations of these modeling di
may then be applied. At any one time in the refinement, the different parts of the developing program are usually modeled w
different modeling domains. The simplifying relations are source-to-source program transformations. The individual design ct
have conditions on their usage and make assertions about the resulting program model if they are used. If the conditions an
ever come into conflict, then the refinement must be backed up to a point of no conflict. The use of strategies based on a fort
to aid in guiding the process of refinement is discusséthapter 6

Eventually, the travel agent system is refined into an executable language and it is output by the system. Along with this fina
is a refinement history of the choices made at each point in the refinement. This refinement history can explain every stater
final program at different levels of abstraction all the way back to the original statement in the high-level travel agent domain
refinement history is a top-down description of the final program. The process which produces this history is not a top-down |
The refinement history states which components were used in the construction of a particular system. If a component is foun
error in one system, then the refinement histories of other systems may predict failures in those systems which used the faul
component.

Primary Results of thisWork

The primary result of this work is the ability to build models of a class of systems and use these models to create member sy:
the class in a reliable and timely way. New models are built upon old models to minimize the effort in creating a new model."
programs produced from these models are very efficient with the major optimizations done in the intermediate modeling lanc

A side-effect of this work is that it provides a mechanism for specifying computer science algorithms and representations in ¢
way that one need not know the implementation details of an algorithm or representation to use it.

The Specific Draco Approach

To elaborate the brief discussion above, four major themes dominate the way Draco operates: the analysis of a complete pra
or domain (domain analysis), the formulation of a model of the domain into a special-purpose, high-level language (domain
language), the use of software components to implement the domain languages, and the use of source-to-source program
transformations to specialize the components for their use in a specific system.

The Draco mechanism is a general mechanism which can create (from human analysis) and manipulate (with human guida
library of domains. The domains are separate from the mechanism.

Domain Analysis

Domain analysis differs from systems analysis in that it is not concerned with the specific actions in a specific system. It is in:
concerned with what actions and objects occur in all systems in an application area (problem domain). This may require the
development of a general model of the objects in the domain, such as a model which can describe the layout of the documer
Domain analysis describes a range of systems and is very expensive to perform. It is analogous to designing standard parts
standard assemblies for constructing objects and operations in a domain. Domain analysis requires a craftsman with experi¢
problem domain.
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Domain Language

A Draco domain captures an analysis of a problem domain. The objects in the domain language represent the objects in the
and the operations in the domain language represent the actions in the domain. This approach follows earlier definitions of ¢
domain:

"A model of the problem domain must be built and it must characterize the relevant relationships between entities in
the problem domain and the actions in that domaielZer73

It is our view that all languages used in computing capture the analysis of some problem domain. Many people bemoan the f
FORTRAN; but it is still a good language for doing collimated output of calculations, the type of computing high-energy physi
done for many years. This is not to say that FORTRAN is a good analysis of the domain of high-energy physics calculation, t
find its niche [Vegner78h Domains are tailored to fit into a niche as defined by the uses in which man is interested in using
computers.

Domain languages usually differ radically in form from standard general-purpose computer langpagesix Il presents some
examples of domain language statements. Most of the examples are tabular forms since these seem to be easy to read. A di
document format, and ANOVA table are all good examples of possible constructs for domain languages.

Softwar e Components

As discussed opage software components are analogous to both parts and assemblies. A software component describes the
of an object or operation in a problem domain. There is a software component for each object and operation in every domain

Once a software component has been used successfully in many systems, it is usually considered to be reliable. A software ¢
small size and knowledge about various implementations makes it flexible to use and produces a wide range of possible
implementations of the final program. The top-down representation (refinement history) of a particular program is organized
the software components used to model the developing program.

The use of components, which is discussedlinpter 4does not always result in a program with a block structure chart in the fc
of a tree. Usually, as with programs written by human programmers, the block structure chart of the resulting programisag
shown in figure36. An example component for a low-level executable domain language is shown irRfigure

Sour ce-to-Sour ce Program Transfor mations

The source-to-source program transformatiéis|gr78] used by Draco strip away the generality in the components. This makes
general components practical. The transformations also smooth together components, removing inefficiencies in the modelir
domain. This makes small components practical. Since single-function, general components are essential to the parts-and-g
approach, the transformations make component-built systems efficient and practical.

A transformation differs from an implementation of a component (a refinement) in that transformations are valid for all
implementations of the objects and operations they manipulate. Refinements can make implementation decisions which are
on the possible refinements for other components of the domain. In general, transformations relate statements in one proble
to that same problem domain, while components relate statements in one problem domain to statements in other problem d
Some source-to-source program transformations for a low-level executable language are showrlih figure

A Model of How to Use Draco to Construct Softwar e Systems

This section presents an SADT(TM) model of the use of Draco to produce software. SADT (System Analysis and Design Tec
is a registered trademark of SofTech Inc. and has been successfully used to model both software systems and social system
[Connor8Q Ross7Y. Its ability to model both kinds of systems is important here since the parts-and-assemblies concept on wr
Draco is based requires social modeling to show how a craftsman gains enough experience to create a problem domain for |
For those readers unfamiliar with SADAppendix | presents a brief introduction to the technique.
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A-0 Create Softwar e Systems (Context) (Figure 2)

The purpose of the model is to show the use of Draco within an organization which creates software systems. The simple m¢
organization used in this discussion produces a software system (A0OO1) for each set of system requirements (AOI1) under tr

constraint of the availability of information about the problem (AOC3).

The viewpoint or emphasis in the model is showing how the productivity of the organization may be increased by reusing the
and design of one system to construct another system. From our discussion in Chapter 1 this is only worth-while in problem
where there is a demand for many similar systems (A0C2). In particular we wish to show how an organization might acquire

information to reuse analysis and design while it produces systems in a conventional manner.
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A0 Create Softwar e Systems (Figure 3)

The strategic planning arm of the organization determines the problem domains of interest to the organization (A0.1). These
organizational interests control the research arm of the organization (A0.2). The research process sifts through the available
information about the domains of interest (A0.211), organizational experience with the domain (A0.212), and previous organi:
studies of the domain (A0.213) to determine if the organization has enough craftsman experience to attempt domain analysis
result of the research process is a set of domain studies and a set of Draco domains for successfully analyzed domains (AO..

Meanwhile, the production arm of the organization accepts system requirements for new systems (A0.311) and builds workin
software systems (A0.3) either using Draco or a conventional method. The result of this construction of software systems is €
craftsman experience building a custom system in some domain or experience with a Draco domain (A0.302). This experier

to help the organization establish or revise a Draco domain (A0.212).
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A2 Resear ch the Domain (Figure 4)

A domain analyst correlates all the available information about a domain (A2.1) and produces a report on the progress of the
The reports from the domain analysts are considered to see if they contain enough detail about the domain to build a succes
domain (A2.2). If there is enough detailed knowledge about the domain, then an experimental domain is created (A2.201) a
out on example problems (A2.3). If the tests are successful, then the domain is added to the library of domains known to Dre
It should be noted that a new domain is constructed in terms of the domains already known to Draco (A2.211) by a domain d
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Figure 5. A22 Construct a Domain

A22 Construct a Domain (Figure5)

This diagram specifies what constitutes a domain description to Draco. First the syntax of the domain language is designed
suitable internal form for the domain is described (s&8). This information is used to generate a parser for the domain languay

(A22.1).

Next, a prettyprinter is created (A22.2) which can prettyprint the internal form of the domain back into the external form (don

language).

The third phase in the construction of a domain is the creation of a transformation library for the domain (A22.3) which is

prettyprinted into a catalog of transformations for the domain.

The fourth and final phase in the construction of a domain is the creation of a component for each object and operation in th
(A22.4). Each component contains many refinements which specify the meaning of the component in terms of other domain:
to Draco (A22.411). As each refinement of a component is put into the domain component library, it is annotated with transfo
of interest from the transformation library (A22.411) of the domain in which the refinement is written.

Feedback on problems with the definition of a domain is given through the use of the domain (A2201).
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Figure 6. A3 Construct a Software System

A3 Construct a Software System (Figure 6)

When the organization is confronted with a hew software system to construct, it now has two options: construct a custom sys
craftsmen (A3.3) or try and construct the system from existing parts and assemblies (a Draco domain) (A3.2). The decision ¢
of these options to take (A3.101) is based on the past performance of the Draco domain (A3.1C1) and the details of the syst
consideration (A3.111). With either option, the activity of software construction results in a software system (A301). The expe

gained from building the system (A302) is either craftsman experience (A3.302) which can be used to define Draco domain
experience using a Draco domain (A3.202) which can be used to revise the domain definition.
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A32 Construct System Using Draco (Figure7)

If the decision is made to use a Draco domain to construct a system (A32.1C1), then a systems analyst attempts to form the
requirements of the system (A32.111) into the domain language (A32.1) with the aid of a systems designer. The PARSE sub:
checks the syntax of the domain language program and produces the domain internal form (A32.2). Using the scheme desci
page PARSE annotates the internal form with transformation suggestions from the domain transformation library (A32.2C1).

Once the program has been parsed into the domain internal form (A32.201), it is transformed and refined by a system spec
the TFMREF subsystem into the source code of an executable target language (A32.3). The resulting software system is tes

and is either acceptable (A32.401) or unacceptable. The refinement record (A32.301) of an acceptable system is retained.

The two types of unacceptable systems are those which seem to meet the requirements but use too much resource (A32.312
which do not meet their requirements (A32.112). An unacceptable system from a resource standpoint may benefit from a nev
implementation. An unacceptable system from a requirements standpoint requires revision of the domain language program

>
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Figure 8. A323 Transform and Refine Internal Form
A323 Transform and Refine Internal Form (Figure 8)

As refinement proceeds, the internal form of a particular problem may contain internal form fragments from many domains b
used to model the problem. The first step in refinement is to choose some domain in which to work (A323.1) and then to cho
instance of that domain in the internal form (A323.2). Now, within the chosen domain instance a small locale (A323.301) me
selected to work on, such as the "inner loofrith74 of the problem. Within the chosen locale transformations suggested by th
domain transformation library may be applied (A323.4) or refinements for the objects and operations may be selected (A323.
the domain component library. The interaction with the transformation mechanism is guided by an application policy (A323.4
The interaction with the refinement mechanism may be guided by the use of tactics (A323.5C1) and an application policy (A:
Chapter Iiscusses the details of defining and using transformations @hépter 4performs the same function for components.

Once the problem has been refined into an executable language, the program (A32302) is prettyprinted to a file.
The Human Roleswith Draco

From the previous model of the use of Draco in an organization to produce software, four major human roles with Draco are

1. the Draco system builders
o the builder of the mechanism.
o the designer of the specification languages for the different domain parts.
2. the domain builders
o the domain analyst who tries to discover the objects and operations of a domain.
o adomain designer who describes the possible implementations of the objects and operations of a domain.
3. the domain users
o the systems analyst who uses an available Draco domain as a framework for his analysis of a specific problem.
o the systems designer who accepts the analysis of a specific system from the systems analyst and uses a doma
to describe the system.
4. the Draco system specialist
o the Draco system specialist who refines the specification of a problem into an executable target language by ne
through the modeling domains of Draco.
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The identification of the major human roles with Draco enables us to partition the actions in producing a system between a ¢
of people, each with different responsibilities.

The Usual Draco Cycle

From the model, we can see that the basic cycle of operation in producing an executable program with Draco is to cast the p
a domain language, parse the domain language into the domain's internal form, optimize the internal form using transforma
refine the internal form using software components, and iterate transformation and refinement through layers of modeling dc

The specification of the objects used in the Draco cycle of refinement is discussed in the next section.

Specifying a Problem Domain to Draco

A problem domain is a collection of objects and operations, but to specify a problem domain to Draco a few other things mus
included. In particular, a domain language parser, a domain language prettyprinter, source-to-source transformations for the
and components for the domain must be specified to create a useable Draco domain.

Domain Language Par ser

A domain language parser takes the external form (syntax) of domain A, ext[A], and turns this into the internal form of doma
[A]. The domain language (the external form) should, if possible, use the notations and forms of the problem domain. The in
form of a domain is a tree with a prefix keyword in each node of the tree to state the purpose of that node. This is similar but
same as a parse tree in that the prefix keywords are not nonterminal symbols in the grammar. All the manipulations of Draci
performed on this internal form.

In Draco 1.0 the syntax of the domain language is specified in a BNF style with tree-constructing operations included as acti
scheme of parser description is taken from the META series of metacompitersie6)t The parser generator generates LL(1) cle
parsers from these descriptions.

Domain Language Prettyprinter

A domain language prettyprinter takes int[A] and produces ext[A]. This activity is essential since Draco must communicate it
and results in a form people can understand. The external form produced should be pleasing to the eye and produce useful
and indentations.

Sour ce-to-Sour ce Transfor mations for the Domain

The details of specifying source-to-source transformations are dealt Witlapier 3 The source-to-source transformations transfo
parts of the internal form of one domain into the internal form of that same domain, i.e., int[A] into int[A].

The transformations capture rules of exchange relating the objects and operations in the domain. These rules of exchange ¢
independent of the implementations of the domain objects and operations. Each transformation is named and given a chara
number which relates the importance of performing this transformation in the estimation of the domain designer.

Componentsfor the Domain

The components for a domain relate the internal form of the domain to the internal form of other domain domains, i.e., int[A]
[A,B,...,Z]. The details of specifying and using components are discus&gthjsier 4

The components specify the semantics of the objects and operations in the domain. They do this by relating the objects and
in one domain to the objects and operations in other (possibly the same) domains. There is a component for each object anc
in a domain. Each component contains many refinements each of which is a possible refinement for the object or operation i
domain which the component represents. Each refinement represents an implementation decision which may preclude the L
refinements in other components. As an example, a string manipulation domain may support a string implementation as a s
linked list of characters. This implementation would preclude a move string-pointer operation refinement which can back up
string.
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The details of domain specification may be found in the manual for Drachldighpors80b In the following two chapters we will
discuss the specification and use of transformations and components in more detail.

Chapter 3 Defining and Using Transfor mations

The source-to-source transformations used by Draco relate the objects and operations of a domain by specifying rules of exc
between statements in the domain. These rules of exchange are independent of any implementation decisions which may be
the domain objects and operations.

Draco uses these transformations to customize the use of a component to its use in a specific system. Once a component is
a system, the transformations use the surrounding context information to smooth the component into the context and remow:
unused generality.

Program Transfor mations

Program transformations are productions with a left-hand side (LHS), a right-hand side (RHS), and enabling conditions
[Standish76k The LHS is a pattern which is matched against the program. The enabling conditions are predicates on the pa
program which are matched by the LHS. If the enabling conditions are true then the RHS is substituted for the LHS in the pr
Since transformations are performed on a representation of the source code of a program, they represent optimizations inde
any particular machine.

Sour ce-to-Sour ce Program Transfor mations

By "source-to-source program transformations” we mean that the LHS is a pattern on the text, or source code, of the prograu
the RHS is also a pattern of source code. In source-to-function transformations, the RHS is a function on the matched part o
program and the result of that function is substituted for the LHS.

In general, source-to-source transformations are not as expressively powerful as source-to-function transformations but their
prompted by one important reason, the ability to understand what the transformations do. To understand a source-to-source
transformation, the user must understand the language being transformed, the language of the transformation pattern matc
language of the enabling conditions. The pattern language and the enabling condition language are usually very simple. To
a source-to-function transformation, the user must further understand the language of the RHS function. This language is us
complex and not at all the kind of thing a transformation user, who is concerned about the program and not about the transf
system, cares about learning.

In Draco, the source-to-source transformations should be intelligible to the domain builders, the domain users, and the Dract
specialists whose roles are definedpelye From now on we shall use transformations to denote Draco source-to-source
transformations. Transformations are created by the domain builders. The simplicity of source-to-source transformations see
increase their accuracy and make them more attractive to users.

Enabling Conditions

Practically every transformation has enabling conditions if we wish to insure strict semantic equivalence. Usually the full enal
conditions are not checked. As an example the transformatielh=> ?X may have enabling conditions in that the "+" add
operator may change the type of ?X in some languages or normalize the representation of ?X in some machines. By the san
transformation(?B+?C)*?A <=> (?B*?A)+(?C*?A) which requires the conventional enabling condition that ?A is side-effect
[Standish76f may alter the behavior of the program. All the arithmetic operators on computers have side effects based on th
of number representation. For any particular machine there are values for ?A, ?B, and ?C which can cause an arithmetic un
overflow on one side of the transformation and not on the other. These kind of enabling conditions are seldom checked since
would prevent most transformations from operating and are not machine independent. In general, the transformations are
"probabilistic," checking for enabling conditions which are usually violated. These include predicates on the range and doma
variables in the program fragments under considerafitanflish76k

Draco Sour ce-to-Sour ce Transformations

In Draco, transformations are specified as rules of exchange on the internal form of a domain language which is a tree with ¢
in each node to identify its function (prefix internal form). Thus, the LHS of a transformation is a statement in a prefix interna
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tree-pattern language.

Matching the Prefix Internal Form

Since the prefix internal form contains identifying keywords, a very fast, simple pattern matcher may be built using the keywc
left-hand anchor in the matching. We can view the LHS as a tree template which is applied only to nodes in the internal forn
with the same prefix keyword as the root of the LHS pattern. Four types of objects may appear in the LHS pattern after the pi
keyword.

