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We survey recent developments in high level synthesis technology for VLSI design. The need
for higher-level design automation tools are discussed first. We then describe some basic
techniques for various subtasks of high-level synthesis. Techniques that have been proposed
in the past few years (since 1994) for various subtasks of high-level synthesis are surveyed.
We also survey some new synthesis objectives including testability, power efficiency, and
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1. INTRODUCTION

Very Large Scale Integrated Circuits (VLSI) technology provides densities
of multiple million gates of random logic per chip. Chips of such complexity
are very difficult, if not impossible, to design using the traditional capture-
and-simulate design methodology. Furthermore, VLSI technology has also
reached such a maturity level that it is well understood and no longer
provides a competitive edge by itself. Instead, time to market is usually
equally, if not more, important than area or speed. The industry has
started looking at the product development cycle comprehensively to reduce
the design time and to gain a competitive edge in the time-to-market race.
Automation of the entire design process from conceptualization to silicon
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or a describe-and-synthesize design methodology has become necessary
[Gajski 1992].

As the complexities of chips increase, so will the need for design automa-
tion on higher levels of abstraction where functionality is easier to under-
stand and tradeoff is more influential. There are several advantages to
automating part or all of the design process and moving automation to
higher levels. First, automation assures a much shorter design cycle.
Second, it allows for more exploration of different design styles since
different designs can be generated and evaluated quickly. Finally, if
synthesis algorithms are well understood, design automation tools may
out-perform average human designers in meeting most design constraints
and requirements.

Synthesis is a translation process from a behavioral description into a
structural description, similar to the compilation of a high-level language
program in C or Pascal into an assembly program. Each component in the
structural description is in turn defined by its own (lower-level) behavioral
description. Synthesis, sometimes called design refinement, adds an addi-
tional level of detail that provides information needed for the next level of
synthesis or for manufacturing of the design. This more detailed design
must satisfy design constraints supplied along with the original behavioral
description or generated by a previous synthesis step.

We define high-level synthesis (HLS) as a translation process from a
behavioral description into a register-transfer-level (RTL) structural de-
scription. High-level synthesis has been a very hot research topic over the
past 15 years. Comprehensive discussions of specific research approaches
to HLS can be found in the literature.1 We concentrate on its development
over the past three years.

The rest of this paper is organized as follows. Section 2 describes the
design flow of VLSI when HLS is used. Section 3 outlines the tasks and
basic techniques. In Section 4, several new target architectures for HLS are
surveyed. Advances in algorithmic techniques are described in Section 5. In
Section 6, we survey some new objective functions that recent HLS systems
are trying to optimize. Section 7 describes applications of HLS. Finally,
Section 8 speculates on future directions of HLS.

2. DESIGN FLOW USING HLS

A behavioral description is used as the starting point for HLS. It specifies
behavior in terms of operations, assignment statements, and control con-
structs in a hardware description language (HDL) (e.g., VHDL [Standard
VHDL Language Reference Manual 1988] or Verilog [Thomas and Moorby
1991]). An HDL differs from a software programming language (e.g., C
or Pascal) in its capability of expressing timing and concurrency of
hardware.

1See Camposano and Wolf [1991], Gajski et al. [1992], Michel et al. [1992], and Walker and
Camposano [1991].
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The output from a high-level synthesizer consists of two parts: a data-
path structure at the register-transfer level (RTL), and a specification of
the finite state machine to control the datapath. At the RTL level, a
datapath is composed of three types of components: functional units (e.g.,
ALUs, multipliers, and shifters), storage units (e.g., registers and memory),
and interconnection units (e.g., buses and multiplexors). The finite state
machine specifies every set of microoperations for the datapath to perform
during every control step.

In the first step of HLS, the behavioral description is compiled into an
internal representation. This process usually includes a series of compiler-
like optimizations such as code motion, dead code elimination, constant
propagation, common subexpression elimination, and loop unrolling. In
addition, it may also apply some hardware-specific transformations such as
syntactic variances minimization, retiming, and those taking advantage of
the associativity and commutativity properties of certain operations. A
control/data flow graph (CDFG) is a commonly used internal representation
to capture the behavior. The control-flow graph (CFG) portion of the CDFG
captures sequencing, conditional branching, and looping constructs in the
behavioral description, and the data-flow graph (DFG) portion captures
data-manipulation activity described by a set of assignment statements
(operations).

