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New Closed-Form

Approximations to the

Logarithmic Constant e

ecently, the determination of n digits of m has become something of an in-

dustry [3; 10, pp. 62-63]. By contrast, however, few mathematicians seem in-

terested in calculating the logarithmic constant e to comparable precision [7].

This area is underexplored, perhaps because in the case of e there is a straight-

forward Maclaurin series summation that is quite accu-
rate.

In this article, we demonstrate that there exist alternative
approximations to e that are also very accurate. We have
found over 20 such approximations, all of which are elegant
closed-form expressions obtainable using elementary calcu-
lus. We have used some of these approximations to calcu-
late e to tens of thousands of decimal-place accuracy using
commercially available software. Our most impressive result
is a class of closed-form approximations with extremely
rapid convergence that should outperform the familiar mul-
titermm Maclaurin series approximation. Having been unable
to find these approximations in a search of the published and
electronic literature, we elaborate upon them here.

Traditional Approximations to e

The calculation of e has intrigued mathematicians for cen-
turies. Joost Biirgi appears to have formulated the first ap-
proximation to e around 1620 [5, p. 31}, obtaining three-
decimal-place accuracy. Isaac Newton, in his De Analysi
of 1669 [8, p. 235], published the first version of what is

now known as the Maclaurin series expression for €%,
which for z = 1 is equal to
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Equation (1) is a “simple, direct approach [that] is the best
way of calculating e to high accuracy” [2, p. 313]. Today,
numerical values of e are derived using either optimized
versions of this Maclaurin series [7, p. 157; S. Plouffe, per-
sonal communication] or the continued-fraction expansion
approach pioneered by Euler [11, p. 1019].

An alternative approach to approximating e employs the
Maclaurin series expression for In(1 + x). This series was
first discovered independently by Newtori in about 1665 [6,
p. 354] and Nicolaus Mercator in 1668 (7, pp. 38 and 74]
and is valid on the interval -1 <z = 1:
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Equation (2) can be used to obtain closed-form approxi-
mations to e that require the calculation of a single ex-
pression instead of a sum of n + 1 terms involving facto-
rials as in Eq. (1). The only example of this alternative
approach we have found in the literature sets x = 1/x in
Eq. (2) and multiplies the result by x to obtain
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Exponentiating and using the Maclaurin series for e* leads
to an approximation to e valid on the intervals x < —1 and
x = 1, one that has been known by mathematicians and
bankers alike since the early seventeenth century:

Classical: (1 + é)x = e[l -4 + AL

2r 2427
T N 2447 959 238 043
162°  57602*  2304x°

580 608x5
[In Eq. (4) and all similar equations later in this article,
the right-hand side is the product of e and the bracketed
quantities. The series expansion in Eq. (4) can be obtained
in Mathematica using the following commands:

4)

classical =Serieslx Logll+1/x3 /.
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Collect [Eclassical. EJ /. y— 1/x

Other series expansions in this article can be determined
in like manner.]

To demonstrate how this approximation works, we in-
sert x = 100,000 in Eq. (4) and obtain

1 100,000 5 ,
(1 * T000 00) ~ 2.71826 82372. )
From Eq. (4"), it is clear that for x = 100,000, the closed-
form left-hand side of Eq. (4)—which we call the Classical
method—yields an approximation to e that is accurate to
four decimal places. In comparison to the Direct method,
however, this is small potatoes; for example, Eq. (1) with
N = 16 provides 14-decimal-place accuracy without too
much more computational overhead. As a result, perhaps,
closed-form approximations to e have received scant at-
tention outside of the obligatory introductory-calculus dis-
cussion of Eq. (4) (e.g., [1], p. 5568]).

Seven New Ways of Looking at e

Approximations to e far more accurate than the Classical
method can be obtained via very similar methods. Below,
we describe, in order of increasing accuracy, seven distinct
algebraic expressions that approximate e for all x > 1. In
each of Egs. (4)-(14), it is the left-hand expression that is
being proposed as an approximant to e.

1. Complementary Classical Method (CCM): The Classical

method has a complementary form that results from let-
ting x = —x in Eq. (4):
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CCM possesses virtually the same rate of conver-
gence as the Classical method, but it approaches e from
above, not below. Therefore, CCM can be combined
with the Classical method to create new approximations
to e that converge much more rapidly than either form
by itself (see below).

2. Complementary Addition Method (CAM): A simple

improvement results from adding the Classical method
and CCM, and dividing the sum by 2:
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Note that this is, by the series analysis, the equivalent
of the Classical method with all of the odd powers of x
eliminated.