1. literal objects - either names, numbers, or strings which must be present in the internal form.

2. classes - the name of a set of literal objects or literal subtrees a member of which must be present in the internal form
names are denoted by enclosing them in "<>" brackets.

3. pattern variables - the name of a variable to be bound to the subtree or literal object which appears at this position in
internal form tree. Pattern variables are denoted by a "?" preceeding the variable name.

4. pattern - another pattern to be applied to the subtree or literal object which appears at this position in the internal forn

During the pattern matching process the consistency of bound variables (class, pattern variables, and list variables) is maint
Once a matching variable is bound, all other occurrences of it in the pattern must be structurally the same. The enabling cor
predicates on the objects bound during matching. The RHS of a transformation is a tree which contains references to the bo
variables. The RHS is substituted once the matching variables within it have been instantiated with their bindings.

M etar ules on Sour ce-to-Sour ce Transfor mations

Metarules are rules which relate one rule to another rule. In the context of transformations as production rules, metarules re
possible action of one transformation to the possible actions of other transformaiidais’[]. Since the transformations used by
Draco are source-to-source, we can automatically produce metarules for these transformations.

In the following discussion, LHS(t) and RHS(t) denote the right-hand and left-hand sides of transformation t, and a\b denotes
pattern a matches pattern b. The details of the "\" metamatching operator are gigparidix Il. Metarules for a set of
transformations, T, are created by the algorithm in fi§ufeor each transformation t, algorittthproduces an UPLIST(t) and an
AGENDA(t,n) for each node n in RHS(t).

ALGORITHM: Metarules(T)
INPUT: a set of transformations T
OUTPUT: for each tin T, priority queue UPLIST(t) and for each node n in RHS(t) priority queue AGENDA(t,n)

1. For each transformation tin T, do steps 2 and 3. For each transformation t[i] in T, do step 4.

2. Make UPLIST(t) an empty priority queue.

3. For each node n in RHS(t), make AGENDA(t,n) an empty priority queue.

4. For each transformation t[j] in T, do steps 5 and 6.

5. For each node n[i] in RHS(t[i]), if n[i\LHS(t[j]) then insert t[j] in AGENDAC(t[i],n[i]) with priority APPLICATION-CODE(t
0D)-

6. For each node n[j] in LHS(t[j]), if njI\RHS(t[i]) then insert t[j] in UPLIST(t[i]) with priority DEPTH(n[j]).

Figure 9. Algorithm for METARULES(T)

The AGENDA for a node in RHS(t) lists all the transformations in T whose LHS matches that node in RHS(t). Thus if the
transformation t were applied, the AGENDA entries for RHS(t) state which transformations would apply at each node of the
substituted RHS(t). The APPLICATION-CODE number of a transformation which orders the agendas is discussedRo®@age

The UPLIST for a transformation t lists all the transformations whose LHS contains RHS(t). Thus if the transformation t were
the UPLIST(t) lists which transformations might apply at some internal form subtree which encloses the substituted RHS(t). -
priority, DEPTH(n[j]), associated with each transformation given in UPLIST states where the transformation should be attem,
the number of tree levels above the node which was just transformed.

The Complexity Motivation for Transformation Libraries

From steps 1 and 4 of algorithinit is easy to see that the complexity of creating the metarules for n transformations is O(n”2)
terms of the "\" metamatching operator. Since this operator is expensive, and the number of transformations for a domain ca
range to 2000gtandish76f the transformations for a domain are grouped into a library and new transformations are increme|
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added. The complexity of adding a new transformation to an existing library of n-1 transformations is O(n). All of the existing
metarules still remain, just some new information is added to them.

As will be shown when we discuss the management of the transformations, the ability to generate metarules when the libran
saves large amounts of searching when the individual transformations are used.

The Naming Problem for Transformations

The designers of early transformation systefi8JEC79 struggled with the problem of how to name each transformation in a la
set of transformations so that the user could remember the names. The Draco system deals with this problem in two ways. F
class feature in the definition of transformations allows one transformation to stand for many transformations depending on t
the classes involved. Secondly, the metarules virtually eliminate the naming problem by having the transformations refer to ¢
by name. If a user knows where he wishes to perform a transformation then the metarules will have suggested only those
transformations which could apply at that locale.

The number of names the user must recogniaer,emember, is reduced to the transformations suggested for each locale. The
metarule suggestions, coupled with the ability to display the text of a transformation from the catalog of transformations for e
domain, eliminates the naming problem.

Transformation Application Codes

101 - up procedural transformations
not source-to-source
don't trace, don't ask user
11 - 12 always do this transformation
9 - 10 convert to canonical form
7 -8 operator arrangement
5 -6 flow statement arrangement
3 -4 program segment arrangement
1 -2 reverse canonical form
0 very seldom done, keys procedures

Figure 10. Application Codes Used in the Examples
Each transformation is given an application code when it is defined. The application code is used to order the transformatior
agenda of transformations to apply at a node in the internal form tree. The application code identifies what the transformatior
and how desirable it usually is to do. The application code guide given in figiseised in the examples. The odd numbered
transformations have enabling conditions. The numbers between 0 and 100 are just guidelines since the transformation mec
allows a user to perform all transformations within a range of application codes.

The application codes were designed for lookahead in the transformation process but this turned out to be largely unnecess:
specialization of components discussegage They do turn out to be a convenient means for specifying actions to be taken by
transformation mechanism (i.e., convert to canonical form).

Some Example Transfor mations

The example transformations in this section are on an ALGOL-like language rather than a domain language with which the
would be totally unfamiliar.

5/3/79 19:18:18 SIMAL.TLB
<BOP> = {ASSIGN,EXP,DIV,IDIV,MPY,SUB,ADD,
NOTEQ,EQUAL,GTR,LESS,GTREQ,LESSEQ,AND,OR}

<REL> = {NOTEQ,EQUAL,GTR,LESS,GTREQ,LESSEQ}
<BOP>EMPX: 12 *EMPTY*<bop>?X => *UNDEFINED*
<BOP>IFELSEX: 4 (IF ?P THEN ?S1

ELSE ?2S2)<bop>?X =>

(IF 2P THEN (?S1)<bop>?X

ELSE (?S2)<bop>?X)

<BOP>IFX: 4 (IF ?P THEN ?S1)<bop>?X =>
(IF ?P THEN (?S1)<bop>?X)

<REL>S0: 10 ?A-?B<rel>0 => ?A<rel>?B
ADDXO0: 12 ?X+0 => ?X
EQUALMAMB: 12 -?A=-?B => ?A=?B
EXPX2: 9 2X/2 => 2X*?X
FORXX: 11 FOR ?W:=?X STEP ?Y TO ?X DO
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?2Z => [[?W:=?X;
?Z]]
IFELSENOT: 12 IF ~?P THEN ?S1
ELSE ?S2 => IF ?P THEN ?S2
ELSE ?S1
LABELIFX: 10 ?X:
IF 2P THEN [[?S;
GOTO ?X]] =>
?2X:
WHILE ?P DO ?S
MINUSSUBAB: 9 -(?A-?B) => (?B-?A)
PARPAR: 12 ((?X)) => (?X)
SEMICLXIF: 10 ?X:

?S;
IF ~?Y THEN GOTO ?X => ?X:
REPEAT ?S
UNTIL ?Y

Figure 11. Example Transformations
The transformations with odd numbered application codes have enabling conditions which are not shown in the figure. The ¢
conditions for the example transformations are givesiarfdish76pwhich is the source of these transformations.

The Management of the Transformations

Initial Suggestion of Transformations

When a domain language program is parsed into the domain's internal form, an agenda is established for each node in the
form tree. If requested, the PARSE subsystem of Draco 1.0 will suggest transformations for each node in the program. Only
transformations which will succeed in matching their LHS's are suggested by placing them in order of application code on th
of the node.

The Transformation M echanism

The transformation mechanism allows the application of transformations within a selected locale in an instance of a domain.
Currently, the locale is selected by the user, but during optimization it really should be selected by analysis tools as disegsse
The locale serves to focus the attention of the transformation mechanism to a small part of the program at a time. Within the
user may apply individual transformations to specific points in the program. The transformation suggestions on the agenda ¢
particular point in the internal form tree may be displayed by the user.

The individual application of transformations is a very tedious process. Alternatively, the user may request the transformatior
mechanism to apply transformations in the locale with some range of application code under some application policy with or
user approval of each transformation. Some transformation application policies and their meanings are given below.

« top down - traverse the internal form tree of the locale in preorder sequence applying all the transformations at a nodt
of application code until no transformation applies at that node.

o bottom up - similar to top down but traverse the tree in inorder sequence.

¢ best transformation in locale - apply the transformation in the locale with the highest application code at the node whe
suggested.

o best transformation bottom up - apply the transformation suggested at the frontier of the locale with the highest applic
code. If no transformation applies at the frontier then move towards the root of the locale one tree level at a time.

As transformations are performed, the metarules for those transformations suggest other transformations. In particular, the |
transformation already has agendas built into its tree form from the metarule creation. When a RHS is instantiated and subs
the internal form tree, its agendas suggest transformations. Also, when a transformation is applied, its UPLIST is interpretec
transformations on the agendas of nodes higher in the internal form tree than the node transformed.

Thus, the initial suggestion of transformations during parsing wiuigld apply, coupled with the transformation mechanism's
interpretation of the metarules, starts a chain-reaction which keeps all transformationsowltictpply to the program on the
agendas of the internal form of the program. Since transformations are only put on an agenda if their LHS's match, LHS pat
not attempted all over the program. This reduction in search in the application of a transformation to a locale makes the
transformation mechanism very efficient in operation. This high efficiency will become important when "procedural” transforn
are introduced in the next section.
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Transformation Techniques

"Procedural" Transformations

With the use of metarules and the best-in-locale transformation application policy, some transformations which were previou:
considered procedural in nature may be implemented by a small set of source-to-source transformations in a comfortable wa
transformations introduce non-printing semantic markers into the internal form and rely on the metarules for their propagatic
through the internal form. The effect of the transformations and metarules is to create a Markov algorithm which runs on the
the program being developed.

BEGIN LOCAL A;
GOTO LABELL:
LABEL1: GOTO LABEL2;
IF predicate GOTO LABEL1;

END

Figure 12. A Program Needing GOTO Chain Elimination

As an example, consider the procedural transformation set for "GOTO chain eliminatmmiigh76pwhich is triggered by a
labeled GOTO. Assume we have a language where the labels are local to a BEGIN-END block and GOTO's (or conditional ¢
can only appear as statements, not computed or embedded in other constructs. In this language, a problem suitable for GO™
elimination is shown in figuré2. A possible prefix internal form for this program could be that shown in fitgire

LAEEL] LABEL]

LABEL} pred LABELI

agenda: (@ GOTO-CHAIN-ELIM

Figure 13. A Prefix Internal Form of Figui&

A preorder walk of the internal form tree of figur2 gives the execution order. BLOCK denotes the BEGIN-END scope and SEN
represents the semicolon execution order of the statements. The figure also shows the only agenda of transformations whict
suggested at parse time with respect to the set of transformations for GOTO chain elimination given ivftguoegh22. Notice
the uplists and agendas in the RHS's of the transformations in figltieough22 which were produced by the metarule algorithrr
in figure9.

20



Software Construction Using Components
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{TRANS GOTO-CHAIN-ELIM @ (LABEL J (GOTO N})
{8GCEl J N (GOTO N)))

(fageLy = QGCED)
Fai CeoTo) 2f ww (GoTo )

uplist:{2 (195 GCE-SCOPE GCE-UP1l GCE-UP2))

Figure 14. GOTO-CHAIN-ELIM Transformation

[TRANS GCE-UJPl 185 (SEMIC (%GCE J N E1) 52)
{3GCE J N (SEMIC S1 (%GCE2 J N 52)))1)

G - GecEd)

»7 YN 282

agenda: (185 GCE-UFRL

agenda: {115 GCE=DOQWN GCE-ELIM GCE-IFGOTD GCE-LRABEL
{119 GCE-DEFAULT)

uplist:{2 (15 GCE-SCOPE GCE-UPL GCE-UJF2))

Figure 15. GCE-UP1 Transformation

{TRANS GCE-UFZ 1&% (SEMIC 51 (BGCEl J MW 52)}
(3GCEL J N {(SEMIC {%GCE2 J N 51) S52}1))

agenda: (1#: GCE=-UPZ —

agenda: (115 GCE-DOWN GCE-ELIM GCE-IFGOTC GCE-LABEL
{11 GCE-DEFAULT)

uplist: {2 (195 GCE-SCOPE GCE=UFl GCE-=UP2})

Figure 16. GCE-UP2 Transformation

21



Software Construction Using Components

(TRANSE GCE-SCOPE 185 (BLOCK V (%GCEL J N S)])
fBLOCK WV 5))

77 ?E

agendaz {183 GCE-SCOPE
uplist: empty

Figure 17. GCE-SCOPE Transformation

{TRANE GCE=-DOWN 115 ($GCE2 J N (SEMIC 51 52))
(SEMIC (®GCEZ J N &1} (3GCEZ2 J N 52]1}

2

agenda:({ll5 GCE-DOWN GCE=-ELIM GCE-IFGDTO GCE-LAEELP
(l1l¢ GCE-DEFAULT)

agenda: {115 GCE-DOWN GZCE-ELIM GCE-IFPGOTOD GCE-LAEEL)
(l11@ CCE-DEFAULT)

uplist:{2 {115 GCE-DOWN;}

Figure 18. GCE-DOWN Transformation

[TRANS CCE-ELIM 115 ({$GCE2 J N (COTC J)) {GOTO W))

@D > @D

F
uplist:f2 (115 GCE-ELIM} {2 GOTO-CHAIN-ELIM))

g
Figure 19. GCE-ELIM Transformation

(TRANS GCE-IFGOTQ 115 (%QCE J N (IF30TO P J)}) {IFGOTD P HN))

ez, =

uplist: ({2 (115 GCE-IFGQTO))

Figure 20. GCE-IFGOTO Transformation
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{(TRANS GCE-LABEL 115 (%GCEZ J N (LABEL L §))
(LABEL L (%GCE2 T W &)}

Gece) = (LaEED
27 7N Casrg) t.  (GGcE2)

7L 78 ?d 75

agenda: {115 GCE-DCWN GCE-ELIM GCE-IFGQOTO GCE-LABEL

{118 GCE=-DEFAULT)
uplist: (2 {115 GCE-LABEL})

Figure 21. GCE-LABEL Transformation

{TRANS GCE-DEFAULT 118 (&4GCE2 J N §) 5}

=3 75
2 PN %S

uplist: empty
Figure 22. GCE-DEFAULT Transformation

The %GCE semantic markers move through the internal form tree looking for GOTO's to LABEL1 and replace them with GC
LABEL2. The procedural sequence is initiated by the transformation GOTO-CHAIN-ELIM which is the only transformation
suggested in figurg3 for the transformations given in figurég through22. Once it is applied, the metarules and transformation
mechanism take over to propagate the semantic markers. The first few steps in the example are shown below.

LAREL2Z

agenda: {# GOTO-CHAIN-ELIM

Figure 23. Partial Internal Form of Figuté

Initially we start with that portion of the internal form shown in figdBawith transformation suggestions on an agenda. The
transformation GOTO-CHAIN-ELIM (figuré4) is applied at the LABEL node where it is suggested and it is successful with pa
variable ?J matching LABEL1 and pattern variable ?N matching LABEL2. The RHS is instantiated with these values and the

form now becomes that shown in figué
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LABEL1 LABEL2

LAEBEL2

agenda: (LS GCE-SCOPE GCE-UPL GCE-LIPZ)-}
Figure 24. Figur@3 After GOTO-CHAIN-ELIM Transformation

The metarules on GOTO-CHAIN-ELIM have suggested new transformations to be attempted at a higher level in the tree. Th
transformation GCE-SCOPE is attempted, but it fails to match its LHS and is removed from the agenda. The transformation
UP1 (figurelb) is attempted and succeeds, producing the modified internal form of figure

Nate: corvected frorm ariginal

LABEL] LABEL?Z

LABEL1 LABEL2

agenda: {165 GCE-UP]

agenda: (115 GCE-DOWN GCE-ELIM GCE-IFGOTD GCE-LARBEL
{114 GCE=-DEFAULT)

agenda: (145 GCE-SCOPE GCE-UPl GCE-UF2) J

Figure 25. Figure4 After GCE-UP1 Transformation

Under the best transformation in the locale policy, the next transformation to be attempted would be GCE-DOWN which wou
successful and start to move the %GCE2 marker down the tree. The %GCE2 markers move down the tree taking all branch
taken (GCE-UP1, GCE-UP2, GCE-DOWN). When one of the %GCE2 markers encounters a GOTO to LABEL1 it changes it
GOTO to LABEL2 (GCE-ELIM,GCE-IFGOTO). The %GCE2 markers must be able to propagate their information to GOTO's
program and this means they must be able to pass through labels (GCE-LABEL). Finally, if none of the transformations whic
propagate the %GCE2 marker (application code 115) can do so, then the marker is removed (GCE-DEFAULT application cc

Because of the application codes, if there are %GCE2 markers in the tree then one of them is the locus of the next transforn
there are no %GCE2 markers, then a %GCE1 marker moves up the tree and produces a new %GCE2 marker (GCE-UP1, C
or removes the %GCE1 marker when it encounters the scope of the label (GCE-SCOPE). At any time there is only one %G(

marker in the tree.

