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1. Introduction 
 
Conventional wisdom has it that network analysis is intolerant of missing or mistaken data. On 
the basis of examples like Figure 1 (Roethlisberger & Dickson, 1939), we typically reason that 
the failure to record a single node (such as W5) or a single tie (such as the tie between W5 and 
W7) can lead to a radically different understanding of the network and misleading measurements 
of network indices such as centrality. Similarly, it is commonly assumed that it is not possible to 
measure node properties like centrality accurately when sampling nodes or ties from networks.  
 

I1

W1 W2

W3

W4

W5

W6

W7

W8

W9

S1
S4

 
Figure 1. Games relation from Hawthorne Bank Wiring Room study (Roethlisberger & Dickson, 1939). 

Isolates removed. 
 
However, very little work has actually been done to check these assumptions and evaluate under 
what circumstances measures computed on “errorful” or sampled network data could be 
accurate. A notable exception is the work by Marsden (1990) using the GSS data on networks. In 
later work, Marsden (1993) went on to suggest conditions under which network density and 
composition estimates were likely to be reliable. More recently, Costenbader and Valente (2004) 
examined the robustness of centrality measures in the face of inaccurate or incomplete network 
data. In this paper, we replicate and extend this work, examining the accuracy of centrality 
measures when data are incomplete due to either random measurement error (including missing 
data) or deliberate sampling on nodes or edges. 
 
Understanding the robustness of basic network measures is extremely important in order to 
assess the validity of network research. This is particularly true when we study large or covert 
networks, where the data is likely to be missing or hidden (Carley, 2003).  Centrality measures 
provide a good starting point as they are among the most frequently used of all network 
measures.  Our fundamental research question is to understand how accuracy in the measurement 
of centrality declines with increasing error. As a practical corollary, we ask how the relationship 
between error and robustness is affected by basic characteristics of the network, such as size and 
density.  



 
 
We should note that previous work in this area (Marsden, 1990; Costenbader and Valente, 2004) 
relied on empirical samples (i.e., “real data”) in assessing the various network measures.  A 
limitation of this approach is that the sampling errors contained in the data are likely to be 
systematic, but the pattern is unknown. Another limitation is that the sample of networks is 
necessarily very limited. To overcome these limitations, we take a statistical computational 
approach and examine robustness in a very large sample of random graphs, into which we 
introduce a controlled amount and kind of error.  
 
 
2. Methodology 
 
We start with a known or true network (which could also be regarded as the population network), 
compute centrality (referred to as “true centrality”), distort or sample from the network to 
generate the observed network, compute centrality on the observed network (called the 
“observed centrality”), and then compare the true and observed centrality measures.  
To construct the true networks, we used random networks of varying sizes and densities 
generated by the method of Erdos and Renyi (1959). Networks of size 10, 25, 50, and 100 nodes 
were generated.  For each size, networks of the following densities were constructed: 1%, 2%, 
5%, 10%, 30%, 50%, 70%, and 90%.  
 
For each network, exactly one of four types of error was introduced in order to construct the 
observed network: node removal, node addition, edge removal, and edge addition. Node removal 
refers to the extraction of a certain proportion of existing nodes, selected at random. Node 
addition refers to the insertion of a certain proportion of extra nodes into the network. Whenever 
a node was added, ties were also randomly added from the node to other nodes in the network. 
The degree of the new node was chosen by randomly selecting an existing node and adopting its 
degree.1 Edge removal refers to dropping a given proportion of edges, selected at random. Edge 
addition refers to the addition of ties not present in the true network, simulating measurement 
error in which ties are erroneously recorded between nodes that in truth are not tied. The 
following proportions of error were introduced across all four kinds of error: 0%, 1%, 5%, 10%, 
25%, and 50%. 2 
 
Both the node-removal and edge-removal cases can be thought of as forms of sampling from the 
network, since what remains after removal is a random sample of the network. However, we note 
that this kind of sampling is different from the kind of sampling found in ego-network analysis, 
in which all ties of a given type connected to a sampled node are collected, including ties to 
nodes not in the sample. For measuring degree centrality and possibly betweenness centrality 
(Everett & Borgatti, 2004), this ego-net form of sampling would be expected to yield more 
accurate centrality estimates than the kind of sampling we are doing here. 
 

                                                 
1 However, ties among the new nodes add to each node’s degree, so that new nodes have higher overall degree than 
corresponding original nodes. 
2 The 0% error cases provided a check on the programming and a starting point for line diagrams. 



Thus, for each kind of error, we use an 8x6x4 factorial design (eight levels of density by six 
levels of error by four levels of network size) for a total of 192 distinct combinations.  For each 
of the 192 combinations, we generated 10,000 pairs of true and observed networks.  
 