3. Mirror-Image Method (MIM): An approach similar to

that used to derive CAM can also be used to create a
distinct, and even more accurate, approximation to e.
By replacing x with 2x in Eq. (3), adding this to Eq. (3)
in which x is replaced with —2x, dividing by 2, and then
exponentiating, we obtain
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Like CAM, this eliminates all odd powers of x from
the right-hand side (RHS), but MIM’s coefficient for 1/x2
is smaller than in CAM. The derivation of MIM bears a
striking resemblance to Gregory’s series expansion for
In [(1 +x)/(1 — x)] [1, p. 661] and also to the series ex-
pansion for coth~x [2, p. 310]. To our knowledge, how-
ever, this approximation to e has never appeared in the
literature.

. Power Ratio Method (PRM): The Power Ratio Method
was arrived at numerically by investigating the behav-
ior of numbers that have been raised to their own power.
Examination of the rate of change of the ratio between
adjacent integer values of x that have been raised to the
x power leads to the following approximation to e:

(x + 1)*+! xt

RM: -
P xx (x— 1)yt

=(x+ 1)(1 + i)x -@- 1)(1 - i)_x

- 1 11 5525 1y,
- e[l ¥ 2422 " 64027 T 58060825 O(xa) i ] ®)




As with CAM and MIM, PRM eliminates all odd powers
of x and yields a rate of convergence of O(1/x?).

5. CAM-MIM-PRM Amalgam Method (CMPAM): Using
the series expansions as a guide, a straightforward com-
bination of CAM, MIM, and PRM can be created that
achieves accuracy to O(1/x%), five orders of magnitude
better than the Classical method:

CMPAM: 31053(1941 PRM — 679 MIM — 53 CAM)
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A variety of other forms with better-than-Classical ac-
curacy may be formed in this manner, but usually at the
cost of algebraic elegance and computational time; we
examine them elsewhere. Below, we explore more
adroit ways to increase the accuracy of these approxi-
mations.

6. Brothers—Knox Method (BK): Drawing on the ideas
inherent in MIM and PRM, an extremely rapidly con-
vergent class of approximations to e can be created by
substituting a* for x in MIM and then dividing the nu-
merator and denominator by a*:
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One special case of BK seems especially well suited to
computational analysis:
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Another special case of BK, in which ¢ =x and x

is replaced by 2x, provides exceptionally rapid conver-
gence to e:
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Figure 1. A comparison of the new approximations CAM, MIM, and
PRM versus the Classical and Direct methods for 1 = x = 4. All meth-
ods are defined in the text. The Direct method is calculated using
Eq. (1) in which N = x and, therefore, is the sum of x + 1 terms; all
other methods are closed-form approximations. A 15-decimal-place-
accurate approximation to e is plotted for visual reference.

As x**>>x! for integer values of x > 1, the RHS of
Eq. (12) implies that BK should converge to e much more
quickly than the Direct method when the two methods
are compared using N = x in Eq. (1). Furthermore, the
comparative advantage of BK versus the Direct method
will only widen for increasing .x.

Hyperexponentiated Brothers—Knox Method (BK"):
Obviously, the BK method can be generalized for a = x;
x replaced by 2x, and an arbitrary number of expo-
nentiations:

x4 g |7 1
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in which n indicates the order of the exponentiation.
BK" is, in fact, a generalization of other approximations
presented here; for example, BK in the form of Eq. (12)
corresponds to BK" with n = 1; MIM corresponds to the
derivation of BK" with @ = 22, and n = 0.

The most rapidly converging example of this class of
approximations results when n is set equal to x in BK™
(or equivalently, when a =x and x is replaced by 2x*

in BK):
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The convergence of BK* is astonishingly rapid; it would
appear to possess greater-than-quadratic convergence
even for small x [4, pp. 70-71].

The ultimate example of hyperexponentiation would
employ in BK the relationsa =xandx =x 1 T, where
our notation follows Knuth’s [9, p. 38] and indicates that
x is to be raised to the x power x number of times. We
do not pursue this here. Although this approach of hy-
perexponentiation closely resembles work on infinite it-
erated exponentials [http://www.mathsoft.com/asolve/
constant/itrexp/itrexp.html], we are not aware of any ap-
plication of the latter to the calculation of e.
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Numerical Computations

For the visually inclined, we provide two figures and a table
which illustrate the utility of our new closed-form approx-
imations to e.