To avoid leaving semantic markers in the internal form, the transformations with application codes greater than 99 enlarge t
if they are placed on an internal form agenda outside the locale. The resulting program is shown4@. figure

BEGIN LOCAL A:
GOTO LABEL2;

GOTO LABEL2;

IF predicate GOTO LABEL2;
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END

Figure 26. Figurd.2 After GOTO Chain Elimination

This same scheme can be used to build transformations which propagate the type and value of variables and produce data-f
analysis information. This type of transformation is expensive to perform and the compilation of these transformation sets int
procedures would make them much more efficient.

These procedural transformation sets are hard to understand and violate the ease of understanding motivation for source-to
transformations, but they do serve to demonstrate a natural source-to-source technique for implementing some procedural
transformations without having to learn an alien language capable of manipulating the internal form trees and writing RHS
procedures.

L ookahead in Program Transfor mations

Program transformation can be viewed as a game of perfect information, like chess. The program represents the current bo
while the transformations which apply represent the legal moves. The goal of the transformation process is to achieve an op
program under some criteria. Assuming we had an evaluation function on the program in terms of the criteria of optimization
could use lookahead with the evaluation function to suggest the next transformation to apply, much as the chess playing pro
today. The difficulty is in building the evaluation function which can determine the "goodness" of a given program under som
general criteria. One approach to the evaluation function is to assign a "goodness" to each transformation. The application ¢
transformations represents this approach. The increase in program "goodness" from applying a series of transformations is
of the "goodness" of the individual transformations.

The ability to look ahead with Draco transformations is not very important since the transformations are used to specialize
components. The degree of specialization could be improved by lookahead but the overwhelming majority of the work in spe«
is in removing program fragments which represent unused generality. The relationship between components and transforme
discussed itChapter 4initiates transformation sequences to remove most unused generality without lookahead.

An alternative approach for transformation planning is to specify a goal in terms of the program and find some sequence of
transformations which achieves the goal. This approach, currently under investigation byHritless3(), avoids the huge search
space of transformations encountered by lookahead, but it must deal with the problem of suggesting worth-while goals.

On page the need to perform transformations on the correct level of abstraction is discussed. The transformations for a dom:
only deal with the objects and operations of the domain and not anticipate or infer knowledge from other domains which mag
out of the domain.

In this chapter we have discussed how transformations are defined and used for specialization by Draco. The next chapter,
discusses software components, will investigate in detail the relationship between components and transformations. In partic
theme of removing the responsibility for transformation suggestion will be carried over into components by automatically ann
the components with transformations to be considered.

Chapter 4 Defining and Using Software Components

Components provide the semantics for the domains specified to Draco. Each component represents possible implementatior
object or operation of a domain in terms of other domains known to Draco.

Granularity of the Semantics of a Component

Each component must provide a semantics for the object or operation it represents which is consistent with the transformatic
object or operation in the domain. If, for example, a component represents the insertion of an element in a list, then the resu
operation should be a list. The internal actions of the list insertion component may break the input list structure into a struct.
is not a list, but the result of the operation must be a list.

The concept of "granularity of meaning" is introduced here because earlier work in components attempted to prove that a co
always upheld the structure of the object being manipulated. As an example, the properties of a list might be axiomatized an
an attempt to show that a list insertion upheld all the axioms of a list. For most implementations of the insertion operation or
the axioms are not upheld since the insertion requires a temporary breakup of the structure of the list in a way which violates
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axioms of a list.

In this work we assume that a well-defined component upholds the axioms of its input and output types only with respect to t
external environment of the component (i.e., statements in the domain language in which the object or operation is defined).

The Constituent Parts of a Component

An example component for exponentiation is shown in fi@iré he component provides the semantics for EXP internal form no
for the language SIMAL which isot a domain-specific language, but will be used in examples so that the reader will not have
learn a domain-specific language at this point.

COMPONENT: EXP(A,B)
PURPOSE: exponentiation, raise A to the Bth power
IOSPEC: A a number, B a number / a number
DECISION:The binary shift method is O(In2(B)) while
the Taylor expansion is an adjustable number
of terms. Note the different conditions for
each method.
REFINEMENT: binary shift method
CONDITIONS: B an integer greater than 0
BACKGROUND: see Knuth's Art of ... Vol. 2,
pg. 399, Algorithm A
INSTANTIATION: FUNCTION,INLINE
RESOURCES: none
CODE: SIMAL.BLOCK
[[ POWER:=B ; NUMBER:=A ; ANSWER:=1 ;
WHILE POWER>0 DO
[[ IF POWER.AND.1 # 0
THEN ANSWER:=ANSWER*NUMBER ;
POWER:=POWER//2 ;
NUMBER:=NUMBER*NUMBER ]| ;
RETURN ANSWER ]]
END REFINEMENT
REFINEMENT: Taylor expansion
CONDITIONS: A greater than 0
BACKGROUND: see VNR Math Encyclopedia, pg. 490
INSTANTIATION: FUNCTION,INLINE
ASSERTIONS: none
ADJUSTMENTS: TERMSJ[20] - number of terms,
error is approximately (B*In(A))*TERMS/TERMS!
CODE: SIMAL.BLOCK
[[ SUM:=1; TOP:=B*LN(A) ; TERM:=1;
FOR I:=1 TO TERMS DO
[[ TERM:=(TOP/I)*TERM ;
SUM:=SUM+TERM ]| ;
RETURN SUM ]]
END REFINEMENT
END COMPONENT

Figure 27. An Example Component from the SIMAL Domain

Each component has a name and a list of possible arguments in the COMPONENT field. The name is the prefix keyword of
internal form nodes to which the component applies. The list of possible arguments name the subtrees of the internal form n
node has a variable number of subtrees, a name prefaced by a ">" is used to denote the rest of the subtrees in the node.

A prose description of what the component does is given by the PURPOSE field. If the component takes objects as argumen
produces objects, then the type of these objects in terms of the objects in the domain is given in the IOSPEC field of the com
The DECISION field presents a prose description of the possible refinements of the component and the considerations invol
choosing between the alternatives.

Finally, there is a set of refinements of the component which represent a possible implementation of the component in terms
objects and operations of other domains.

The first REFINEMENT in the set of refinements is the default refinement. In the absence of any other information, Draco wil
attempt to use this refinement first. Each REFINEMENT has a name and a BACKGROUND which is a prose description of tl
method the refinement implements and reference to where more information about the method may be found.
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The CONDITIONS field of a refinement lists conditions which must be true before the component may be used. There are ba
two kinds of conditions: conditions on the domain objects on which the component operates and conditions on previously ma
implementation decisions. The conditions on the domain objects are local to the locale where the component will be used. Tl
conditions on the implementation decisions are global to the domain instance being refined. The ASSERTIONS field of a refi
makes assertions about the implementation decisions the component makes if it is used. The assertions are the opposites o
conditions on implementation decisions. The management of assertions and conditions is discussed in morgadetail on

The RESOURCES field of a refinement states what other components will be required to perform initialization if the refineme
chosen. The resource components are program parts which are executed before the resulting program begins execution (ini
phase) and they create information resources for the refinements used in the program.

An example use of a resource is a refinement for cosine which interpolates a table of cosines during execution. The table mt
during the initialization phase and the name of the table must be passed to the interpolation refinement of the component cc
is achieved by building a refinement which interpolates tables and requires a resource component which builds interpolation

The ADJUSTMENTS field of a refinement states fine tuning settings for a refinement, the meaning of the adjustment, and a
setting. An example adjustment term might adjust the accuracy of a refinement or limit the amount of time spent in calculatir
refinement.

The GLOBAL field lists all names used in the refinement which are not to be renamed. The primary use of a GLOBAL definit
define variable names which are reserved by a domain and cannot be renamed. The SNOBOL variable &ANCHOR is an exe
global. GLOBAL definitions should seldom be used and are always suspect. They seem to stem from a poor analysis of a dol
Labels which are defined in the refinement are defined in the LABELS field of the refinement.

The way a refinement may be inserted into the internal form tree during refinement is governed by the INSTANTIATION field
refinement. The three modes of instantiation are INLINE, FUNCTION, and PARTIAL. More than one instantiation may be gi
a refinement with the first one listed being the default instantiation. INLINE instantiation means the refinement is substituted
into the internal form tree with all variables used in the refinement renamed (including labels) except for the arguments and

declared global. FUNCTION instantiation substitutes a call for the component in the internal form tree and defines a function
the refinement for the body. A new function is defined only if the same function from the same domain has not already been

PARTIAL instantiation substitutes a call for the component in the internal form tree with some of the arguments already eval
the body of the function defined. Limitations are placed on the partially evaluated forms allowed. When a function is defined 1
defining domain, component name, and a version number are used to differentiate between functions of the same name in d
domains and FUNCTION and PARTIAL versions of the same function in the same domain.

The final field of a refinement is either a DIRECTIVE to Draco or the internal form of a domain. The internal form of a domail
be described either in a parenthesized tree notation with the INTERNAL:domain directive or it may be specified in the extern
(domain language) of the domain with the CODE:domain.nonterminal directive. The CODE directive causes the parser for tt
specified domain to be read in and started to recognize the given nonterminal symbol. A DIRECTIVE to Draco is one of the f
alternatives: view the component as a function definition by the user program, view the component as a function call, defer fr
refining this component, and remove the node which invoked this component from the internal form tree. The Draco DIRECT
are used when a domain language is defined which allows function definitions, functions calls, and such things as refinemer
comments which remove them from the program since they are saved in the refinement history.

Not all the component and refinement fields are required for each component definition. Basically the only required fields are
COMPONENT, REFINEMENT, INSTANTIATION and CODE.

The Management of the Components

The Motivation for Libraries of Components

Components are placed into libraries in much the same way and for much the same reason that transformations are placed
libraries. The processing of a single component for inclusion in the component library of a domain is very expensive. For eac
refinement in the component, the parser for the domain(s) in which the refinement is written must be loaded to parse the exi
into internal form. Once the code for the refinement is in internal form, the agendas of the internal form are annotated with
transformations of interest from the transformation library of the target domain. These transformation suggestions are made
the same way that transformation suggestions are made when a domain language program is parsed as g¢isgasBee on
transformation suggestions will point out things of interest when the refinement is used. Thus, Draco supports a component
construction facility where a group of components may be replaced or added without disturbing the other components in the
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How a Component is Used

This section discusses how the fields of a component are used in the refinement process to choose an implementation for th
of object the component represents. Not all of these actions are accommodated in the current prototype system Draco 1.0. T
differences between this narration and the prototype are giveagen

First the IOSPEC conditions on the component should be verified by examining the internal form or refinement history of the
surrounding internal form of the node to be refined. Restrictions on the legal internal forms accepted by the domain languag:
might make this step easier.

Next a REFINEMENT is chosen and the refinement CONDITIONS are checked. If an implementation decision condition is vi
then the refinement may not be used. Local conditions on the domain objects are formed into surrounding code for the refine
body. The hope is that transformations for the domain will be able to remove this surrounding code by "proving" the conditior
and removing the code.

The user is then asked about any ADJUSTMENTS for the refinement. If the user supplies no adjustments then the default ac
are used.

The refinement body is now instantiated into the internal form according to the users wishes for INSTANTIATION and the all
instantiations for the refinement. The body is instantiated with minimal renaming to avoid naming conflicts. If the refinement
instantiated as a function and a function already exists then the already defined function is used.

Once the refinement is inserted, any necessary RESOURCES are added to the initialization phase of the developing prograi
resources are usually high-level program fragments which also have to be refined.

Finally the ASSERTIONS for the refinement are made in the scope of the domain instance. The assertions are a kind of lock
mechanism with the conditions of other refinements. When two domain instances are merged into a single instance of a san
domain, then the assertions are checked for consistency. This places the overly strong restriction that all objects in a domair
same type have the same implementation. More experience with domains could probably remove this restriction. If the asser
conditions conflict, then the refinement of the program must be backed up. A model for avoiding conflicting assertions is give
pageFORMALMODEL.

The model for the use of a component is very close to the actions of a module interconnection language (MIL). In fact it seen
MIL is a natural way to organize the components of a particular domain. This similarity is discugsee on

The Refinement M echanism

The refinement mechanism of Draco 1.0 applies the component library of a domain to a locale within an instance of the dom
internal form tree for the program being refined. The locale is bounded by a domain instance which is a part of the internal fc
in the internal form of a particular domain. Refinements are made in one domain at a time on an instance of the domain. Th
mechanism is important for refinements in that the "inner loop" of the program should be refined first to pick efficient
implementations. These implementation decisions will affect the choices outside of the inner loop through the assertion and
mechanism of the components.

The Draco 1.0 refinement mechanism applies the components to the locale internal form tree using application policies simil
transformation application policies. In general, top-down application is the best policy to avoid conflicting conditions which wc
require a backup of the refinement.

Tactics for Refinement

From the previous discussion about the selection of a refinement for a component and the user interaction necessary to mak
it is evident that the user needs some mechanism to keep Draco from asking too many questions. The user needs the ability
guidelines for answering the questions and these guidelines are called "tactics.”

The TACTICS subsystem of Draco 1.0 allows the user to interactively define tactics which answer refinement questions for tf
refinement mechanism. The subsystem also allows the user to read and write tactics from storage. A standard set of tactics
available. When the refinement mechanism requires a user response, it first applies the tactics to see if one of them provide:
answer.
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DEFINE HEAD.*ENTRY* = COMPONENT,LOC 3;

DEFINE SPACE.*ENTRY*=[ALL<DIRECTIVE>,USE],
[ALL<AVAILABLE FUNCTION>,
USE FUNCTION],
[ALL<FUNCTION INSTANTIATION>,
USE FUNCTION],
USE DEFAULT;

DEFINE *CMD*.SUMMARY = "Summary:",COMPONENT,
PURPOSE,IOSPEC,DECISION,
[ALL,REFINEMENT,CONDITIONS,
BACKGROUND,ASSERTIONS,
RESOURCES,INSTANTIATION,
ADJUSTMENTS,DOMAIN];

EXIT

Figure 28. Simple Code Space Efficient Tactics

A simple set of tactics for space efficiency is given in figteEvery rule group (HEAD, SPACE, and *CMD*) with a *ENTRY*
rule is run as a tactic. In the example tactics, the HEAD rule prints the component name and prettyprints the internal form tr
depth of three from the node being refined. This rule keeps the user at the terminal informed about what the tactics are work
and where the work is taking place.

The SPACE rule checks all refinements to see if one is a Draco directive and if so, it uses it. Otherwise if there is a function \
already implements the component, then the internal form node is replaced with a call to the function. Otherwise, if there is ¢
refinement which can be instantiated as a function, then it attempts to use that refinement as a function. If all else fails, then
attempts to use the default refinement with the default instantiation. If none of the tactics is successful in producing a refinen
the refinement user interface is invoked and the user may inquire as to the problem and make a refinement choice.

The *CMD* rules are rules which may be invoked by the refinement user interface. Thus, they are user-defined commands w
inquire about the state of the program under refinement and attempt to make refinement choices just as tactics would. The
SUMMARY command prints out the fields of the component and all its refinements for the user's information and would be u
the user were required to specify a refinement.

The refinement user interface could be used for applying refinements one at a time but this would be very tedious work, simil
applying transformations one at a time. In general early versions of a high-level domain-specific program are refined by the ¢
tactics, which use the usually easy and uncomplicated default refinements, to obtain a first implementation to see if the syste
implements the user's desires. Once a good domain-specific program is settled upon, the more sophisticated refinements ar
transformations may be used to refine the program for efficiency.

initial -> modeling -» merged =-» executable
Figure 29. A Conceptual Model of Domain Instances

As mentioned before, the basic cycle of refinement with Draco is to transform a domain instance and then refine that domair
A useful model of the arrangement of domain instances during the process of refinement is to view the domain instances as
shown in figure29. Initially, a domain-specific program is parsed into the internal form for the domain and this internal form is
big bubble. As the program is refined, other bubbles appear which represent instances of other domains which are being use
modeling domains. Each of these domains contains a set of assertions about the implementation decisions on the objects ar
operations in that instance of the domain. When two domains or bubbles are merged, the assertions become a part of the ne
and they are checked for consistency of implementation for the objects and operations of modeling domains which occurred
bubble and were merged away. Thus, the program goes from one bubble representing a high-level domain-specific language
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bubble representing an executable language with assertions about the implementations of all the objects and operations in &
modeling domains used during the refinement. At any one time during the refinement, the problem may be in many modelin
domains at once.

In Chapter 6a formal model of the interdependencies of the domains which represent Draco's knowledge base is presented.
based on this model should make it easier for a user to avoid knowing the details of the relationships between domains.

Chapter 5 Experiments Using Draco

This chapter presents some results from using Draco in the construction of programs. To save the reader from having to unt
special-purpose domain language, the examples in this chapter are in the SIMAL language which is a simple infix Algol-like
language. This languagerist a domain language in the sense we have been discussing and is usatyHerexposition purposes.