The following three steps form the core of transforming a behavior into a
structure: scheduling, allocation, and binding. Scheduling assigns opera-
tions of the behavioral description into control steps. A control step usually
corresponds to a cycle of the system clock, the basic time unit of a
synchronous digital system. Allocation chooses functional units and storage
elements from the component library. There may be several alternatives
among which the synthesizer must select the one that best matches the
design constraints and maximizes the optimization objective. Binding as-
signs operations to functional units, variables to storage elements, and
data transfers to wires or buses such that data can be correctly moved
around according to the scheduling.

These three tasks are closely interdependent. For example, an optimal
scheduling of operations to control steps without explicit performance and
cost information of component allocation is impossible. Similarly, an opti-
mal allocation of components cannot be performed without exact informa-
tion on operation concurrency. Furthermore, there exists a performance/
cost tradeoff by applying these tasks. For example, the most area-efficient
design consists of the minimum number of slow components such that a
larger number of control steps is required to execute the desired function.
On the other hand, allocating more components allows exploiting parallel
executions of operations so that a higher performance can be achieved at
the expense of higher area cost. By adjusting the constraint parameters,
the design space can be explored. One primary application of HLS is in
helping the designers with exploring the design space and hence evaluating
multiple implementation alternatives quickly.
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3. BASIC TECHNIQUES

Given a CDFG, we have to perform scheduling, allocation, and binding to
get a datapath. A byproduct of these tasks is a specification of the behavior
of the controlling finite state machine. In this section we survey some basic
techniques for scheduling, allocation, and binding.

3.1 Scheduling

Scheduling assigns operations in the behavioral description into control
steps. Within a control step, a separate functional unit is required to
execute each operation assigned to that step. Thus the total number of
functional units required in a control step directly corresponds to the
number of operations scheduled into it. If more operations are scheduled
into each control step, more functional units are necessary, which results in
fewer control steps for the design implementation. On the other hand, if
fewer operations are scheduled into each control step, fewer functional
units are sufficient, but more control steps are needed. Thus scheduling is
an important task in HLS because it largely determines the tradeoff
between design cost and performance.

There are two classes of scheduling problems: time-constrained schedul-
ing and resource-constrained scheduling. Time-constrained scheduling min-
imizes the hardware cost when all operations are to be scheduled into a
fixed number of control steps. However, resource-constrained scheduling
minimizes the number of control steps needed for executing all operations
given a fixed amount of hardware.

Integer Linear Programming (ILP) formulations for both resource-con-
strained scheduling and time-constrained scheduling [Hwang et al. 1991]
have been proposed. However, the execution time of the algorithm grows
exponentially with the number of variables and the number of inequalities.
In practice the ILP approach is applicable only to very small problems.
Nevertheless, the ILP approach has made the problems better understood.

Since the ILP method is impractical for large designs, heuristic methods
that run efficiently at the expense of the design optimality have been
developed. Heuristic scheduling algorithms generally use two techniques:
constructive approach and iterative refinement. There are many approaches
for constructive scheduling. They differ in the selection criteria used to
choose the next operation to be scheduled.

The simplest constructive approach is the as soon as possible (ASAP)
scheduling. First, operations are sorted into a list according to their
topological order. Then, operations are taken from the list one at a time
and placed into the earliest possible control step. The other simple ap-
proach is the as late as possible (ALAP) scheduling. The ALAP value for an
operation defines the latest control step into which an operation can
possibly be scheduled. In this approach, given a time constraint in terms of
the number of control steps, the algorithm determines the latest possible
control step in which an operation must begin its execution. The critical
paths within the flow graph can be found by taking the intersection of the
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ASAP and ALAP schedules such that the operations that appear in the
same control steps in both schedules are on the critical paths.

In both ASAP and ALAP scheduling, no priority is given to operations on
the critical path so that those operations may be mistakenly delayed when
resource limits are imposed on scheduling. List scheduling overcomes this
problem by using a global criterion for selecting the next operation to be
scheduled. One example of a global priority function is mobility [Pangrle
and Gajski 1987] which is defined as the difference between the ASAP and
ALAP values of an operation. The other example is urgency [Girczyc et al.
1985], which is defined as the minimum number of control steps from the
bottom at which an operation can be scheduled before a timing constraint is
violated. In list scheduling, a list of ready operations is ordered according
to the priority function and processed for each state.