There are many measures of centrality of a node in a graph (Wasserman & Faust, 1994:169), 
dating back as far as Moreno (1934) who identified “stars” as those with special importance and 
influence.  Within this family, four measures stand out as foundational in our field: degree, 
closeness, betweenness, and eigenvector centralities.  Their prominence within the field of 
network analysis stems from the fact that they all have strong yet distinct theoretical 
underpinnings (Freeman, 1979; Bonacich, 1972; 1987) and that they are frequently used for 
empirical analysis of social systems (e.g., see Brass & Burkhardt, 1993, for a review of their use 
in organizational research; see Podolny, 1993, for an influential study based on Bonacich’s 
eigenvector centrality).  For these reasons, we will restrict ourselves to these four measures in the 
present paper. 
 
For each pair of networks, we measure degree, betweenness, closeness and eigenvector 
centrality, and compare them using five measures of accuracy (see Table 1). The accuracy 
measures are averaged across the 10,000 replications for each cell in the experimental design, 
resulting in a single value for each measure for each of the 192 factorial combinations.  
 
The first measure of accuracy, labeled “Top 1” in tables all tables, is the average proportion of 
times that the most central node in the observed network was also the most central node in the 
true network. The second measure, labeled “Top 3”, is the proportion of trials in which the most 
central node in the observed network is among the top three most central nodes in the true 
network. The third measure, labeled “Top 10%”, is the proportion of trials in which the most 
central node in the observed network is in the top decile of the true network. The fourth, labeled 
“Overlap”, gives the overlap between the top decile of the observed network and the top decile 
of the true network. It is computed as |U∩V|/|U∪V| where U is the set of nodes in the top decile 
of the observed network, and V is the set of nodes in the top decile of the true network. The 
numerator gives the size of the intersection of U and V, while the denominator gives the size of 
the union of U and V. The ratio is 1 when the deciles are identical, and 0 when they are wholly 
disjoint. The last measure of accuracy, labeled “R-Squared”, is the square of the Pearson 
correlation coefficient between true and observed centrality. We interpret it as the proportion of 
variance in true scores accounted for by observed centrality. For the node-removal and node-
addition error types (in which true and observed networks have different sets of nodes), the 
correlation measure is calculated on only those nodes that appear in both the true and observed 
networks; nodes not in common are ignored. 
 

Table 1. Measures of Centrality Robustness 
 
Measure Description 
Top 1 Proportion of times that the most central node in the true network is also the most central node in the 

observed network. 
Top 3 Proportion of times that the most central node in the observed network is among the top three most 

central nodes in the true network. 
Top 10% Proportion of times that the most central node in the observed network is among the top ten percent 

of nodes in the true network. 
Overlap Number of nodes in both the top 10% of the true network and the top 10% of the observed network, 



divided by the number of nodes in either. 
R-Squared  Square of the Pearson correlation between true centralities and observed centralities, taking as cases 

only nodes found in both the true and observed networks. 
 
The analysis consists primarily of scatterplots of centrality robustness as a function of amount of 
measurement error added, across different types of error. In addition, some regressions are 
performed in order to examine the effects of network size and density on robustness. The data for 
these regressions are mean accuracy scores for each of the 192 experimental combinations; 
hence, the cases are treatment groups. As a result, the regressions are descriptive only, and we do 
not report significance tests. 
 
 
3. Results 
 
Table 2 presents average accuracy scores for all centrality measures and all measures of accuracy 
at all error levels of all types of error. For simplicity, only results for graphs of size 100 and 
density 50% are shown.3 The effects of network size and density on robustness are discussed in a 
later section. 
 

[INSERT TABLE 2 HERE (see end of document)] 
 
Perhaps the most striking thing about Table 2 is the similarity in results obtained across 
centrality measures. A comparison of corresponding columns for each measure (such as node 
removal for degree compared to node removal for betweenness) shows that the four centrality 
measures behave virtually identically in the face of measurement error. This suggests that the 
distinction between local and global measures of centrality (Scott, 2000) is not as important as 
previously thought. These results are consistent with those of Everett and Borgatti (2004) who 
found that betweenness calculated on ego networks (a local measure) was, on average, nearly 
identical to betweenness calculated on the full network in which ego networks were embedded (a 
global measure).  
 
Figure 2 presents scatter plots of betweenness accuracy as a function of error level for all four 
kinds of error. Each curve in the plots represents a different method of measuring accuracy. We 
note that the accuracy measures have distinctive characteristic curves. The Top 1 and Overlap 
measures decline the most rapidly, in a pattern resembling an exponential decay. These are the 
strictest measures of accuracy. The R-Squared and Top 3 measures decline approximately 
linearly with increasing error. Finally, the Top 10 measure of accuracy is also largely linear and 
the least sensitive, declining quite gently as a function of error.  
 