The Domain Structure of the Examples

This chapter discusses an example which refines a quadratic equation solver from SIMAL into LISP. The three domains use
refinement are organized as shown in figedeThe DRACO domain shown in figuB® creates functions, creates function calls,
enforces component conditions, and eliminates scoping rules through renaming. It is the model of functions which Draco 1.0

Figure 30. Quadratic Example Domain Organization

Appendix Il presents two larger examples both specified in domain-specific languages. One of the examples accepts a desc
dictionary (DIC), an augmented transition network (ATN), a relational database (RDB), and a natural language generator (G
These descriptions are refined using a model of parallel execution (TASK) into a natural language database (NLP/RBD). Th¢
based on the work of Woodg/pods7( and Burton Burton7§. The relational database is based on the work of G6ddd7( and
uses the DEDUCE systems as a mo@élgng76 Chang7§ The eight domains used in the refinement of this larger example are
organized as shown in figuBd.

Figure 31. NLP/RDB Domain Organization

A Simple Example

In this section we will be discussing the refinement of the SIMAL program given in fiGufiehe program represents a simple
program for solving for the roots of a quadratic equation. The example is deceptively simple. The refinement of the SIMAL ptr
into its equivalent LISP form must deal with the following problems:
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o Standard LISP does not include an exponentiation function. The LISP we refer to here is UCI LISP which does have tl
to load these routines from the FORTRAN library but they are not part of the LISP system.

o Standard LISP does not include a square root function.

o Standard LISP does not perform mixed mode arithmetic.

.PROGRAM QUADRATIC

$QUADRATIC

[[ LOCAL A,B,C,ROOT1,RO0T2;
LOOP:
PRINT("QUADRATIC EQUATION SOLVER");
PRINT("INPUT A,B,C PARAMETERS ");
A:=READNUM,;
IF A=0 THEN RETURN;
B:=READNUM,;
C:=READNUM,;
ROOT1:=(-B+SQRT(B"2-4*A*C))/(2*A);
ROOT2:=(-B-SQRT(B"2-4*A*C))/(2*A);
PRINT("THE ROOTS ARE: ",ROOT1," AND ",ROQT2);
GOTO LOOP ]

$

.END

Figure 32. SIMAL Quadratic Equation Root Finder

We shall consider four different LISP programs resulting from the refinement of the program ir3figuneer different
circumstances. Only two factors influenced the different refinements of the program, whether the use of a single transformati
allowed and which of two radically different and simple tactics was used in the refinement.

Tactics Used in the Example

The first set of tactics used to refine the example are the "SS" tactics. These direct the refinement mechanism to construct a
for each component which can be made into a function. If a function for a component already exists then a call to that functic
replaces the use of the component. These tactics are designed to create "small and slow" programs and are sh@gn in figure

DEFINE SS.*ENTRY* = LOC 2,
[ALL<DIRECTIVE>,USE],
[ALL<FUNCTION INSTANTIATION>,
USE FUNCTION],
[ALL<INLINE INSTANTIATION>,USE INLINE];

Figure 33. Small and Slow (SS) Tactics

The second set of tactics used to refine the example are the "LF" tactics which direct the refinement mechanism to instantiat
component inline if possible. Otherwise the component is made into a function. The "LF" tactics are designed to create "largt
fast" programs and are shown in figaee

DEFINE LF.*ENTRY* = LOC 2,
[ALL<DIRECTIVE>,USE],
[ALL<INLINE INSTANTIATION>,USE INLINE],
[ALL<FUNCTION INSTANTIATION>,
USE FUNCTION];

Figure 34. Large and Fast (LF) Tactics

Both tactics are much simpler than is typically used in the refinement of programs. Tactics usually examine the assertions, cc
possible instantiations, and target domain in their operation.

Transformation Used in the Example

The second factor influencing the refinement of the example program was whether or not the use of the transbottation
?X*?X was allowed in the SIMAL domain. The transformation requires that ?X be side-effe@tfiedifh76k If the transformation
was allowed, it was automatically suggested in all the components which could use it and every time the transformation couli
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applied it was applied.

The Results of the Refinement

Tablel names the programs produced under the circumstances outlined above. Franveabéan see that the "SS" tactics met pa
of their objective in that the code space for the programs refined using them is smaller. The code size is the size of the static
for interpretive UCI LISP measured in 36-bit machine words. All measures of memory size are of this form.

transformation used

no yes
SS QUADSS QUADTSS
551 words 451 words
tactics 9 functions 6 functions
used
LF QUADLF QUADTLF
807 words 595 words
2 functions 2 functions

Table 1. Resulting Programs and Code Sizes

The block structure charts of the resulting programs is given in figGrgsough35. The structure charts show that a single
transformation can be very powerful in removing the need for the exponentiation routine and its support routines. The NUME
routine shown in some of the structure charts arises from the need to maintain a consistent model of SIMAL numbers in LISI

|START|
|QUADH}’LTICI

Figure 35. QUADLF and QUADTLF Block Structure Chart

QUACRATIC

Figure 36. QUADSS Block Structure Chart
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QUADRATIC

Figure 37. QUADTSS Block Structure Chart

Note that there are two places where the transformation was used. The obvious usage is the transformation of B2 into B*B -
the root equations. A less obvious use is the removal of the exponentiation in the Newton-Raphson root algorithm. Very rare
the uses of a transformation foreseen, even for simple transformations. The automatic suggestion of transformations remove
burden of stating where to apply a transformation from the user.

Characteristics of the Resulting Programs

The runtime characteristics of the resulting programs was investigated by running twenty test cases of the same random dai
each program and measuring CPU and memory use. Hggiges the CPU usage of all the programs for each test case3@hile

LY W i i o
QUADSS =
U
m
A
=
=
_/\/\/\/ s
=
[
QUATLF =
w o
QUATTLF
2
! ¥ 20
TEST CASE

Figure 38. Test Case vs. CPU Msecs
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Similarly, figures40 and41 give the memory use for each test case and cumulative memory use for each test case respectivel
variations in the amount of time and memory needed to run each test case come from the SQRT and EXP routines which ar
approximations (Newton-Raphson and Binary Shift Method, see fijjirend dependent on the input data.
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The runtime characteristics show that the programs refined with the "LF" tactics were larger and faster than their counterpat
with the "SS" tactics. The difference in tactics, however, was completely dominated by whether or not the transformation was
The programs which were transformed before refinement were faster and used less memory than those which were not tran:
This simple example demonstrates the importance of performing transformations at the correct level of abstraction as discus

page

Figure39 shows that the QUADTLF implementation was just barely the fastest, beating QUADTSS, even thoudl §hores that
it requires twice as much running space as QUADTSS and its code space is larger. Without transformation, QUADLF is clea
than QUADSS and requires only about 20% more running space.

Which implementation is the "best" depends on the time-space tradeoffs in each specific case. The "LF" refined programs w«
presented at a disadvantage here in that the addition of more transformations would benefit them more since they are embe
and the transformations could make use of the surrounding context.

Comments on the Example

This chapter has presented a simple example which refined a 10 line Algol-like program into approximately 80 lines of LISP.
clearlynot the goal of this work, but it does serve to demonstrate some of the complex interactions which take place between
components, the tactics, and the transformations during refinement. The simple example did not even touch upon the issue
alternate refinements for a component in that the given tactics always used the default refinement.

Only the ideas of transformations, components, and tactics are presented here. The details of the different definitions allowa
Draco 1.0 are found in the manual for the syst&ridhbors80h

The example ilAppendix Il uses many domains, more complex tactics, and large transformation libraries. There may be as r
100 components for a domain each with two or three possible refinements. The transformation libraries may include 2000 or
transformations as the encoding 8fgndish76pfor SIMAL does. The tactics may check many features in the context of refinem
The resulting programs may be 10-20 pages long. All of these facts make the transformation and refinement process a very
operation. The next chapter introduces a formal model of this complex process which may serve as a basis for refinement st

Chapter 6 Experience with Draco
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This chapter presents some models and ideas which arose from the use of Draco in the construction of programs. In particu
nature of source-to-source program transformation, a formal model of the knowledge in Draco domains, and styles of domair
organization are discussed.

Experience with Transformations

Experience with source-to-source transformations as used by Draco has shown that it is important to perform transformation
appropriate level of refinement. Continuing the example f@drapter Swe can consider the interaction between the SIMAL
transformatiorEXPX2: ?X"2 => ?X*?X  and the component for exponentiation shown in figifrerhich has two possible
refinements, binary shift method and Taylor expansion. Given an exponentiation in SIMAL there are three options: use the
transformation; use the binary shift method refinement; or use the Taylor expansion refinement. For a specific case, of cours
the options may apply. The possible actions are shown in figure

MPY component

SIMAT,
EXPx2? rransformatian

S5 IMAL
other SIMAL

EXP component transformations

and components

[[POWER:=2 ;NUMBER: =Yy ANSWER: =]
WHILE POWER» DO
[[ IF FOWER.AND.1 §
THEN ANSWER:=ANSWER*NLMBER ;
POWER: =POWER/ /2 ;
MUMEBER : =N UMBER*HUMBER] ] ;
RETURN ANSWER]]

BIMAL

Taylor expansion refinement

SUM:=]:TOP:=2*LN(y) ; TERM :=]1;
FOR I:=1 TO 20 DO
[[TERM:=({TQOP/I1}) *TERM;
SUMr=SUM+TERM] ] ;
RETURN 3uUM] ]

] ] &IMAL
Figure 42. Refinement Scenarios for EXP

In the scenarios shown in figud€ we are attempting to refine the SIMAL fragmef2 into a*TIMESyy)  in LISP. As shown,
the application of the EXPX2 transformation followed by the straightforward refinement of a SIMAL multiply into LISP is the
simplest approach.

The refinement of the exponentiation into the binary shift method makes the problem harder but still possible. The POWER ¢
propagated by transformation, the WHILE loop "unrolled,” the AND functions solved, the ANSWER propagated through the t
loops, the dead variables eliminated, and the [[...]] block structure removed. Sophisticated and powerful transformations coul
the binary shift method to a simple multiply.

The use of the Taylor expansion refinement makes the problem unsolvable by general transformations. Of course, a single
transformation specific to this particular problem could be defined, and one always exists; but the number of specialized
transformations which must exist to do even small problems makes this approach unreasonable. A set of general transforme
cannot transform the Taylor expansion into the equivalent multiply because the expansappioaimation of the multiply. If the
transformations are equivalence preserving they shouldn't transform an approximation of a number into the number.

It is attractive to build some specialized knowledge into the system which can deal with problems like the approximation give
The specialized knowledge would be used to recognize that a specific problem exists and be used to solve the problem. It is
author's opinion that this approach is misguided. The object of the refinement is an exponentiation, not an expansion. An ex
an implementation detail. The role of knowledge sources in program understanding is discussgd on
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Optimizations of an object or operation must take place on that object or operation and not a refinement of it. This means th:
programs constructed by Draco, optimization cannot be regarded as an "after the coding is done" operation. It should most c
be regarded as an "after the specification is acceptable” operation.

The example of using a transformation at the right level of abstraction which was used here is very simple. The same proble
however, is encountered in more complex settings. As an example in the Augmented Transition Network (ATN) domain, the
transformation set which removes unnecessary arcs from the transition network. A powerful general set of LISP transformati
have little chance of achieving the effect of this ATN transformation set on the LISP program which results from an ATN des
This is because the LISP transformations deal with LISP primitives and not the states and arcs of an ATN description with w
ATN transformations operate.

Two conditions can cause an optimization to remain undiscovered by source-to-source transformation at the wrong level of
abstraction. First, the information necessary to perform the transformation could have been spread out by implementing refir
Second, the transformations are attempted on an implementation (or model) of the original objects and operations which is r
equivalent to the original objects and operations.

A Formal Model of the Knowledge in Draco
To fully understand the capabilities of Draco we must build and reason with a formal model of the technique.
Uses of the Formal Model

A major goal of the formal model developed in this section is to be able to answer the reusability qérestions7Geoutlined
below.

1. Can Draco refine a given program in a given domain language with a given set of domains?
2. If Draco can refine the program then what is a possible implementation?
3. If Draco can't refine the program then what additional information is needed to refine the program?

The formal model has no detailed knowledge about the objects and operations it represents. As an example, the third reusal
guestion may specify that a refinement to back up in a singly-linked list, given a pointer into the list, is required to refine a sp
problem. No such refinement can exist, but the formal model does not know this.

The formal model is also of use in answering the deadlock question during refinement. A deadlock during refinement occurs
refinement decisions, say the implementation of a data structure common to two separately refined program parts, are incon
This means that the refinement of the program must be backed up to a point where the deadlock did not exist. The detectior
deadlock should be possible from the formal model. The deadlock problem is a subproblem of the reusability questions and v
useful during interactive sessions with Draco.

Finally, the formal model should serve as a basis for the development of refinement strategies. It is expected that for all but t
problems the complexity of answering the reusability or deadlock questions would be prohibitively expensive. The formal moc
still serve as a planning space for refinement strategies whose goal is to produce a good program under certain criteria with
backup during refinement. The ability to look forward during refinement separates the refinement strategies from the refinem
tactics described i@hapter 4

Petri Nets

The formal model of the knowledge in Draco is based on a Peti?agtrfon7,/Peterson7B Following the definition of Agerwala
[Agerwala79, a Petri net is a bipartite, directed graph N=(T,P,A) where

T={t1,t2,...,tn} a set of transitions
P={p1,p2,...,om} a set of places

The union of T and P represent the nodes of the graph N which are connected by a set of directed arcs A. A marked Petri ne
(T,P,A,M) further specifies a mapping M:P->I where the set | assigns the number of tokens in each place in the net. In Petri
diagrams, places are represented by circles, transitions by bars, and tokens by black dots. Typically, places model conditions
transitions model actions.
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Figure 43. Petri Net Model of Mutual Exclusion

Figure43 gives an example Petri net which models the mutual exclusion of the processes represented by pl and p2. To see
achieved we must define the simulation rules or semantics of Petri nets. A transition is enabled if each of the places which a
connected to the transition by an arc from the place to the transition (input places) contains a token. An enabled transition ci
removing a token from each input place and placing a token in each output place at the end of an arc from the transition.

Figure43 performs mutual exclusion because initially there is only one token in p3. Both t1 and t2 are enabled but only one n
since there is only one token in p3. The choice of which transition fires is completely arbitrary. Thus, after a single transition
either p1 contains a token or p2 contains a token but both cannot contain a token. The procedures modeled to be in executic
existence of a token on pl or p2 never run simultaneously; they are mutually excluded. This form of Petri net modeling has kt
extensively in operating systems theory to model the use of resources.

The Formal Model

The knowledge in the domains known to Draco can be viewed as a Petri net where the places represent the components in-
domains. The transitions represent the action of performing a refinement or a transformation. The arcs which connect the pl
transitions represent the ability to perform a refinement or transformation. Bijtepresents a part of the net which models the
transformation and refinements discussed in the exam@eaiter 5
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Figure 44. Petri Net Knowledge Model
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The dotted lines in figuré4 represent domain boundaries for the components of the two domains, SIMAL and LISP, involved i
example. Note that the transformation EXPX2 does not cross a domain boundary since it specifies a rule of exchange betwe
statements in a single domain. Similarly, the transitions which represent individual refinement possibilities for a component ¢
cross domain boundaries even if some or all of the resulting output places are in the same domain as the place of the compc
refined. A refinement, of course, may refine a component into more than one domain at once.

The Petri net model discussed above provides a model of the interconnections between components known to Draco througl
transformations and the different refinement alternatives for each component. It does not model the information in a particul:
level domain-specific program. The information specific to a particular problem is modeled by a marking of the Petri net. For
node represented in the internal form of the domain-specific high-level program a token is placed on the Petri net representi
knowledge in Draco which represents that node's semantics. The concept is illustrated itbfigutlee simple SIMAL statement
XN2+5.
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Figure 45. A Marked Petri Net Knowledge Model

Each node in the internal form tree has a pointer to the token in the marked net which represents the use of a particular con
When a node is refined it uses the knowledge in the associated component. Tokens which represent nodes in other location:
internal form tree are not disturbed. Only a transformation applied at a particular node may change the token representation
subtree of the internal form. Refinements only refine a single node.

Definitionswith the Formal M odel

A formal definition of level of refinement and level of abstraction may be given with respect to the Petri net model of knowled
Draco.

The level of refinement of a component in a specific problem is the number of refinement transitions which the token which r
that component has traversed since it was initially placed on the net.

The level of abstraction of a component in a specific problem with respect to a target domain is the minimum number of refin
transitions the token which represents that component must traverse in order to occupy a place in the target domain.

Resultswith The Formal M oddl

In this section we will show that the first two reusability questions and the refinement deadlock question are decidable, and tl
answered. We will also show that the computational complexity of answering these questions for any practical case is extren
It is unknown if the third reusability question is decidable.