The force-directed scheduling (FDS) [Paulin and Knight 1989] is another
example that uses a global selection criterion to choose the next operation
for scheduling. The FDS algorithm relies on the ASAP and ALAP schedul-
ing algorithms to determine the range of control steps for every operation.
Distribution graphs are then created to represent the probabilistic number
of operations that will be performed in the control step for each type of
operation in each control step. The main goal of the FDS algorithm is to
reduce the total number of functional units used in the implementation of
the design. The algorithm achieves the objective by uniformly distributing
operations of the same type into all the available states.

We call algorithms similar to FDS “constructive” because they construct
a solution without performing any backtracking. The decision to schedule
an operation into a control step is made on the basis of a partially
scheduled DFG; it does not take into account future scheduling of opera-
tions into the same control step. Due to the lack of a lookahead scheme and
the lack of compromises between early and late decisions, the resulting
solution may not be optimal. We can cope with this weakness by iteratively
rescheduling some of the operations in the given schedule. One example of
this approach was proposed by Park and Kyung [1991] which is based on
the paradigm originally proposed for the graph-bisection problem by Ker-
nighan and Lin (KL) [1970]. In this approach, an initial schedule is
obtained using any scheduling algorithm. New schedules are obtained by
rescheduling a sequence of operations that maximally reduces the schedul-
ing cost. If no improvement is attainable, the process halts.

In the preceding discussions only blocks of straight-line code have been
considered. However, in addition to blocks of straight-line code, a realistic
design description usually contains both conditional and loop constructs.
Many approaches [Kim et al. 1994; Wakabayashi and Yoshimura 1989]
have been proposed to schedule conditional constructs. For example, in
Wakabayashi and Yoshimura [1989] a conditional vector is used to identify
mutually exclusive operations so that an operation can be scheduled in
different control steps for different execution instances. Another approach
is the path-based As Fast As Possible (AFAP) scheduling [Camposano 1991]
which first extracts all possible execution paths from a given behavior and
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schedules them independently. The schedules for the different paths are
then combined by resolving conflicts among the execution paths. For loop
constructs, different approaches, such as pipelining [Park 1988] and loop
folding [Girczyc 1987] have been proposed.

3.2 Allocation and Binding

After scheduling, a datapath can be constructed in two steps: unit alloca-
tion and unit binding. Some researchers call unit allocation and unit
binding, collectively, datapath allocation. Unit allocation determines the
number and types of RT components to be used in the design. Since a real
RT component library may contain multiple types of functional units, each
with different characteristics (e.g., functionality, size, delay, and power
dissipation), unit allocation needs to determine the number and types of
different functional and storage units from the component library. Unit
binding maps the operations, variables, and data transfers in the scheduled
CDFG into the functional, storage, and interconnection units, respectively,
while ensuring that the design behavior operates correctly on the selected
set of components.

Unit binding consists of three interdependent tasks: functional-unit
binding, storage binding, and interconnection binding. Functional-unit
binding involves the mapping of operations in the behavioral description
into the set of selected functional units. Storage binding maps data carriers
(e.g., constants, variables, and data structures such as arrays) in the
behavioral description onto storage elements (e.g., ROMs, registers, and
memory units) in the datapath. Interconnection binding maps every data
transfer in the behavior into a set of interconnection units for data routing.

There are three approaches to solve the allocation problem: constructive
approaches, which progressively construct a design while traversing the
CDFG; decomposition approaches, which decompose the allocation problem
into its constituent parts and solve each of them separately; and iterative
methods, which try to combine and interleave the solution of the allocation
subproblems.

A constructive approach starts with an empty datapath and builds the
datapath gradually by adding functional, storage, and interconnection
units as necessary. For example, EMUCS [Hitchcock and Thomas 1983]
and MABAL [Kucukcakar and Parker 1990] use a global criterion based on
functional, storage, and interconnection costs to determine the next ele-
ment to assign and where to assign it.

Although constructive algorithms are simple, the solutions they find can
be far from optimal. In order to improve the quality of the results, some
researchers have proposed a decomposition approach, where the allocation
process is divided into a sequence of independent tasks; each task is
transformed into a well-defined graph-theoretical problem and then solved
with a proven technique. In the following, we describe allocation techniques
based on three graph-theoretical methods: clique partitioning, left-edge
algorithm, and the weighted bipartite matching algorithm.
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Tseng and Siewiorek [1986] divided the allocation problem into three
tasks of storage, functional-unit, and interconnection allocation which are
solved independently by mapping each task to the well-known problem of
graph clique-partitioning. In the graph formulation, operations, values, or
interconnections are represented by nodes. An edge between two nodes
indicates those two nodes can share the same hardware. Thus, the alloca-
tion problem, such as storage allocation, can be solved as finding the
minimal number of cliques in the graph. Because finding the minimal
number of cliques in the graph is an NP-hard problem, in Tseng and
Siewiorek [1986] a heuristic approach is taken.