Approximations to e

Figure 1 compares the Classical and Direct methods to

Direct
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CAM, MIM, and PRM for small x. The direct method (1) is
computed where N = x. It is noteworthy that all of the new
approximations shown here tend to e from above, whereas
the Direct and Classical methods approach e from below.
The superior convergence of CAM, MIM, and PRM versus
the Classical method is obvious; however, for x = 5, the
Direct method is more accurate than these three new ap-
proximations.

In Figure 2, the Direct method is compared to CMPAM,
BK, and BK” for small x. The Direct method is calculated
as in Figure 1; BK is calculated using the special case (12);
and BK" is Eq. (13) with n = 2. The extremely rapid con-
vergence of CMPAM, BK, and BK" clearly outpaces that of
the Direct method for small .

Table 1 presents a comparison of all the approxima-
tion methods for larger values of x than those shown in
the figures. In Table 1, BK and BK" are calculated as in
Figure 2.

In addition, we have made a very modest foray into the
realm of high-precision calculations of e. We have used MIM
for this purpose, as it involves very few arithmetic opera-
tions and performs well without optimization. Running
Mathematica 2.2 on an IBM RS/6000 computer, we calcu-
lated MIM in the form [(x + 1)/(z — 1)]*. This form of MIM
is chosen to mitigate the loss of precision that occurs if the
calculation is done with MIM as shown in Eq. (7). For the
same reason, we manually typed in x as 10'5%0 with 30,000
decimal places; in Mathematica, there is loss of precision
if one defines x as x — NL10.300003°15000 instead.
(Manual typing of 30,000 decimal places is not an onerous
task using Mathematica's paste option.)

Once x was defined, we employed MIM to calculate
29,999 correct decimal places of e in 15 s. This compares
very favorably to the 12-s runtime on the same hardware

Figure 2. A comparison of the new approximations CMPAM, BK, and
BK", where n = 2, versus the Direct method for 1 = x < 4. A 15-dec-
imal-place-accurate approximation to e is plotted for visual refer-
ence. Note that the ordinate scale is not the same as in Figure 1.

and software needed to calculate an equivalent number of
correct decimal places using the NLCExpL[11.300001
command in Mathematica. This is by no means a rigorous
test of the computational speed and accuracy obtainable
with our new approximations using this software/hardware
configuration, but is presented to give some comparison
between existing and new methods.

Given the extraordinarily rapid convergence of BK", we
believe that it may be possible to use our methods to com-
pute e to unprecedented accuracy. As an extreme example,
we estimate that for x = 10, the BK* approximation would
yield e accurate to 40 billion decimal places, although ob-
viously that computational task would be formidable.
However, the computational potential of the BK" class of
approximations cannot be thoroughly evaluated until opti-
mization of the calculation of x®™ using Fast Fourier
Transform (FFT) methods is performed [S. Plouffe, per-
sonal communication]. We leave these experiments to the
experts on this subject.

Discussion

We have identified and formally established the existence
of new closed-form approximations to e. Six of the new ap-
proximations discussed here improve upon the classical
closed-form approximation. In particular, the BK" class of
approximations converges to e much more rapidly than
even the direct Maclaurin series method. Therefore, our
work may have practical application.

The impressive numerical accuracy of these new ap-
proximations should not cloud our eyes to an even more
extraordinary aspect: the elegance and simplicity of the ex-
pressions for e, particularly MIM. Compared to many other
methods for computing classical constants, MIM is breath-
taking. Only one addition, one subtraction, one multiplica-

TABLE 1. Comparison of decimal-place accuracy of various approximations to e

x (=N) Classical CAM MIM PRM CMPAM Direct BK BK"”
10 0 1 2 7 7 ~40 400
100 1 3 4 13 159 ~800 ~80,000
1000 2 5 6 19 2570 ~12,000 ~12,000,000

Note: To illustrate this comparison, in the first row where x =N = 10, the Classical method = (1 + 1/10)!°, MIM = (21/19)'°, and the Direct method =
chiu (Uk!). BK® is calculated with n = 2. The ~ sign indicates a theoretical estimate.
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tion {employed twice), one division, and one exponentia-
tion are required to approximate e to tens of thousands of
decimal places. The mathematical knowledge required to
understand it is provided in introductory calculus, but the
end result can be grasped and computed by an elementary-
school student. The logarithmic constant e is famous for
turning up whenever natural beauty and mathematical ele-
gance commingle. Our work provides a new glimpse of its
austere charm.
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