The discussion of this section will use a version of the formal model which models only the use of components during refinen
ignores the existence of transformations. Figii@resents a part of the formal model which represents the existence of a refine
with modeling conditions and modeling assertions.
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Figure 46. Model of a Refinement
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The places in figuré6 represent the existence of some condition, either the use of some component in the program under
development or the assertion of some modeling condition. Thus, each possible modeling condition, like the use of singly-link
a representation for strings, is modeled by the existence of a place in the formal model.

For a refinement to be used (i.e. the transition to fire) all the conditions must be indicated by the presence of a token and the
component must be used in the developing program, indicated by the presence of a token in the component's place. When &
is used it places a token back on each of the condition places which enabled its use, indicating that each modeling decision
effect. Furthermore a token is placed on the places representing any modeling assertions made by the refinement. Of course
also placed on the places representing the components used in the refinement.

To answer the reusability questions for a specific problem (Petri net marking) with respect to a specific target domain some
modification of the net must be performed. First, the places which represent any modeling decisions from all refinement asse
individually connected through a single-input, single-output transition to a newly defined place we shall call the distinguished
Second, all the places representing the use of a component in the target domain are also connected to the distinguished pla
single-input, single-output transition. The distinguished place has the structure shown iddigure

* ¢

b
wan o

Figure 47. Distinguished Place Structure

Once we have modified the knowledge model net as described above, the first reusability question can be cast as the Petri n
reachability problem. The reachability problem for Petri nets is as follows: given an initial marking of the net, is pussihbe
sequence of transitions which will produce a second specified marking of the net. The first reusability question is as follows:
marking of the knowledge net model from some domain-specific, high-level program and a target domain, is there a sequenc
transitions (refinements) such that only one token exists in the distinguished place and all other places are empty. The seco
reusability question is answered by the sequence of transitions specified to answer the first question.

The Petri net reachability problem has been shown to be decidalgler{lote7]7and has been given lower bounds in time and spa
complexity Lipton7g. Lipton has shown that the reachability problem will require at least an exponential (2*cn) amount of stc
space and an exponential amount of time. The exponent (n) is the number of places and their interconnections to transitions
reusability questions, the number of places and interconnections is related to the number of components and modeling decis
could give rise to exponents well over 100 for a single domain. The general reachability algorithm will not be practically appli
The first two reusability questions are decidable, however.

Some hope still remains for an algorithm which can automatically refine a given domain-specific program in that general Pet
may be a far too general model where a specific model of less power as discussed biatiatkinay have lower complexity
bounds.

The inclusion of the general transformation mechanism discussed in chapter 3 into the formal model would render the reusa
guestions undecidable. The transformation mechanism allows the definition of Markov algorithms which are equivalent to Tu
machines in computation power. Answering the reusability questions for an arbitrary set of transformations becomes equival
answering the halting problem for Turing machines, which is undecidable.

Styles of Domain Organization

In describing the domains used in the exampleshafpter 5t was useful to show the relationships between the domains using a
directed graph as shown in figutg&@and31. These graphs point out important considerations for someone interested in develo
set of domains to generate a particular kind of system.

Base Domain Organizations
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Some domains, such as the TASK domain which provides parallel execution and the Draco domain which provides a model
functions, are domains close to computer science and exist mainly to be built upon. Other domains, such as the ATN domait
specialized and used as models by fewer domains. This suggests that one model of domain organization is to have a base d
which specifies a model of the resulting programs. All domains eventually map into this base domain. Computer science mot
domains surround this base domain supplying such things as data structures, control structures, and mathematical routines.
the modeling domains would rest the more application-oriented domains. One would expect the reuse of the components in
to increase the closer the domain is to the base domain.

There are several attractive candidates for the base domain including languages and computer architecture models. ADA, C
LISP, and the UCSD Pascal P-machine are all languages which would be attractive base domains.

A model of machine architecture for a von Neumann machine is presented by Frazer{7in his work on code generators.
Given an ISP descriptioBEll71] of a machine Frazer's system automatically builds a code generator for a simple von Neumar
machine model dependent language for the described machine. The use of this language as the base domain could be one
the portability of high-level domain-specific programs between von Neumann machines. A model of a parallel dataflow mach
represented by the ID language\lind78]. In both cases, the description languages model the gross architecture of a particulal
of machine. It is our contention that a program refined for a particular class of machine cannot simply be moved to a differen
machine.

The use of machine models as a base domain is a very old idea as demonstrated by the UNCChinarojédt\which attempted to
build a universal computer-oriented language. The idea was that any program written in UNCOL could be automatically tran:
any existing machine and take advantage of any special features of that machine. The UNCOL project failed because it atter
form a model of the union of all features of all machines rather than their intersection. The motivation for this model was effic
In the end, UNCOL turned into a pattern recognition problem with patterns specific to a particular machine being used to rec
features of an UNCOL program which could take advantage of special target machine features.

The Draco approach to the UNCOL problem would have been to form a model of the intersection of the features of all machi
specific class and use this as the base domain. The special features of a particular machine might only be used if they were
stated as possible refinements in the modeling domains. A problem related to domain and knowledge organization is discus:
next section.

The Language Translation Problem

The problem of translating a program in one general-purpose language into an equivalent program in another general-purpc
language is related to the UNCOL problem. In terms of capability, of course, it can be done in that general-purpose language
powerful as Turing machines and a Turing machine can simulate any other Turing machine. A complete simulation of one Ie
by another language is not a practical solution to the language translation problem.

To actually translate a program from one language to another and take advantage of the target language features, the trans
mechanism must understand why each action exists in the original program.

This information is not in just the program code. To understand a simple program in a restricted domain would require many
knowledge sources. The danger with research in automatic program understanding is that any particular example problem n
solved by specifying the appropriate knowledge sources. In general, however, the knowledge sources to understand an exist
are hard to construct. This paints a dismal view for anyone attempting to move systems which are only represented by sourc
the alternative is to build knowledge sources which would be very much larger than the source code.

The Draco approach to the language translation problem would be to save the refinement history for a particular program ar
refine a high-level description of the problem for a particular target language or machine model. The refinement history of a |
is very much larger than the resulting source code since it represents the interdependencies of the parts which make up the
code.

In terms of domain organization, programming language features should only be used in an appropriate domain. Special lar
features, such as SNOBOL string matching, are not appropriate to a domain which represents a model of general-purpose I
for von Neumann machines. However, SNOBOL string matching could be used as a model for matching in a string handling
and SNOBOL primitives could be used as a possible refinement for the string matching components in the domain.

Generalizations About Domain Organization

Most domains use more than one domain for modeling. The refinement process is not the strict translation of the entire prog
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one modeling domain to another until a suitable target domain is reached. Many refinements refine a component into two or
domains. At any one time, the developing program consists of program fragments in many modeling domains.

The organization of the domains is not a strict hierarchy; it is instead a cyclic directed graph. The implementation of arrays &
and lists as arrays demonstrates a cycle. Another instance of a cycle is a cosine routine which interpolates a table which is t
cosine routine. The cycles are not frivolous and many common representations rely upon them.

Finally, a problem domain is the same as a modeling domain to some degree. The ATN domain can be either a problem dor
problem is to build an ATN, or a modeling domain, if the problem is to build a natural language database which uses the ATI
of natural language parsing. As mentioned before, the closer in the domain organization a domain is to a base domain, the 1
its major use is as a modeling domain.

The Complexity of Intermediate Program Models

Two general trends seem to be apparent from the use of component parts by Dracd3kipgents the general increase of the
number of parts used with the development stage.

High
Nunber
L
Constituent
Farts
Low

Development Stage
Figure 48. Development Stage vs. Number of Parts

The curve in figurel8is analogous to the number of tokens on the Petri net model of knowledge for Draco. If we assume that
component refinement alternatives are of about the same size, then the curve also represents the volume of the program in
measurement scheme of HalsteddIftead7}. Relating Halstead's program volume by language level function to the Petri net v
of knowledge in Draco could be an interesting topic of investigation.

Another trend in the use of component parts is shown in figivehich plots the average level of abstraction of the constituent pz
(defined orpagg versus the development stage.
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Figure 49. Development Stage vs. Abstraction Level

The curve shown in figuré9 is analogous to the average path length of a token to the target domain. It must be remembered
cycles in the graph of domain organization can cause infinite path lengths and an infinite number of paths. Thidigesents
observed behavior in the examples as opposed to possible behavior.

If we combine the figure48 and49 we obtain an estimate of the number of refinement decisions pending as shown ia(figure
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Figure 50. Development Stage vs. Decisions Pending

The number of refinement decisions pending at a given development stage is roughly the number of paft3 (frgesethe average
level of abstraction of a part (figu#é). The increase in the modeling swell depicts the choice of possible modeling structures ir
modeling domains for the developing program. The decrease in the modeling swell depicts the constraint of modeling choice
made. The modeling swell represents the largest barrier to refinement.

In Chapter Ave shall discuss the origins of many of the ideas used by Draco and how the work on Draco might influence thes

Chapter 7 Related Work

The inherent incompleteness of any survey of software production techniques is concisely statdchism[/].
"Almost anything in computer science can be made relevant to the problem of helping to automate programming."

An excellent overall discussion of the trends in software production research can be fouedrie7Pwhich is outlined and

motivated in Vegner78h

The organization of this survey forces recent work on software production into the categories of automatic programming, pro
generation, programming languages, software engineering, transformation systems, and philosophies of system structure. E
is by no means a complete survey, but rather a representative sampling of current techniques. The discussion of each appro
brief with references for the interested reader.

Automatic Programming

Automatic programming, which attempts to automate more of the system lifecycle than any other software production technic
be divided into the knowledge-based approach and the formal-model-based approach. The knowledge-based approach relie
knowledge representation scheme suctBasijow77 while the formal model approach uses a mathematical language such as
predicate calculus.

These two approaches can be contrasted by comparing two works which synthesize sorting routines. The knowledge-based
characterized bydreen7Twhile [Darlington7g represents the formal model approach.

Knowledge-Based Automatic Programming

Knowledge-based automatic programming originated with experiments with compiling techiiguesd3. After a long dormancy,
it was revived by work on robot planning such @sgsman73vhere the emphasis was on the knowledge in the system rather th
the theorem proving which related it.

The Skill Acquisition From Experts system (SAFE) by Robert Balzer at USC/Information Sciences Iristilzie/[6d accepts a
problem specification in natural language. Through examination of the specification, rules about well-defined procedures, an
guestion-answering, it attempts to discover the necessary facts to build a model of the problemEddneaity [Balzer79 Wile77].
The model of the problem domain characterizes the relevant relationships and constraints between entities in the problem d
the actions in that domain. Once the problem is in the form of a high-level procedure free of implementation details, it is refir
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program transformations into an executable progi@atzer76Hh.

The PSI program synthesis system by Cordell Green at Stagfordi{76his a system of "cooperating experts" as described in
[Lenat75 Hewitt73. An expert system is a group of programs which communicate together to solve a problem. The PSI syste
consists of a trace expeRHillips77], a program model building expeitlfCune7T, a domain expert, a discourse expert and user
model, a coding experBprstow78 Barstow77aBarstow77lh and an efficiency experKpnt79 Kant77. The program problem to be
solved by the PSI system is specified in natural language and execution traces for a predefined problem domain as understo
domain expert. The program model building expert interacts with the trace, domain, and discourse experts to extract the infc
to build a high-level procedure which is well-formed. The coding expert takes the well-formed (i.e., complete) high-level proce
and refines it to an executable program by proposing possible implementations to the efficiency expert and choosing an
implementation based on the efficiency expert's analysis. The interaction between the coding expert and the efficiency exper
closely studied inBarstow7§. Knowledge about the problem domain in the PSI system is isolated in the domain expert. This n
that, in theory, only the domain expert need be changed to apply the PSI system to a new problem domain.

The OWL system$zolovits7T is a project whose aim is to accept the description of the problem domain in natural language a
represent this domain knowledge as a netwiddwkinson7$ One motivation for this representation is that the system should be
to explain its actions in natural language. The natural language concept definition is still under development; but Protosystet
[Ruth76l, which takes in a complete high-level description of a problem in a domain and refines this into a program, has be¢
completed. The input to Protosystem | is the operations to be performed, how often to perform them, on what data to perforn
and where the results of the operations are to be stored. The system analyzes the input, disambiguates the order of executic
(sometimes by questioning the user), aggregates the data files on secondary storage, and, given the frequency of the differe
operations, generates the PL/1 and JCL necessary to create the system. The domain is restricted to business document proi

An alternative refinement approach using the OWL knowledge representation is presented ii][ This approach views all
programs as a collection of a small number of model activities which are refined by stepwise refinement into an executable t:
language.

As will be discussed later in the section on programming languages, the reusability of a problem domain model to solve man
problems in a domain will be a crucial problem in knowledge-based automatic programming.

Formal-M odel-Based Automatic Programming

Formal-model-based automatic programming started with work on deriving programs from praofsifer69aWaldinger69h
Green69Lee74. The strict proof system approach was modified to use some knowledge-based re&sariingdn7}in the
construction of programs, but a formal model is still the driving force of this work.

The DEDALUS system by Zohar Manna and Richard Waldinger at Staifandna7T synthesizes recursive programs and then
translates them into iterative programs. The problem is specified in a formal language and operations on formal forms, usua
and predicates on sets. The programming substitutions for each of the operations is pre-specified in a knowledge base. Usin
system, DEDALUS expands its input specification by source-to-source transformation to try to achieve its output specificatior
system observes that the current subgoal, is an instance of a previous goal, then it forms a recursive procedure. The system
mutually recursive procedures, recursive procedures with initialization procedures, and iterative procedures from recursive pi
The recursive procedures it forms are checked for proper termination. The work of Burstall and Daingtai 7], Wegbreit
[Wegbreit7§, and Follett Follett78a Follett784 is similar to the DEDALUS system in approach.

J.R. HobbsHobbs77hdescribes a system for the translation of some of the algorithms specifieclin$d. The knowledge about

the primitives in the domain, in this case binary trees, is specified as predicate calculus equations related to English words. ~
builds the program based on the structure of the English description. Different groups of English forms in the description are
associated with different program forms. The system relies on the primitives of the domain to have been already defined as |

A final formal model approach under investigation is the synthesis of programs from input-output examples which is really ai
solving subproblems in automatic programming. An example of the synthesis of programs form input-output pairs is found in
[Shaw75 Biermann7®§. This is related to the synthesis of programs from execution traces and simulated execution which were
investigated inBiggerstaff77 Cheatham7]7

An Overview of Automatic Programming

Many excellent surveys of the general field of automatic programming Bxigte 72 Feldman72Balzer73 Biermann76
Elschlager7P A survey of the use of natural language in automatic programming is givideritiofn74.

Automatic programming systems have recently shifted from very powerful general problem solving techniques such as theort
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proving [Waldinger69hto knowledge-based systems with very little problem solving ability. Virtually all of the automatic
programming systems under development today are knowledge-based rule systems, where the control mechanism is a prod
system and the rules are procedures, or patterns and procedures as des@ibed/if. [The shift away from general problem
solvers should not be interpreted as the failure of general problem solving techniques to aid in software development. Rather
investigation of these techniques has better defined the constraints on the problems which are best solved by general proble

Most of the automatic programming systems mentioned are still very much in the research phase of their development. The
operational systems are constrained to producing one to four page programs. In general, the design and coding phases of tt
are capable of producing large programs; but the specification and analysis phases are not.

Program Generation

Program generation work can be divided into two categories, model-based systems and parametric-based systems.

The model-based systems usually take statements in a special language as the specification. These statements are formed
of the program to be generated. Solution of a programming problem is attempted only if the input model is well formed undet
model-building criteria.

Parametric-based systems could be called "programming by questionnaire" in that the user selects and restricts some featur
general system to create a system for his needs. An operating system SYSGEN procedure is the oldest example of this type
generation.

It is hard to distinguish automatic programming systems from program generation systems. Both types of systems use many
parts. In general, automatic programming systems interact with the user to acquire knowledge about the problem domain in
write programs in that domain. Program generation systems do not really have a model of the problem domain as much as ¢
a well-formed procedure. Usually the executable program is built directly from pre-existing source code parts.

M odel-Based Program Generation

The MOdule Description Language (MODEL) system of Noah Pryiesves77aPrywes79from the University of Pennsylvania
accepts the problem in a nonprocedural language where the order of the statements is irrelevant. Through data-flow analysi
statements are formed into a graph. The graph is checked for inconsistencies and ambiguities. Any problems with the specit
resolved by heuristics and user interaction. The well-formedness of the procedure represented by the graph is checked by e
the relationships between parent and successor nodes (program fragments) in the graph and checking certain rules on thes
relationships. An example rule might be "if a datum is produced, then some other part of the procedure should consume it." .
matrix notation and matrix operations are used to perform these rule checks. From a well-formed graph the data files on sec
storage are aggregated for efficient access by the procedure. Finally the graph is directly translated into PL/1. The MODEL s
operates in the domain of business data processing and is similar to Protosy&igmial in its input language and external
operations.

Within the restricted domain of producing simulation programs for queueing problems having servers and things to be serve
Heidorn Heidorn74 describes a system which incrementally accepts a natural language description of the problem, checks tf
completeness of the description, produces a GPSS program to do the simulation, and produces a natural language descripti
completed problem.

The AGE systemNii79, Aiello79] is a program generation system with a model of what it means to describe a complete knowl
based system. The system interacts with a user who selects knowledge-based system "chunks" which are parts used in the «
of the final system.