Although the clique-partitioning method when applied to storage alloca-
tion can minimize the storage requirements, it totally ignores the interde-
pendence between storage and interconnection allocation. Paulin and
Knight [1989] extend the previous method by augmenting the graph edges
with weights that reflect the impact on interconnection complexity due to
register sharing among variables.

Kurdahi and Parker [1987] apply the left-edge algorithm to solve the
register-allocation problem. Unlike the clique-partitioning problem, which
is NP-complete, the left-edge algorithm has a polynomial time complexity.
Moreover, this algorithm allocates the minimum number of registers.
However, it cannot take into account the impact of register allocation on
the interconnection cost, as can the weighted version of the clique-parti-
tioning algorithm.

Both the register and functional-unit allocation problems also can be
transformed into a weighted bipartite-matching algorithm [Huang et al.
1990]. In this approach, a bipartite graph is first created that contains two
disjoint subsets (e.g., one subset of registers and one of variables, or one
subset of operations and one of functional units), and an edge connecting
two nodes in different subsets represents the node in one subset that can be
assigned to the node of the other subset (e.g., the variable in the variable
subset can be assigned to the register in the register subset). Thus, the
problem of matching each variable to a register is equivalent to the classic
job-assignment problem. In Huang et al. [1990], a polynomial time maxi-
mum weight matching algorithm is employed to solve the problem. The
matching algorithm, like the left-edge algorithm, allocates a minimum
number of registers. It also takes partially into consideration the impact of
register allocation on interconnection allocation since it can associate
weights with the edges.

Given a datapath synthesized by constructive or decomposition methods,
a further improvement may be achieved by reallocation, an iterative
refinement approach. The most straightforward approach could be a simple
assignment exchange using the pairwise exchange or the simulated anneal-
ing method. In addition, a more sophisticated branch-and-bound method
can be applied by reallocating a group of different types of entities for
datapath refinement [Tsay and Hsu 1990].
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4. NEW ARCHITECTURES

4.1 Multiport Memory

A multiport memory can support multiple read and/or write accesses
simultaneously. Using multiport memory gives the HLS more flexibility in
binding variables to storages. Traditionally, variables are grouped into
registers, and registers into register files (memory modules) before synthe-
sizing interconnection between memory modules and functional units. Kim
and Liu [1995] proposed placing emphasis on the interconnection. They
tried to minimize the interconnection first and then to group the variables
to form the memory modules later. Lee and Hwang [1995] proposed taking
multiport memory into account as early as during scheduling. They defined
a multiport access variable (MAV) for a control step, and let the scheduling
algorithm equalize the MAVs across all control steps in order to achieve a
better utilization of the memory.

4.2 Distributed Storage

Most traditional HLS systems are intended for centralized storage units.
Every operation must access its input operands from and write its output
operands to the storage units. For some regular iterative algorithms, this
architecture may not be optimal. Aloqeely and Chen [1994] proposed a
sequencer-based datapath architecture. A sequencer is a stack or queue
connecting one functional unit to another. By letting variables intelligently
“stay” in or “flow” through sequencers in the datapath for future use, high
quality datapaths can be synthesized for many signal processing and
matrix computation algorithms. Furthermore, less traffic is needed be-
tween the functional units and the central storage units, resulting in a
simple interconnection complexity. A similar concept called data routing
has been proposed for both HLS and code generation [Lanneer 1994].

4.3 Partitioned Bus

Ewering [1990] proposed a parameterized architecture called partitioned
buses. Buses are partitioned into segments. Each functional unit and each
storage unit is connected to one part of the segment. Most data transfers
occur within a segment. Intersegment transfers are made possible through
switches between segments. Since the loading of the bus is light, the
synthesized circuit is fast. Scheduling and allocation is done such that the
amount of intersegment data transfer is minimized.