Similar to the AGE system is the Programmer's Apprentice prajgct 79 which attempts to generalize and modify a set of stand
program plans under user direction to create a system. In this activity the programmer's apprentice is a knowledge-based sy
performs the modifications and attempts to understand the construction goals of the programmer.

Parametric Program Generation

Parametric program generation trims and customizes a large model of a class of systems for a specific application. The pare
the parametric program generation process remove unnecessary options of the general model and fill in some application-sy
detail. The agent of program generation is usually a linking loader (linkage editor) or a conditional assembly scheme such as
in assemblers. Most commercially available program generation systems are parametric program generators for a specific d
application, such as business data processing.
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"Parametric generation of programs is, by far, the most powerful technique known to date, if you measure power by th
amount of information needed to specify a program in relation to the size of the program produced. If one wants to
produce programs in a narrow envelop that are members of a closely related class, parametric generation is probably
best technique...Much of the automatic programming of the future will likely be done this &aydigh75p

An example of program construction by questionnaire is given by Watrerr¢n69.

An Overview of Program Generation
A survey of the techniques of automatic program generation is givemyings77h

One technique is clearly not the final answer to the software crisis. The entire range of software generation techniques must
included in a program producing system.

"The people who work in this area (automatic programming) fully realize that for practical solutions, their ideas will
have to be combined with those of the first type (program generation), incorporating specific knowledge of the domain

being treated."Heldman7}
Programming L anguages

Recent work in programming language design can be divided into the three areas of abstraction languages, extensible langt
domain-specific languages.

Abstraction Languages

Abstraction languages supply a mechanism for defining an abstract object and operations on that object while isolating the
implementation details of the object and its operations. A new abstraction is built out of primitive types and previously definec
abstractions. New abstractions are formed for each new application program, and abstraction libraries are advocated, but lai
libraries have never been built.

The abstraction languages were motivated by the software engineering concept of hiding information in Redalesy] Early
abstraction mechanisms were the SIMULA class conéggtfistle73 and Early's relational data structuré€sifly73. Some
examples of current abstraction languages are Citgv77, ALPHARD [Shaw7T, and SMALLTALK [Goldberg7§.

The abstraction concept has given a handle to program verification work in that abstraction can be verified and their formal ¢
be used in verifying programs which use the abstracktim}d.

Extensible L anguages

The goal of extensible languages is to start with a small set of primitive functions which will allow the extension of the langua
a comfortable environment for the construction of an application program. The use of a small kernel of starting functions is a
in [Newell71] and used extensively in many languages such as FORa&tHdgr7§and LISP McCarthy6(]. Some of the problems
with extensible languages had in meeting their goals are outlined by Stafidistifh 75k

An extensible language has been advocated as a medium of automatic prograbimingdm7R Usually the extensions of a
language were redone for each application program, but recent work by Cheatieathhm7phas advocated the reuse of extensir
alternatives as an aid in program production.

Domain-Specific Languages
Domain-specific languages have objects and operations which model the objects and actions of a problem domain.

"It is a frequent misunderstanding that there is a separate category of languagepphtation-oriented. In reality,
all languages are application-oriented, but some are for larger or smaller application areas than others. For example,
FORTRAN is primarily useful for numeric scientific problems, whereas COBOL is best suited for business data

processing.”"$ammet7p
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It is the thesis of this work that a domain-specific language is actually an analysis of a class of problems in a specific problen

An example domain-specific language is the Business Definition Language (BBiohfer77Howe758 for the domain of business
data processing. Quite a bit of effort went into the definition of this language, as shown by its constitugmb\pwamitsg Kruskal74a
Kruskal74h. The BDL project also produced some tools for manipulating and using domain-specific languages| 6

Leavenworth7p

Many areas seem ripe for the development of a domain-specific language and possible objects and operations are discussec
overview papers such aUllock78 Codd7Q Woods7(.

An active area in domain-specific language work has been in the languages suitable for describing software systems, specifi
languages, which are motivated Mdrten73 and described infleichrowe7?. Modern automatic programming systems usually
model their programming problem and problem domain in a specification landgbagenan79. The specification languages are n«
"executed" but "analyzed," as describedTinifhrowe76 Nunamaker7) Blosser Blosser7§ describes the process of analysis and
straightforward code generation from the design specification language giviendnrpwe7§ These languages are used as model
of a program to be derived.

An Overview of Programming L anguages

The abstraction languages and extensible languages supply mechanisms for extending the language to suit the needs of a <
problem domain and encapsulating the implementation of domain objects and operations. The psychological set of this work
is easy to extend a language into a comfortable medium for discussing a particular problem in a problem domain. The autho
with Standish $tandish75kthat this view is mistaken. It is the lesson of the developers of domain-specific languages and syst
analysis techniques that the development of a good model of the objects and operations of a domain is only the result of lon¢
intense analysis of the domain. As discussedhiapter 2a simple library of abstractions with strong abstraction definition schernr
will not help very much with this problem.

Software Engineering

Many of the techniques that Draco uses in constructing programs are directly related to software engineering research area:
particular, the areas of module specification, module interconnection, software components, and program-feature analysis ai
special interest.

Modules

Much of the work in software engineering has been concerned with how to build systems out of individual modules. The conc
modules is attractive because it represents a division of the work of producing a system into separate pieces which presumal
built by separate people. Criteria to be considered in the division of a system into modules have been investigatedizy ResnAS
Parnas7B Basically, a module should perform only one function and hide the implementation details of how it performs its fur
The concept is very similar to abstraction.

Module I nter connection L anguages

Once a system is divided into modules, module interconnection languages (MILs) are used to indicated how the modules fit t
form the system. This concept is advocated and most useful in the construction of very large Bgstems [7H

Typically a module interconnection language specifies the interfaces between modules by the type (abstract type), range and
allowed to the data being passed. Module interconnection languages have been advocated in many differeGbsaitings
Campos78Goodenough74Thomas76Tichy79. Primarily of interest here is the use of a module interconnection language to
represent families of software systems as describedoogrider79 Tichy8(. This work used a MIL to coordinate the construction
similar software systems with different features for different target languages. The interconnection language that Draco uses
components is similar to these module connection languages.

Softwar e Components

The construction of software from components is a very old idea, perhaps known to Babbage. The recent interest in software
components stems from their advocation by Mcllfggllroy69] at the 1968 NATO conference on software engineering. This san
article also presents a panel discussion with arguments for and against the idea.
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Some early work on software componei@sibin7i, Corwin74 attempted to define general reusable components which were
completely specified, fairly large programs of approximately 100 source lines. These systems strictly followed the hardware a
[Bell72] using port connections between components to create whole systems. In these experiments the components evolvec
certain type of system were too specific to that class of system to be used in constructing other kinds of systems. Some later
[Levin73 managed to introduce some degree of flexibility by strictly following the module definition criteria of Paanas/P

The work of Goodenougltsoodenough7¥suggested that the smaller the component, the more flexible it is to use. Reducing th
of the components used by Draco (typically 5-10 source lines) and allowing components to be written in terms of other comp
has allowed the construction of general components flexible enough to apply to a large range of applications.

The management of software components and systems built with software components is disdisseddaf4Edwards7h An
empirical study Emery79 found that most of a system consists of the repeated usage of small software components.

The concept of software components used by Draco is modeled after the abstract strategies and program Shretisd 08§
Standish7}t This same work also suggested the idea of having different strategies for the implementation of a component. Tt
concepts and goals of reusability used by Draco were outlinéddarhan76a

Analysis Techniques

By "analysis techniques" here we mean techniques for discovering properties about the developing program. These techniqu
be useful to Draco in gathering information about the developing program which can be used to guide its further refinement.
example techniques are module coupling and cohesion meaSuriesvpr74, incremental data-flow analysiBfbich7§, program
complexity measuresiplstead7}, space and time use characteristit&fbreit7%, and execution monitorindrgalls73.

The use of these techniques by Draco is discusspdan
An Overview of Software Engineering
A collection of papers covering the major topics in software engineering is preseritegimfn76p

It is interesting to compare the program representations used by automatic programming, program generation, and software
engineering. Most of the representations are data flow diagrams as descri®eskircpRoss76h This representation was
investigated by Goldbergspldberg7$and was found to be a more natural specification of a procedure than the conventional c
flow representation typically used in computer science.

A recent shift in software engineering has been towards integrated packages of tools for building large systems. These syste
typically use special-purpose languages for describing the developing system, its environmental needs, and its current stage
development. Examples of such systems are ISO@Strowe7§ the Software FactoryBratman7$ DREAM [Riddle7§

Wilden79, Programmer's Workbenchv[e77], the Unified Design Specification SysteBidgerstaff79, and the Hughes design

system Willis79].

Transformation Systems

Program transformation systems manipulate a representation of the source code of a program. The mechanism used by mo:
transformation systems is that of a production sysieavis79 where a single production represents a single transformation. Eac
production rule consists of a left-hand side (LHS) and a right-hand side (RHS). The LHS is matched against the program
representation and, if found, is replaced by the RHS.

The work on transformation systems can be separated into those systems concerned primarily with optimization and those ¢
primarily with the refinement of a program representation into an executable program.

Optimization Oriented Transfor mation Systems

Some early work on optimizing transformation systems stems from the desire to make the optimization process visible to the
[Schneck7P These systems would like to perform the standard optimizations done by a cokifsler4] and exploit standard rules
of exchange for the operators of general-purpose languagesljsh76k

Recent interest in optimizing transformations was renewed by Lovdmaarhan77in his attempt to define source-to-source
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transformations which group FORTRAN program features for execution on a parallel machine FRuitte¥ | describes a source-
to-source transformation system for LISP programs and examines the problems of controlling such a system. A transformatic
designed to specialize a program on the basis of external knowledge about the data is described K& [

HaraldssonHlaraldsson7]/has investigated the use of partial evaluation of functions coupled with program transformations as
mechanism for optimizing programs. Partial evaluation is a process where all or some of the arguments to a function are ins
in a special version of the function. These instantiations usually allow optimizing transformations to smooth the instantiation:
their surrounding program context.

The use of source-to-source transformations in the conversion of programs back and forth from iterative and recursive methc
discussed by Darlington & BurstalDfrlington73, Arsec Arsec79, and Manna & Waldingenjlanna77.

The possible use of metarules for transformation systems and an implementation scheme for transformation systems is disct

[Kibler77].
Refinement Oriented Transformation Systems

Program transformations can be used for refinement if the LHS of a transformation is a statement in a higher-level language
RHS of the transformation. In this way transformations can be used to fill in general plans of programs as showialii ]
Manna77 Wegbreit76 Ulrich79]. The plans range from recursive program schemes to loop generators for iterative programs.

The method of program synthesis from a tree and graph model of a program through tree transformations was investigated |
[Chesson7]Z This work discusses the kinds of operations useful in the manipulation and traversal of formally defined structure
represent programs.

The use of program transformation as a refinement mechanism useful in automatic programming has been suggested by Be
Goldman, and WileBalzer76h.

An Overview of Program Transformation Systems

The correctness of program transformations is of great concern and a few techniques have arisen to verify the correctness o
transformation Gerhardt75Neighbors7R The general power of transformation systems and their limitations was investigated t

Kibler [Kibler78].

A criticism of the naive view of developing programs from a simple specification of the problem, as setigion7§, and
refining the simple specification into an efficient implementation is made by Dijk3ifkes{ra77. The criticism is made from the
author's view that programs built on an underlying mathematical theory are not amenable to the transformation approach un
a bit of mathematical knowledge is supplied. This author would disagree that most programs are based on a mathematical tl
we wholeheartedly agree that a transformation system must incorporate some domain-specific knowledge to be effective in
transforming a program in a specific domain. Mathematics is but one of many possible domains in use today.

Philosophies
Many of the ideas that Draco incorporates have come from the philosophies of the researchers in software technology.
The use of domain-specific languages was motivated by software engineering and J.A. Feldman.

"There are many large groups of computer users who would be willing to use an artificial language if it met their

needs." feldman7}

The use of abstraction, hierarchy, and components was influenced by Knuth{4, Standish, and FreemafRrEeman7]L

"More generally, programming skills appear to consist of a rather rich inventory of methods applied at various times
and at various levels of abstraction. These methods appear to span a cascade of knowledge systems from the probler
domain to the programming domain, and to employ knowledge and representations from various appropriate modelin

domains." Btandish73H

The model of a domain description as a collection of objects and operations in the domain was influenced by Balzer.
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"A model of the problem domain must be built and it must characterize the relevant relationships between entities in
the problem and the actions in that domaiB&lger73

The concept of performing optimizations at the correct level of abstraction were motivated by Darlington and Ruth.

"We are able to make full use of the algebraic laws appropriate to this higher level. For example, once calls to set
operations have been replaced by their list processing bodies many possibilities for rearrangement and optimization w

have been lost.'farlington73

"Optimizations are most effectively performed at their corresponding level of translation, where exactly the sort of
information and visibility needed is presenRuUth 760

The concept of keeping a refinement record for maintenance purposes was motivated by Knuth.

"The original program P should be retained along with the transformation specifications, so that it can be properly
understood and maintained as time passg&siuith74

The use of software components was motivated by Edwariigdrds74 Mcllroy [Mcllroy69], and Waters.

"A pre-written module can be as simple as a multiplication routine or as complex as a data base management system
module can be used as a subroutine or expanded inline as a macro. It can be partially evaluated or transformed after
instantiation to increase efficiency. In any case, modules reduce the effort required to write a program because they ci
be used without having to be rewritten. They reduce the effort to verify a program because they can be used as lemm:
in the verification without having to be reverifiedWhters7§

Chapter 8 Conclusions and Future Work

Achievements

This section presents a summary of the results of the dissertation. Each point is discussed in more detail in the body of the ¢
Domain Analysis

The concept of domain analysis was introduced and compared to conventional systems analysis. Systems analysis states wi
for a specific problem in a domain while domain analysis states what can be done in a range of problems in a domain. Syste
analysis describes a single system while domain analysis describes a class of systems. Since domain analysis describes a ¢
possible systems, it is difficult to create a good domain analysis. If only one system is to be built, then classical systems anal
be used. A domain analysis is only useful if many similar systems are to be built so that the cost of the domain analysis can |
amortized over all the systems.

The key to reusable software is captured in domain analysis in that it stresses the reusability of analysis and design, not cod
Domain Languages

The idea of a language as the medium for capturing a domain analysis was presented and it was hypothesized that languag
past have really been the analysis of a domain of problems. This use of language as the medium for capturing a domain ane
much different from the notion of extensible languages. A user trying to build a particular system does not extend the domair
he contracts it for his particular problem.

Reusable Softwar e Components

A method was shown for producing variable implementations of a program through the use of reusable software components
different implementations were equivalent in their actions and different in their structure and execution characteristics. The ¢
implementations were optimized through the use of source-to-source transformations.

Program Transformation Techniques
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A scheme based upon Markov algorithms was presented for performing some "procedural” transformations without sacrificin
advantages of source-to-source transformations. This scheme relies on the use of transformation metarules which relate
transformations to one another. An algorithm for automatic metarule creation was presented.

Formal Model of Refinement Knowledge

A formal model of the knowledge in a set of problem domains which were defined in terms of each other was presented. A fc
definition of the notions of level of refinement and level of abstraction were given in relationship to this Petri-net-based mode
guestion of whether or not the system has enough knowledge to refine a high-level description of a program to an executable
(the reusability questions) was discussed in terms of the model. In particular, the reusability questions are shown to be decid
given a lower complexity bound.

Unification of Concepts

The work succeeded in providing a context where the concepts of software components, module interconnection languages,
source-to-source program transformations work together to produce software. Previous to this work these concepts had exist
separate ideas.

Draco as an Educational Tool

The prototype system not only produces medium-sized efficient programs, but it can also be viewed as an educational tool. T
components provide references to the computer science literature and present actual code for algorithms. To a small degree
structure of the domains related to computer science relates the knowledge of computer science. A concept, such as randon
generation, may be investigated by writing a program which uses random numbers and examining the knowledge sources tt
uses to refine the program.

The concept of the system also might provide a framework for system analysis training in learning to discern the relevant obj
operations of a problem domain to construct a Draco domain.

Technology Transfer

Finally, the method of software production discussed presents an application oriented approach to technology transfer. If nev
algorithms are added to the system as they are developed, then the periodic remapping of existing systems from high-level,
dependent specification to executable program might be able to take advantage of some of the new information. The burden
importing the algorithm is removed from all the users and placed on the algorithm developer. This seems to be a stronger m
technology transfer.

The Prototype System Draco 1.0

The prototype system Draco 1.0 is available under the TOPS-10 operating system on the DEC PDP10 and its operational de
described in a manudlfighbors80h Small programs may be created in 70K words of memory and the system has a 20-100
program limitation since the developing program is not kept on secondary memory.

The prototype system helped to build itself in that all the input forms for parser descriptions, prettyprinter descriptions, compt
descriptions, and tactics are domain-specific high-level languages. While these descriptions don't go through the user direct
refinement process as a user defined domain language would, they are processed by much the same mechanism. To chang
these languages, their specifications are changed and remapped. Some semantic changes may be achieved the same way,
may require a custom piece of code.