5. NEW TECHNIQUES

There have been quite significant advances in HLS algorithms and heuris-
tics. Various methods have been proposed for transforming the CDFG so
that a high-quality circuit is easier to synthesize. Several groups have
extended the ILP formulation for more general scheduling problems, more
capability in handling large designs, or more problems in addition to
scheduling. Algorithms originally developed for other problems have been
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employed for HLS too. Several groups proposed various neural network
models for various HLS tasks. As the solution techniques get more power-
ful, it is no longer necessary to divide the synthesis problem into multiple
subtasks. A notable development is in performing all tasks together as a
single task in order to achieve better quality of design.

5.1 Behavioral Transformation

Transformations can be applied to the design representation at various
stages of HLS. During compilation of the input behavioral description into
a control/data flow graph, several compiler-like optimizations can be per-
formed to remove the extraneous syntactic constructs and redundancies.
Flow-graph transformations are used to convert parts of the representation
from one style (e.g., control flow) to another (e.g., data flow) and to change
the degree of parallelism. Hardware-specific transformations use proper-
ties of register-transfer (RT) and logic components to perform optimizations
(e.g., replacing a data-flow graph segment that increments a variable with
an increment operation).

Since the flow-graph representation typically comes from an imperative
language description, several standard compiler optimization techniques,
such as constant folding and redundant operator elimination, can be
performed on the representation [Aho et al. 1986]. Arrayed variables are
another rich source of compiler-level optimizations for HLS [Grant and
Denyer 1991; Orailogulu and Gajski 1986]. Since arrays in the behavioral
representation get mapped to memories, a reduction in the number of array
accesses decreases the overhead resulting from accessing memory struc-
tures [Kolson et al. 1994].

Certain compiler transformations are specific to the HDL used for
describing the design. For example, when VHDL is used for design descrip-
tion, several approaches proposed by Bhasker and Lee [1990] can identify
specific syntactic constructs and replace them with attributes on signals
and nets to indicate their functions. Furthermore, in order to reduce the
syntactic variation of descriptions with the same semantics, Chaiyakul et
al. [1993] proposed a transformation technique using Assignment Decision
Diagrams (ADD) to minimize syntactic variance in the description.

The graph capturing the behavior can be restructured. Tree height
reduction is one of the commonly used flow-graph transformations to
improve the parallelism of the design. Tree height reduction uses the
commutativity and distributivity properties of language operators to de-
crease the height of a long expression chain, and exposes the potential
parallelism within a complicated data-flow graph [Hartley and Casavant
1989; Nicolau and Potasman 1991].

Pipelining is another frequently applied transformation in HLS [Park
1988]. Other commonly used transformations include loop folding [Girczyc
1987; Lee et al. 1994], software pipelining [Goossens et al. 1990; Potkonjak
and Srivastava 1995], and retiming [Potkonjak and Rabaey 1994].

Hardware-specific transformations at the logic, RT, and system levels
can be applied to the intermediate representation. In general, these are
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local transformations that use properties of hardware at different design
levels to optimize the intermediate representation. For example, at the
logic level, we can apply local Boolean optimization techniques [Darringer
and Joyner 1980] to the intermediate representation. At the RT level, we
can use pattern matching to detect and replace portions of the flow graph
with simpler flow-graph segments. The pattern-matching transformations
are based on RT semantics of the hardware components corresponding to
the flow-graph operators [Rosenstiel 1986]. System level transformations
can be used to divide parts of the flow graph into separate processes that
run concurrently or in a pipelined fashion [Walker and Thomas 1989].

5.2 Advance in ILP Formulation

Achatz [1993] proposed an extension to the ILP formulation to enable it to
handle multifunctional units as well as units with different execution times
for different instances of the same operation type.

Wang and Grainger [1994] showed that the number of constraints in the
original ILP formulation can be reduced without reducing the explored
design space. Therefore, the computation can be more efficient or the
formulation can be applicable to larger-sized problems.

Chaudhuri et al. [1994] performed an indepth formal analysis of the
structure of the assignment, timing, and resource constraints, evaluated
the structure of the scheduling polytope described by these constraints, and
showed how to exploit that structure in a well-designed ILP formulation.
They also proposed improvements to a well-structured formulation by
adding new valid inequalities.

In the OSCAR system [Landwehr et al. 1994], a 0/1 integer programming
model is proposed for solving scheduling, allocation, and binding. Gebotys
[1994] proposed an integer programming model for the synthesis of multi-
chip architecture. Her model simultaneously deals with partitioning, sched-
uling, and allocation. The search space is reduced by using a polyhedral
theory.