Future Work

Refinement Strategies

Much more work needs to be done on strategies for refinement which prevent the user from investing a large amount of time
details which will have to be removed because the refinement deadlocks and must be backed up. This work should proceed
lines.
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One line of investigation deals with techniques for checking the validity of the refinement at a given point from the formal mo
the knowledge in the system presente@lirapter 6

The second line of investigation should deal with plans which are derived from the formal model. Because of the size and co
of the formal model, the second line of investigation seems most promising in the development of strategies for refinement. 1
formal model may be viewed as a huge planning space which requires local heuristics for refinement. These heuristics woulc
refinement strategies.

Minimal Refinement Backup

Another area of investigation is the "unwinding" of decisions when backup in the refinement must occur. When backup occul
because some knowledge is missing or some inconsistency appears in the implementation decisions. In theory, only the dec
which lead to the need to backup should be undone. The idea of minimal backup should be investigated, all the data for this
seems to be included in the refinement history. Along this same line, the reimplementation or modification of a system with fe¢
changes in implementation decisions should be able to take advantage of all the old decisions not changed or influenced. It :
important to develop a model of the interdependency of the decisions.

Stronger Component I nter connection L anguage

As they exist now, the assertions and conditions are a kind of lock and key mechanism. No effort is made to derive new infor
from either one. It would seem that the ability to establish relations for conditions and assertions would enable the refinemen
mechanism to deduce more information about the developing program. This work might directly influence the minimal backu
strategies work mentioned above.

Portability

The software production technique presented might be able to aid the work in software portability. The lowest level language
Draco can be regarded as a model of the machine on which the resulting programs are to be run. This lowest level language
appear quite different for a von Neumann machine and a parallel machine, such as a dataflow machine. If the lowest level d
match the machine the program is to be executed on, then the use of that program is doomed to failure. A suitable level for t
description of a machine's architecture can be found in the work on the automatic generation of code generators from a maclt
description Frazer77aFrazer77h In this work, a system which knows about the general architecture of a von Neumann mach
(i.e., has a program counter, registers, and a memory) scans an ISP description of a particular machine to build a code gen¢
specific machine for that language.

If the lowest level language known to Draco were one of these architecturally-oriented languages then it would seem that Dr:
coupled with a code generator generator and the ISP for a specific machine could produce code for that machine from a don
specific high-level language to machine code. This is the goal of portability.

Error Handling

Virtually no work has been done on the handling of errors in the Draco system. The only work which applies is the protection
conditions of interconnection which are turned into code and surround a component when it is used. The notation of error mi
should be in terms of the problem domain in which the program was initially stated. Some of this information could be obtain
the refinement history but, in general, a notion of what each bit of code produced does in terms of the problem stated in the «
specific high-level language needs to be carried along with the refinement process. Once refinement begins Draco currently
notion of the domain in which the problem was originally stated other than the refinement history.

Program Analysis Techniques

Draco incorporates no analysis techniques, such as data-flow analysis. Some analysis information can be obtained from spe
purpose "procedural” transformations, but this does not seem to be a good approach in that these transformation sets are ex
run and hard to understand. Custom analysis tools would be better.

In general, different analysis techniques seem to exist for different levels of abstraction. As an example, execution monitoriny
flow analysis, complexity measures, cost estimation techniques, and design quality metrics all apply to different levels of abst
Execution monitoring requires an executable program, while data-flow analysis requires a program with explicit data-flow, wt
excludes machine languages and non-procedural languages. The information from the analysis techniques pervades the pr¢
the transformation suggestions (agendas) and the implementation decisions (assertions). The analysis information should in
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be incorporated into the internal form of the program.

If a domain analysis of analysis tools could be created it would be helpful in integrating the analysis information into the prog
internal form and for building new analysis tools for domain-specific languages at higher levels of abstraction.

More Domain Analyses

Finally, much more domain analysis work is needed. This is very hard work which should only be attempted by a craftsman i
domain with some idea of the difficulty involved. It is an enlightening experience to try and define the objects and operations
familiar problem domain. A good domain analysis requires many iterations of experiment and analysis.

Existing computer science knowledge needs to be formed into interlocking problem domains and this work is as hard as doir
domain analysis of a non-computer science domain. What are the objects and operations of data structures, compilers, para
computation, or artificial intelligence problem solving? These domains have a lot written about them but their knowledge doe
seem to exist in the form of a domain analysis. Very few domain analyses have been published in computer science, but whe
published, they usually are in the form of domain-specific high-level languages with specific objects and operations. An exan
domain analysis is the Business Definition Language (BBlahjmer7T.

Perhaps the publishing of domain analyses has been slowed by the recent lack of interest in new programming languages. |
author's opinion, this lack of interest stems not from the new languages, but from the purpose of most of the new languages.
the new languages are general purpose-languages which contain no domain information from outside of computer science."
"yet another ALGOL-like language" bemoans the definition of still more general-purpose languages. A research group which
a domain analysis may be timid about publishing their results in the form of a language only to be met with the "another lang
syndrome. A domain object in BDL is a document and it has a precise definition; this is not the same as the number, string,

general purpose languages.

A Warning

Any tool, like Draco, which increases software productivity can be a blessing or a curse. The increase in productivity allows n
changes to be made in a large software system with relative ease. These changes must be seriously considered; not just frol
technical viewpoint, but in the way they influence the users of the sySteandhi8]) An increase in productivity should go hand in
hand with stronger configuration management. Uncontrolled change in large software systems will lead to chaos regardless
software tools used in the construction and maintenance of the systems.
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Appendix | An Introduction to SADT

In Chapter Zan SADT actigram model of the Draco approach to software production is presented. SADT (System Analysis ar
Design Technique) has been used successfully to model both software systems and social systems. Its ability to model both t
systems is important here since Draco advocates the use of a software system within a social system.

A complete SADT model consists of two kinds of diagrams: activity diagrams (called actigrams) and data diagrams (called
datagrams). The view of an actigram is that data objects flow between activities while the view of a datagram is that activities
their operation access data objects. The only difference is the center of attention. Only actigram models will be discussed in-
appendix.

The Elements of an Actigram

An actigram depicts three to six activities which are represented as boxes. The limit on the number of activities depicted helj
the amount of information a reader of an actigram must deal with. The boxes of an actigram are connected by arrows which
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data objects. Actigrams adata-flow diagrams. This means that the activity of a box takes place only when the data objects
represented by incoming arrows to a box are present.

contraol

INPUL ————] activity ———g——output

Y. No.

mechatn ism
Figure 51. An SADT Actigram Box
The positions of the arrows on the box determines what type of data an arrow represents as showBAliniitpere the input,
control, and mechanism objects are present, the activity uses the mechanism as an agent to transform the input data object:

output data objects under the guidance and constraints of the control data objects. Activity names should be verbs, while dat
names should be nouns. Each activity must have at least one control and output.

A double headed dotted arrow may be used as a shorthand in SADT to denote data relations between activities as sh@&n in

~
|
- denotes l

|/

and

denotes

Figure 52. SADT Dotted Arrow Shorthand

The Structure of an SADT Modél

Each actigram is an elaboration of an activity box in a higher-level diagram called the parent diagram. If a page number apg
parentheses just outside the lower right-hand corner of an activity box, then this number specifies the page of the actigram v
elaborates the box. The inputs, outputs, controls, and mechanisms used in an actigram are the same as those on the corres
activity box in the parent diagram. Each actigram should include from three to six activity boxes.

The highest-level actigram of a model is the only exception to the three to six activity rule and it presents only one activity, th
being modeled. The inputs, outputs, controls, and mechanisms which are used in the rest of the model are specified on this
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level actigram called A-0. The A-O actigram represents the context in which the system being modeled operates. As a part o
context the A-0 actigram explicitly states in prose the purpose of the model and from what viewpoint the model was made.

The external inputs, outputs, controls, and mechanisms used in an actigram are labeled with the position of the correspondi
on the corresponding box in the parent diagram. Inputs and outputs are numbered top to bottom while controls and mechan
numbered left to right. Thus, A2.3I2 (on actigram A2, box three, second arrow from top on left of box) would be shown as an
input labeled 12 on actigram A23. The numbering of the data objects with I ,C ,0, and M are called ICOM codes. If an exterr
object appears in an actigram and not on the corresponding box in the parent diagram then rather than being denoted by ar
code it is "tunneled." This means that the start or finish of the arrow is surrounded by parentheses to denote that the data ok
not appear on the parent diagram.

The above discussion is a very brief introduction to SADT. More information about SADT can be folndrinif80 Ross77
Ross76aRoss76h

Reading an SADT Mode€l

There are three major stages in reading an SADT actigram model. At each stage the reader should ask the questions listed

1. Is the model syntactically correct?

o All lines are commented with nouns. Each section of a split line is commented.
All boxes are labeled with verb phrases.
There are three to six boxes on each actigram (except the A-O context diagram).
ICOM codes are accurate. All data produced is used. All data used is produced.
Each box has at least one control and one output.
2. Do | understand what the model says?
3. Do | agree with what the model says?

o 0O O O

Usually comments written on the diagrams are returned to the author of the model. The author then responds to these comr
returns them to the reader. This cycle of written comments between a reader and an author is called the author-reader cycle

Appendix Il The M etamatching Oper ator

In figure 9 of Chapter 3an algorithm for producing metarules for a set of transformations was given using the metamatching o
"\" which matches patterns against patterns. The metamatching algorithm is presented in detail56 @ifjtine appendix.

The four different types of objects which could appear in a Draco source-to-source transformation pattern were defipéet ifon
page They are literal objects, class variables, pattern variables, and patterns.

ALGORITHM Metamatch(a,b)
INPUT: transformation tree patterns a and b
OUTPUT: boolean indicating whether a and b could match

1. Make aJi] the root node of a. Make bJi] the root node of b. IF |a]i]| is not equal |b[i]]| THEN match fails. FOREACH jin a
b[i] WHILE match hasn't failed DO the action in taléor a[ij] and bJij]. IF match hasn't failed THEN match succeeds.

2. IF b[ij] is not equal to a[ij] THEN match fails.

3. With the same bindings for pattern and class variables IF ~Metamatch(a]ij],b[ij]) THEN match fails.

4. The binding of a literal object or pattern is always itself. The binding of a class variable with no binding is a set which

all the elements of the class. Make a[bind] the current binding of a[ij]. Make b[bind] the current binding of b[ij]. DO the

indicated in table& for a[bind] and b[bind].

Make the binding of blij] and alij] a shared cell indicating "no binding".

Change the "no binding" cell to point to the literal object.

Change the "no binding" cell to point to the set.

Change the "no binding" cell to point to the pattern.

IF a[bind] is not equal to b[bind] THEN match fail.

IF the literal object is a member of the set THEN change the set binding cell to point to the literal object ELSE match f

IF the intersection of the two sets is empty THEN match fail ELSE change the binding cells of both sets to share the s

intersection.

12. With the same bindings for pattern and class variables IF ~Metamatch(a[bind],b[bind]) THEN match fails.

PO ©XNo O

B

Figure 53. Algorithm for the Metarule Matching Operator
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The algorithm simulates the pattern matching of the transformation mechanism. It matches two patterns without binding the
variables to literal objects but to the minimal set of literal objects indicating the restrictions on the match. As the matching pre
more restrictions are put on the possible values of the pattern and class variables. The bindings of the two patterns share de
a restriction of a pattern or class variable occurs during its use in the pattern, then this restriction also applies to everything
matched that variable in the past. If a new restriction is inconsistent with the previous use of the variable, then the match fail
example, the transformation pattéfrPw THEN ?x ?y ELSE ?z ?y with internal form

?x 7y 7z 2y

would not match the patterh ?a THEN ?b+?c ELSE ?d-?c with internal form

2a” Cap g CsUEY

b e ?4d 7C

because the binding of tloéass variable is not consistent. The ADD in the second pattern restricts the matchirgtofaily the
ADD even though SUB is a member of the class

type of blij]

literal class pattern pattern
object variable variable

literal do do do match
object step2 step4 step4 fail

type class do do do match
of variable step4 step4 step4 fail
alij]
pattern do do do do
variable step4 step4 step4 step4

pattern match match do do
fail fail step4 step3

Table 2. Pattern Type versus Pattern Type

type of b[bind]

no literal set pattern
binding object

no do do do do
binding step5 step6 step7 step8

type literal do do do match
of object step6 step9 step10 fail
a[bind]
set do do do match
step 7 step 10 step 11 fail

pattern do match match do
step 8 fail fail step 12

Table 3. Binding Type versus Binding Type
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Appendix |11 Example Domain L anguage Programs

This appendix presents two example domain language programs and samples of their execution. The first example impleme
natural language parser and natural language generator for a restricted domain of discourse. The second example uses the
domain used to construct the parser of the first example to couple a natural language parser to a relational database. All of 1
examples shown here are actual input to Draco 1.0 and were refined by the prototype system.

Natural Language Par ser-Gener ator

This section demonstrates example domain-specific languages for specifying natural language parsers and generators for a
domain of discourse. The example consists of three parts: a dictionary, an augmented transition network (ATN), and a gene
specific ATN used in the example was originally specified by Woddsfs7(.

The dictionary specifies the allowable words, their part of speech (class), and special word features. A particular word may b
member of more than one class (such as "was") and as a class member have more than one interpretation or feature list. Ar
dictionary is shown below.

DICTIONARY DWOODS

; Dictionary for the examples in Woods and Burton

; Abbreviations

; NP = noun phrase NPR = nomitive pronoun
; PPRT =  past participle ADJ = adjective

; ITRANS = intransitive AGNTFLG = agent possible

; TRANS = transitive DET = determiner

; PREP =  preposition S-TRANS = sentence object

; PRO = pronoun AUXVERB = auxiliary verb

; word | class | features

John | NPR
was | VERB | ROOT:be TENSE:PAST
|[AUXVERB| ROOT:be TENSE:PAST
believed| VERB | ROOT:believe PPRT TENSE:PAST
to |PREP |
have | VERB | ROOT:have UNTENSED TRANS
been |VERB | ROOT:be PPRT
shot | VERB | ROOT:shoot TENSE:PAST PPRT
by | PREP |
Harry | NPR |
; the following words are root word entries
believe | VERB | TRANS ITRANS S-TRANS
ROOT:believe PPRT:believed PAST:believed
be |VERB | ITRANS ROOT:be PAST:was
shoot | VERB | TRANS ROOT:shoot PPRT:shot PAST:shot
.END

The particular natural language parsing scheme used in the example is an augmented transition netwoRkoGAEX) [

Burton7€. The ATN states how the words in the dictionary may be combined into well-formed sentences. The input to an AT!
dictionary and a sentence. The output of an ATN is a set of syntax trees. If the sentence is ambiguous with respect to the dic
and the ATN then the set of syntax trees contains all interpretations.

An ATN is based on a finite state machine with conditions and action augmentations on the arcs. In the example ATN given
the state names (such as SENTENCE and Q1) appear against the left margin. The example shows two arcs emanating fron
SENTENCE state, one to state Q1 which advances the input to the next word and one to state Q2.

An arc may be traversed only after the tests on the arc have been passed and the actions on the arc performed. Thus, in the
the arc from SENTENCE to Q1 may only be traversed if the current word is an AUXVERB and the given actions have been
performed. As mentioned before, the details of ATNs are giveWao{is7(. The parallelism inherent in finding all parses is impli
in the ATN description.

ATN WOODS

NETWORK SENTENCE

; see example in both Woods and Burton

; Abbreviations

; NP = noun phrase  NPR = nomitive pronoun

67



Software Construction Using Components
; PPRT =  past participle ADJ = adjective
; ITRANS = intransitive AGNTFLG = agent possible
; TRANS = transitive DET = determiner
; PREP =  preposition S-TRANS = sentence object

; PRO = pronoun AUXVERB = auxiliary verb
;from to | tests | actions
SENTENCE

+Q1 | class AUXVERB? | VERB:=word[ROOT]
| | TENSE:=word[TENSE]
| | TYPE:='QUESTION

Q2 |none | SUBJ<=NOUN-PHRASE
| | TYPE:='DECLARE
bl Q3 | none | SUBJ<=NOUN-PHRASE
bz +Q3 | class VERB? | VERB:=word[ROOT]

| | TENSE:=word[TENSE]

Q3 +Q3 |class VERB? | put SUBJ on hold as NP
| isword PPRT ? | SUBJ:=('NP
('PRO 'someone))
| VERB="be | AGNTFLG:='TRUE
| | VERB:=word[ROOT]

+Q3 | class VERB? | TENSE:=TENSE+PERFECT
| is word PPRT ? | VERB:=word[ROOT]
| VERB="have |

Q4 |is VERB TRANS ? | OBJ<=NOUN-PHRASE

Q4 | holding NP? |OBJ::=remove NP from hold
|is VERB TRANS ? |

exit | is VERB ITRANS ? | <=('S (TYPE TYPE)
('SUBJ SUBJ)
('VP ('TNS TENSE)
('V VERB)))

Q4 +Q7 | word="by | AGNTFLG:='FALSE
| AGNTFLG=TRUE |

’ +Q5 | word="to | none
| is VERB S-TRANS ? |

exit | none | <=('S (TYPE TYPE)
('suBJ SUBJ)
(VP ('TNS TENSE)
('V VERB)
('OBJ OBJ)))

Q5 Q6 |none | SUBJ|:=0BJ
| | TENSE|:=TENSE
| | TEMP:='DECLARE
| | TYPE|:=TEMP
| | OBJ<=VERB-PHRASE

Q6 +Q7 |word=by | AGNTFLG:='FALSE
| AGNTFLG=TRUE |

exit | none | <=('S (TYPE TYPE)
('suBJ SUBJ)
(VP ('TNS TENSE)
('V VERB)
('OBJ OBJ)))

Q7 Q6 |none | SUBJ<=NOUN-PHRASE

VERB-PHRASE
+Q3 | class VERB? | VERB:=word[ROOT]
| is word UNTENSED ? |

NOUN-PHRASE
+NP1 | class DET? | DET:=word[ROOT]
| none |
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+NP3 | class NPR? | NPR:=word
NP1 +NP1 | class ADJ? | ADJS:=#ADJS+word[ROOT]
+NP2 | class NOUN? | NOUN:=word[ROOT]
NP2 exit | none | <=(NP (DET DET)
(ADJ #ADJS)
(NOUN NOUN))
NP3 exit | none | <=(NP (NPR NPR))
'END

The natural language generator for the example shown below is also based on a finite state machine. The generator perforn
inverse function of the ATN by taking in a syntax tree and a dictionary to produce a sentence.