Wilson et al. [1995] generalized the ILP approach in an integrated
solution to the scheduling, allocation, and binding in datapath synthesis. A
module may execute an arbitrary combination of operations, possibly using
a different number of control steps for different types of operations.
Operations may be bounded to a variety of modules, possibly requiring a
different number of control steps depending on the module chosen.

5.3 New Approaches

Ly et al. [1995] proposed an idea of “behavioral templates” for scheduling.
A template locks a number of operations into a relative schedule with
respect to one another. It eases the handling of timing constraints, sequen-
tial operation modeling, prechaining of certain operations, and hierarchical
scheduling.

Many neural net based scheduling algorithms have been proposed. ANSA
[Unaltuna and Pitchumani 1995] is a three-phase neural network sched-
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uler. Kawaguchi and Tokada [1995] combined simulated annealing and
neural networks for the scheduling problem.

Genetic algorithms also find their application in high-level synthesis.
Dhodhi et al. [1995] proposed a problem-space genetic algorithm (PSGA) for
datapath synthesis. It performs concurrent scheduling and allocation with
the objective of minimizing a cost function of the hardware resource and
the total execution time. Heijligers et al.’s [1995] genetic algorithm uses an
encoding technique that is capable of allocating supplementary resources
during scheduling. They also paid attention to runtime efficiency by means
of carefully designed analyzing methods.

Ly and Mowchenko [1993] proposed adapting simulated evolution (SE) to
high-level synthesis. Simulated evolution has been successfully applied in
other CAD areas including routing, partitioning, and placement. SE-based
synthesis explores the design space by repeatedly ripping up parts of a
design in a probabilistic manner and reconstructing them using applica-
tion-specific heuristics. It combines rapid design iterations and probabilis-
tic hill climbing to achieve effective design space exploration. The objects
subject to ripping up and reconstruction are operation-to-step assignments
and various binding.

InSyn [Sharma and Jain 1995] combines allocation and scheduling of
functional, storage, and interconnect units into a single phase. It uses the
concept of register state (free, busy, and undecided) for optimizing registers
in a partial schedule where lifetimes of data values are not yet available. It
alleviates bus contention by using reusable data values and broadcast, or
selectively slowing down noncritical operations. InSyn can trade off distinct
resource sets concurrently; that is, it can trade a functional unit for some
registers, or vice versa. Estimation tools are utilized for resource allocation,
design space pruning, and evaluation of the synthesized results.

6. ADVANCE IN OBJECTIVE FUNCTION

6.1 More Accurate Estimation

Traditional HLS systems characterize their synthesis results based on very
crude estimation. Area is estimated with the sum of the area of functional
units, storage units, and interconnects. Timing is estimated assuming that
wiring delay is insignificant. As we move into the deep submicron era, both
wiring area and timing can no longer be ignored. Many estimation methods
have been proposed. Moreover, interaction between HLS and layout has
been investigated.

Rim and Jain [1994] proposed a performance estimation tool. Given a
data-flow graph, a set of resources, resource delay, and a clock cycle, their
tool computes a lower-bound completion time for nonpipelined resource-
constrained scheduling problems.

Chaudhuri and Walker [1996] proposed an algorithm for computing lower
bounds on the number of functional units of each type required to schedule
a data-flow graph in a specified number of control steps. The bounds are
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found by relaxing either the precedence constraints or the integrity con-
straints on the scheduling problem. This bounding method is used to
estimate FU area, to generate resource constraints for reducing the search
space, or in conjunction with exact formulation for design space explora-
tion.

Mecha et al. [1996] proposed a high-level area estimation method de-
signed for standard cell implementation. They emphasized predicting the
interconnection area.

Fang and Wong [1994] proposed simultaneously performing functional
unit binding and floorplanning. Munch et al. [1995] proposed an analytical
approach to capture the placement and binding problems in a single mixed
ILP model. Proposed for a linear bit-slice architecture, the model is capable
of minimizing the overall interconnect structure of the datapath.

6.2 HLS for Testability

Testability at the high level can be enhanced by minimizing the number of
self-loops (self-adjacent registers). The main concern is in the tradeoff
between testability improvement and area overhead.

Since multiplexors and buses can behave as switches, they can help to
reduce the test costs. Gupta and Breuer [1995] proposed taking advantage
of multiplexors and buses to reduce both the area overhead and test
generation costs. They analyzed the locations of switches during the
selection of partial scan registers. They also utilized the switches to setup
paths for transporting test data.