GENERATOR GWOODS

NETWORK STREE

; This is the generator for the examples in Woods and Burton
;from to | tests | actions

STREE S1 |none | gen SUBJ at SUBJECT

| | gen VP at VERB-PHRASE

S1 exit| TYPE='"QUESTION | out"?"

exitl TYPE='DECLARE |out"."

SUBJECT  exit| none | gen NP at NOUN-PHRASE

NOUN-PHRASE
exit| PRO? | out PRO
exit| NPR? | out NPR
exit| DET? | out DET
| | list ADJS
| | out NOUN

VERB-PHRASE
VP1 | TNS='PAST+PERFECT] out "had"

| | out V[PPRT]
VP1|TNS=PAST  |out V[PAST]
VP1 exit| OBJ? | gen OBJ at OBJECT
OBJECT exit| NP? | gen NP at NOUN-PHRASE
© exit| S? | gen S at OBJ-CLAUSE
OBJ-CLAUSE
exit| none | out "that”
| | gen SUBJ at SUBJECT
| | gen VP at VERB-PHRASE
'END

The example executions of the parser-generator pair are shown below. The testing program reads in a sentence, passes it t
and passes each syntax tree in the resulting set to the generator. The "*" prompt marks the input sentence which is followed
immediately by the generator output and the syntax tree which produced the generator output. As far as the example is conc
input and generated sentences are equivalent. Only one of the sentences shown is ambiguous.

[DSKLOG started: 5-20-80 3:25 AM]

*(TESTER)
*was John shot
someone shot John?
(S (TYPE QUESTION)
(SUBJ (NP (PRO someone)))
(VP (TNS PAST) (V shoot) (OBJ (NP (NPR John)))))
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*John shot Harry
John shot Harry .
(S (TYPE DECLARE)
(SUBJ (NP (NPR John)))
(VP (TNS PAST) (V shoot) (OBJ (NP (NPR Harry)))))

*John was shot
someone shot John .
(S (TYPE DECLARE)
(SUBJ (NP (PRO someone)))
(VP (TNS PAST) (V shoot) (OBJ (NP (NPR John)))))

*John was shot by Harry
Harry shot John .
(S (TYPE DECLARE)
(SUBJ (NP (NPR Harry)))
(VP (TNS PAST) (V shoot) (OBJ (NP (NPR John)))))

*John was believed to have been shot
someone believed that someone had shot John .
(S (TYPE DECLARE)
(SUBJ (NP (PRO someone)))
(VP (TNS PAST)
(V believe)
(OBJ (S (TYPE DECLARE)
(SUBJ (NP (PRO someone)))
(VP (TNS (PAST PERFECT))
(V shoot)
(OBJ (NP (NPR John)))))))

*John was believed to have been shot by Harry
Harry believed that someone had shot John .
(S (TYPE DECLARE)
(SUBJ (NP (NPR Harry)))
(VP (TNS PAST)
(V believe)
(OBJ (S (TYPE DECLARE)
(SUBJ (NP (PRO someone)))
(VP (TNS (PAST PERFECT))
(V shoot)
(OBJ (NP (NPR John)))))))
someone believed that Harry had shot John .
(S (TYPE DECLARE)
(SUBJ (NP (PRO someone)))
(VP (TNS PAST)
(V believe)
(OBJ (S (TYPE DECLARE)
(SUBJ (NP (NPR Harry)))
(VP (TNS (PAST PERFECT))
(V shoot)
(OBJ (NP (NPR John)))))))

*was Harry believed to have shot John
someone believed that Harry had shot John?
(S (TYPE QUESTION)
(SUBJ (NP (PRO someone)))
(VP (TNS PAST)
(V believe)
(OBJ (S (TYPE DECLARE)
(SUBJ (NP (NPR Harry)))
(VP (TNS (PAST PERFECT))
(V shoot)
(OBJ (NP (NPR John)))))))

*Jim shot John
| don't know what 'Jim' means.

[DSKLOG finished: 5-20-80 3:29 AM]

Natural Language Relational Database

The example presented in this section couples the ATN domain with a relational database domain (RDB). The structure of t
domains used to model the domain of natural language relational databases is given 3i.fijueemodel for the database is the
DEDUCE database systeitjang76 Chang7§.

70



Software Construction Using Components

The ATN can build fact and query transactions for nouns and the relationships between nouns. The dictionary specifies the ¢
domain in which the database operates. If the dictionary were changed to contain parts, part suppliers, part numbers, parts
assemblies, and part descriptions, then the same ATN and relational database could be used to transact about parts. Only t
dictionary would have to be refined. If a database which could deal with transactions other than relationships between nouns
desired, then the ATN would have to be modified. The relational database mechanism would only need to be re-refined if a c
implementation were desired.

DICTIONARY BLOCKS
This is the dictionary for the blocks world RDB

; NOUN = noun may imply a restriction

; NPR = indicates nomitive pronoun
; NUM = number of the noun

; TYPE = indicates a restriction

; ROOT = gives the type restriction
Fred | NOUN | NPR NUM:SINGULAR
Ethel | NOUN | NPR NUM:SINGULAR
Ricky | NOUN | NPR NUM:SINGULAR
Lucy | NOUN | NPR NUM:SINGULAR

LiRick | NOUN | NPR NUM:SINGULAR
object | NOUN | NUM:SINGULAR ROOT:OBJECT
objects | NOUN | NUM:PLURAL ROOT:OBJECT

block | NOUN | NUM:SINGULAR TYPE ROOT:BLOCK
blocks | NOUN | NUM:PLURAL TYPE ROOT:BLOCK
pyramid | NOUN | NUM:SINGULAR TYPE ROOT:PYRAMID
pyramids| NOUN | NUM:PLURAL TYPE ROOT:PYRAMID

; VERB = verb implies a relation
; NUM = number of the verb
; REL = verb relation name
; SDOM = subject domain in relation
; ODOM = object domain in relation
is | VERB | NUM:SINGULAR SDOM:OBJ ODOM:TYPE REL:IS
are | VERB | NUM:PLURAL SDOM:OBJ ODOM:TYPE REL:IS
support | VERB | NUM:PLURAL SDOM:BOT ODOM:TOP REL:SUPPORTS
supports| VERB | NUM:SINGULAR SDOM:BOT ODOM:TOP
REL:SUPPORTS

; DET = determiner implies a predicate

; DEFINITE or INDEFINITE

a | DET |INDEFINITE

an | DET |INDEFINITE

the |DET |DEFINITE

; ADJ = adjective implies a relation restriction
red |ADJ | DOM:COLOR

blue |ADJ | DOM:COLOR

green | ADJ | DOM:COLOR

; NUMBER = the numerals used as determiners
; VALUE = the numerical value

two | NUMBER| VALUE:2

three | NUMBER| VALUE:3

four | NUMBER| VALUE:4

; ATN Commands

find |CMD |

what | CMD |
how |CMD |
many |CMD |

; ATN Quantifiers
exactly | QUANT |

at | QUANT |
most | QUANT |
no | QUANT |

which | QUANT |
.END

Instead of building syntax trees, the ATN shown below builds nested transactions for the relational database system. The
representation of the transactions must be the same for the two domains. The meaning of the transactions Ghgingiifn [

ATN NOUN-QUERY
NETWORK RELATIONAL-DATA-BASE
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; ATN for questions about nouns and their relations

RELATIONAL-DATA-BASE
+FACT |isword NPR ? | S:=word

QUERY | none | IVAR:='ANS
| | IVAR|:=JVAR
i:ACT +F1 | class VERB? | REL:=word[REL]

| word[NUM]='SINGULAR | F:=('FACT REL
(word[SDOM] S))
| | OD:=word[ODOM]

F1 +FOUT |isword NPR? | <=#F+((OD word))

+FOUT | class ADJ? | <=#F+((word[DOM] word))
| REL='IS |
+F2 | class DET? | none

| is word INDEFINITE ?|

F2 +F2 |classADJ? | F:=F+((word[DOM] word))
" F3 |classNOUN?  |none

| word[NUM]="SINGULAR |

| REL=1S |

F3 +FOUT | isword TYPE ?  |<=#F+(('TYPE word[ROOT]))

+FOUT | word[ROOT]="OBJECT | <=F

i:OUT exit | none | none

QUERY +FQ |word=find  |none

+WQ | word='what | none

+HQ | word="how | none

FQ FQl |none | D<=DET
| | IVAR|:=IVAR
| | N<=NOUN-PHRASE

FQ1 exit | NINUMJ=D[NUM] | <=(QUERY

(RESULT 'ANS)
('SUBQUERY
(RESULT 'ANS))
+N[FORMS]
(PREDICATE
(D[OP]

('COUNT 'ANS)

D[OPN])))

WQ exit | none | Q<=NPVP
| | <=(QUERY
(RESULT 'ANS))
+Q

i—|Q +HQ1 | word="many | none

HQ1 exit | none | Q<=NPVP
| <=(QUERY
(RESULT 'COUNT)
('SUBQUERY
(RESULT 'ANS))
+

(COMPUTE 'COUNT
(COUNT 'ANS)))

NPVP NV1 |none | IVAR[:=JVAR
| | N<=NOUN-PHRASE
| | JVAR[:=JVAR
| | V<=VERB-PHRASE

NVL1 exit | N[NUMJ=VINUM] | <=#N[FORMS]+V[FORMS]
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NOUN-PHRASE

NP1 |none | REL:=('RELATION'IS
('BIND 'OBJ
JVAR))
NP1 +NP1 |class ADJ? | RS:=RS+((RESTRICT
word[DOM]
word))

NP2 | class NOUN? | AINUM]:=word[NUM]

NP2 +NP3 |isword TYPE ? | RS:=RS+((RESTRICT 'TYPE
word[ROOT]))

+NP3 |isword NPR ? | RS:=RS+((RESTRICT 'OBJ
word))

+NP3 | word[ROOT]="OBJECT | none

NPS +NP4 | word="which | none

" exit | none | AIFORMS]:=(REL+RS)
| | <=A

NP4 NP5 |none | IVAR|:=JVAR

| | V<=VERB-PHRASE

NP5 exit | VINUM]=AINUM] | A[FORMS]:= (REL+RS)
+V[FORMS]
| | <=A

VERB-PHRASE
+VP1 | class VERB? | AINUM]:=word[NUM]
| | REL:=word[REL]
| | SD:=word[SDOM]
| | OD:=word[ODOM]

VP1 VP2 |none | D<=DET
| | NVAR:=symbol
| | IVAR|:=NVAR
| | N<=NOUN-PHRASE

VP2 exit | DINUM]=N[NUM] | SQ:=(SUBQUERY
(RELATION REL
(‘BIND SD JVAR)
(REPORT OD
NVAR)))+N[FORMS]
| PRED:=(PREDICATE
(D[OP]
(COUNT NVAR)
D[OPNY]))
| | A[FORMS]:=(SQ PRED)
| <=A

DET +D3 | class DET? | D[NUM]:="SINGULAR
| is word INDEFINITE ?| D[OP]:='GE
I | D[OPN]:=0

+D3 | class DET? | D[NUM]:="SINGULAR
| is word DEFINITE ? | D[OP]:='EQ
I | D[OPN]:=1

+D3 |class NUMBER? | D[INUM]:='PLURAL
| | D[OP]:='GE
| | D[OPN]:=word[VALUE]

+D3 | word="no | DINUM]:="PLURAL
| | D[OP]:='EQ
| | DIOPN]:=0

+D2 | word="exactly | D[OP]:='EQ

+D1 | word="at | none

D1 +D2 |word=most | D[OP]:='LE

D2 +D3 |class NUMBER? | D[NUM]:='PLURAL
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[ | D[OPN]:=word[VALUE]

b3 exit | none | <=D

.END

The sample executions below take in a sentence and show the database transaction formed. The database response is a se
denoted by parentheses.

[DSKLOG started: 5-20-80 3:36 AM]
*TESTER)

RDB input : *Fred is a red block
(FACT IS (OBJ Fred) (COLOR red) (TYPE BLOCK))
OK

RDB input : *Ethel is a green block
(FACT IS (OBJ Ethel) (COLOR green) (TYPE BLOCK))
OK

RDB input : *Ricky is a red pyramid
(FACT IS (OBJ Ricky) (COLOR red) (TYPE PYRAMID))
OK

RDB input : *Lucy is a green pyramid
(FACT IS (OBJ Lucy) (COLOR green) (TYPE PYRAMID))
OK

RDB input : *Fred supports Ethel
(FACT SUPPORTS (BOT Fred) (TOP Ethel))
OK

RDB input : *Ricky supports Lucy
(FACT SUPPORTS (BOT Ricky) (TOP Lucy))
OK

RDB input : *Ricky supports Ethel
(FACT SUPPORTS (BOT Ricky) (TOP Ethel))
OK

RDB input : *find a pyramid
(QUERY (RESULT ANS)
(SUBQUERY (RESULT ANS)
(RELATION IS
(BIND OBJ ANS)
(RESTRICT TYPE PYRAMID)))
(PREDICATE (GE (COUNT ANS) 0)))
response =

(((Lucy Ricky)))

RDB input : *find a red pyramid
(QUERY (RESULT ANS)
(SUBQUERY (RESULT ANS)
(RELATION IS
(BIND OBJ ANS)
(RESTRICT COLOR red)
(RESTRICT TYPE PYRAMID)))
(PREDICATE (GE (COUNT ANS) 0)))
response =

(((Ricky)))

RDB input : *find a pyramid which supports a block
(QUERY (RESULT ANS)
(SUBQUERY (RESULT ANS)
(RELATION IS
(BIND OBJ ANS)
(RESTRICT TYPE PYRAMID))
(SUBQUERY (RELATION SUPPORTS
(BIND BOT ANS)
(REPORT TOP G0158))
(RELATION IS
(BIND OBJ G0158)
(RESTRICT TYPE BLOCK))
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(PREDICATE (GE (COUNT G0158) 0)))
(PREDICATE (GE (COUNT ANS) 0)))
response =

(((Ricky)))

RDB input : *find the block which supports a block
(QUERY (RESULT ANS)
(SUBQUERY (RESULT ANS)
(RELATION IS
(BIND OBJ ANS)
(RESTRICT TYPE BLOCK))
(SUBQUERY (RELATION SUPPORTS
(BIND BOT ANS)
(REPORT TOP G0159))
(RELATION IS
(BIND OBJ G0159)
(RESTRICT TYPE BLOCK))

)
(PREDICATE (GE (COUNT G0159) 0)))
(PREDICATE (EQ (COUNT ANS) 1))
response =

(((Fred)))

RDB input : *how many blocks support a pyramid
(QUERY (RESULT COUNT)
(SUBQUERY (RESULT ANS)
(RELATION IS
(BIND OBJ ANS)
(RESTRICT TYPE BLOCK))
(SUBQUERY (RELATION SUPPORTS
(BIND BOT ANS)
(REPORT TOP G0160))
(RELATION IS
(BIND OBJ G0160)
(RESTRICT TYPE PYRAMID

)
(PREDICATE (GE (COUNT G0160) 0)))
(COMPUTE COUNT (COUNT ANS)))
response =
NONE

RDB input : *how many pyramids support a block
(QUERY (RESULT COUNT)
(SUBQUERY (RESULT ANS)
(RELATION IS
(BIND OBJ ANS)
(RESTRICT TYPE PYRAMID))
(SUBQUERY (RELATION SUPPORTS
(BIND BOT ANS)
(REPORT TOP G0161))
(RELATION IS
(BIND OBJ G0161)
(RESTRICT TYPE BLOCK))

)
(PREDICATE (GE (COUNT G0161) 0)))

(COMPUTE COUNT (COUNT ANS)))
response =

((1)

RDB input : *find a pyramid which is green
| do not understand

*(LOGOUT)

[DSKLOG finished: 5-20-80 3:44 AM]
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