Flottes et al. [1995] proposed a method to improve the testability by
incorporating test constraints during register allocation and interconnect
network generation. They analyzed the testability of a design at the
behavioral level in the presence of loops and control constructs. Dhodhi et
al. [1995] proposed a problem-space genetic algorithm (PSGA) for perform-
ing simultaneously scheduling and allocation of testable functional units
and registers under area, performance, and testability constraints. Mujum-
dar et al. [1994] proposed a two-stage approach for binding for testability.
First, they used a binder with test cost to generate a nearly loop-free
design. Then, they used a loop-breaking method to identify self-loops in the
design, and eliminated these loops by alternating the register and module
binding.

Potkonjak et al. [1995] proposed methods for transforming a behavioral
description so that synthesis of the new description requires less area
overhead and partial scan cost. They proposed a two-stage objective func-
tion for estimating the area and testability as well as for evaluating the
effects of a transformation. Then they used a randomized branch-and-
bound steepest decent algorithm to search for the best sequence of trans-
formations.

Testability can be improved via better controller design. Hsu et al. [1996]
proposed a controllability measure for high-level circuit description and a
high-level synthesis-for-testability technique. They improved the circuit
testability by enhancing the controllability of the control flow.

High-Level Synthesis • 13

ACM Transactions on Design Automation of Electronic Systems, Vol. 2, No. 1, January 1997.



6.3 HLS for Low Power

Due to low power requirements in many portable applications such as
notebooks and mobile phones as well as packaging cost consideration, low
power design technology is becoming very important in every aspect of
VLSI design. A great deal of research effort has been spent on circuit and
logic design for low power [Pedram 1996], and in the past few years there
has been active research for low power for HLS.

For low power HLS, high-level power estimation techniques are needed.
Raghunathan et al. [1996] proposed some techniques for estimating switch-
ing activity and power consumption at register-transfer level. They take
into account the presence of glitching activity at various data path and
control signals.

Rabaey et al. [1995] proposed an approach for high-level design guidance
for low power using properties of given algorithms and architectures.
Several relevant properties (operation count, the ratio of critical path to
available time, spatial locality, and regularity) are identified. Significant
emphasis is placed on exploiting the regularity and spatial locality for the
optimization of interconnect power. Their scheduling, assignment, and
allocation techniques [Mehra and Rabaey 1996] exploit the regularity and
common computation patterns in the algorithm to reduce the fanins and
fanouts of the interconnection wires, resulting in reduced bus capacitance
and simplified bus structure.

Raghunathan and Jha [1994] proposed a datapath allocation method for
low power. They also took into account the controller’s effect on datapath
power dissipation. Goodby et al. [1994] proposed achieving low power via
pipelining and module selection. Musoll and Cortadella [1995] proposed a
scheduling and resource-binding algorithm for reducing the activity of the
function units by minimizing the transitions of their input operands.
Kumar et al. [1995] measured activities of operations and carriers in a
behavioral specification by simulating the DFG with user-supplied profiling
stimuli. They selected a module set and schedule that minimized the
switching activity.

Martin and Knight [1995] applied several low power techniques in
behavioral synthesis including lowering supply voltage, disabling the clock
of idle components, and architectural tradeoff.

6.4 HLS for Reliability

In many critical applications, fault-tolerance is very important. It is
desirable that a system is capable of self-recovery in the presence of
transient faults. In a self-recovering microarchitecture, intermediate re-
sults are compared at regular intervals, and if correct saved in registers
(checkpoints). On the other hand, on detecting a fault, it rolls back to a
checkpoint and retries. Orailoglu and Karri [1994] proposed a self-recover-
ing microarchitecture synthesis system. They proposed an algorithm for the
selection of good checkpoints that has low overhead while meeting the
constraint on the number of clock cycles of a retry period.
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Self-testing can be carried out concurrently with normal operations using
otherwise idle functional units. Singh and Knight [1994] proposed a
method to test hardware elements when they are not used. It generated a
circuit to cycle test vectors through the idle hardware and produce a
signature. Built-in self testing is achieved with reduced test-time overhead.

The hot-carrier reliability issue has also been dealt with in high-level
synthesis. Karnik et al. [1995] proposed an iterative redesign method to
improve the long-term reliability of a given high-level circuit. They used
macromodels of standard circuit elements developed using a reliability
simulation tool. Reliability improvement is due to capacitance reduction.

6.5 Controller Issues

Traditionally, the control unit specification is generated after the datapath
is synthesis completed. Recently, some authors observed that there exists a
tradeoff between the controller and the datapath. Rao and Kurdahi [1994]
proposed a hierarchical approach in which the control logic overhead could
be taken into account at each level of the hierarchy before the datapath was
fully synthesized. Their approach is most suitable for behavior consisting of
regular algorithms. Huang and Wolf [1994] studied how datapath alloca-
tion affects controller delay. They proposed an allocation approach that
considers the controller’s effect on the critical path delay. Therefore they
were able to minimize the system clock length during allocation.

7. APPLICATIONS OF HLS

Over the years, HLS has been successfully applied for the designs of
several narrow, application-specific domains. For example, many HLS
systems, such as Cathedral [Lanneer et al. 1990], Hyper [Chu et al. 1989],
and Phideo [Lippens et al. 1991], provide a design environment for digital
signal processing (DSP) applications with various levels of throughput
requirements. In contrast to computationally intensive DSP designs, many
other HLS systems, such as HIS [Camposano et al. 1991], Callas [Ledeux et
al. 1993], and Olympus [DeMicheli et al. 1990], have been designed for
control-dominated circuit designs. In addition, an HLS system Mimola/
Honeywell [Zimmermann 1980] has been created for instruction set proces-
sor design. The System Architect’s Workbench from CMU [Thomas et al.
1990] has been used in designs for automotive applications [Fuhrman
1991].

A high-level synthesis tool even finds its use in education [Reese 1994].
With a datapath synthesizer capable of exploiting the design space, stu-
dents are able to try different architectural decisions and evaluate their
effectiveness.

Recently, HLS has been used in an embedded system design environ-
ment. A typical embedded system consists of off-the-shelf instruction set
processors, memory, and ASICs. Each application is partitioned into two
interacting parts: software on the instruction set processor and hardware
on the ASICs. Several approaches [Ernst and Henkel 1992; Gupta and
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DeMicheli 1992] have been developed to tackle the hardware–software
codesign problems. An HLS tool is definitely needed to quickly give the cost
and performance figures of the synthesized ASIC.

With the advent of field-programmable hardware such as field program-
mable gate arrays (FPGAs) and field programmable interconnect compo-
nents (FPICs), many designs are implemented in FPGAs. Fast turnaround
is more important to FPGA- than ASIC-based implementation. Using HLS
provides an unmatchable fast turnaround time.

Taking advantage of the reprogrammability of FPGAs and FPICs, hard-
ware emulation provides a very fast means for design verification. Cur-
rently, most hardware emulators take as input a logic-level structural
description. With HLS, extensive verification can be performed earlier in
the design process. For example, in Wehn et al. [1992] an HLS scheme is
used for automatic mapping of behavioral description onto an ASIC emula-
tion board.

In a custom computer, hardware resources are configured according to
the characteristics of the application programs. HLS is essential here in
converting an algorithm or a code segment into an FPGA/FPIC program-
ming bitstream.

8. FUTURE DIRECTIONS

Although we have seen its many applications, HLS today is still not as
indispensable as layout or logic synthesis. For high-level synthesis to move
into mainstream design practice, its area efficiency and performance level
must be competitive with those of traditional approaches. A possible
approach is to embed more domain knowledge into the synthesizer. For
instance, many DSP-oriented HLS systems have been developed. Unfortu-
nately, this approach has one serious drawback. The more domain-specific
a tool is, the smaller its customer base will be. Since HLS development is a
difficult and complicated task, a small customer base may not be able to
support its healthy growth.

In the deep submicron era, wiring delay will dominate gate delay.
Therefore wiring delay must be taken into account as early in the design
process as possible. Work has been done in dealing with the interaction
between logic synthesis and layout, and we have surveyed work on simul-
taneous allocation and floorplanning. In the future, we shall see more
interaction between high-level synthesis and layout. Every step of HLS
should take layout into account.

With the rapid increase in the integration level, we must prepare to deal
with (complicate) system-on-a-chip issues. It is impractical to design multi-
million gate chips from scratch. Therefore it is essential to make good use
of existing designs. A successful HLS tool should provide a smooth mecha-
nism for the user to reuse a wide variety of components.

We also have to pay attention to design verification. Although HLS is
indeed effective in reducing the time for synthesis, a quite significant
portion of the design time is spent on simulation and validation, for which
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HLS does not provide any help (to date). Since verification at the higher
level is more efficient than that at the lower level, a correctness-preserving
HLS design flow will significantly save validation time. Therefore it will
give the designer more incentive to use HLS tools.
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