It is also apparent that accuracy declines very smoothly and predictably with increases in error. 
For example, the R-Squared measure declines linearly with error, and in fact the proportion of 
variance in true centrality accounted for by observed centrality is approximately 1 - Error, so that 
losing 25% of nodes yields 75% variance accounted for, while losing 50% of nodes yields 50% 

                                                 
3 Because we investigate both the addition and deletion of ties, 50% density represents a neutral point for 
comparison with respect to robustness. As explained in a later section, lowering density favors edge removal, while 
raising it favors edge addition. 



variance accounted for. The monotonicity and predictability of accuracy decline is very good 
news because it means that if we knew the level of (random) error in a dataset, we could in 
principle construct error bounds around our centrality estimates.  
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Figure 2. Scatter plots of average betweenness accuracy as a function of error level for all four 
kinds of error (limiting to graphs with 100 nodes and 50% density). Each line represents a dif-
ferent accuracy measure. Top line: Top 10%. Second line: R-squared. Third line: Top 3. Fourth 
line: Overlap. Bottom line: Top 1. 

 
The effects of different kinds of error are remarkably similar to each other. In particular, the 
shapes of the accuracy functions are nearly the same across error types. With respect to overall 
levels of accuracy, careful comparison of the values in Table 2 shows that node errors are 
generally more forgiving than edge errors at the same nominal error rate, and that node addition 
is in general the most forgiving error while edge addition is the least forgiving. A regression 
analysis (not shown) of accuracy on error type, controlling for error level, network size and 
density, shows that on average, node addition increases the expected r-square by approximately 
.25 relative to edge addition.  
 
An intriguing area to explore is the effect of density on accuracy. Table 3 shows standardized 
regression coefficients for density in regressions of betweenness accuracy on density and error 



level, for graphs of size 100.4 As noted earlier, the cases for the regressions are the 192 
experimental combinations, and the dependent variables are average accuracy scores. The results 
indicate that, controlling for error level, density enhances accuracy in the case of edge additions, 
but reduces accuracy in the case of edge deletion. This moderated effect of density on accuracy 
is probably due to the number of dyads available to be changed. In the case of edge removal, 
greater density means more ties available to be removed, making greater changes in the network 
as a whole and therefore reducing accuracy. In the case of edge addition, greater density means 
fewer untied dyads available to be tied, and so fewer changes to the network as a whole. Thus, 
the underlying variable is the absolute amount of change to the network – the Hamming distance 
between the true and observed networks. A similar effect may occur with node addition. When 
we insert nodes, we add ties from the new nodes to the old ones and to the other new ones. The 
number of ties added is a non-linear function of the density of the original network. As a result, 
denser networks result in disproportionately more ties being added which increases the Hamming 
distance between true and observed networks.  
 

Table 3. Standardized regression coefficients for density in regressions of betweenness accuracy on density and 
error level, for graphs of size 100. Each coefficient is drawn from a separate regression. 

 

Error Type Top 1 Top 3
Top 
10% Overlap

R-
Squared 

Edge Addition 0.408 0.469 0.495 0.412 0.504 
Edge Removal -0.267 -0.287 -0.348 -0.269 -0.177 
Node Addition -0.164 -0.162 -0.219 -0.2 -0.156 
Node Removal 0.014 0.025 0.001 0.004 0.003 

 
Similar regressions involving network size (see Table 4) show that network size is only weakly 
related to accuracy, especially in the case of the r-squared measure, where the effect was 
essentially zero. For the Top 1 and Top 3 measures, the effect of size is negative. This occurs for 
strictly structural reasons: as networks get larger, the chances that a particular node occupies the 
same status slot (such as Top 1 or Top 3) in a perturbed version of the network gets progressively 
smaller – i.e., the ratio of possible matches to possible non-matches decreases with increasing 
size. For the Top 10% measure, the effect of size is positive. This is because the Top 10% 
criterion (the proportion of times that the most central node in the true network is found in the 
top 10% of the observed network), effectively makes the “strike zone” for correct matches 
proportional to the network size. As a result, size is positively related to accuracy measured in 
this way. 
 

Table 4. Standardized regression coefficients for network size in regressions of betweenness 
accuracy on size, density and error level. Each coefficient is drawn from a separate regression. 

 

Error Type Top 1 Top 3 Top 10 Overlap
R-

Squared 
Edge Addition -0.166 -0.188 0.122 -0.120 -0.067 
Edge Removal -0.261 -0.290 0.157 -0.220 -0.087 
Node Addition -0.295 -0.276 0.182 -0.253 -0.078 
Node Removal -0.224 -0.265 0.221 -0.194 -0.151 

                                                 
4 Results are similar for the other measures of centrality. 



 
 
 
4. Summary and Conclusion 
 
We have systematically explored the robustness of centrality measures in the face of varying 
amounts and types of measurement error. A number of conclusions can be drawn. Perhaps the 
most important is that accuracy not only declines with increasing error, but does so predictably 
and monotonically. The implication of this finding is that, in principle at least, if one knows the 
rate and type of error in the data collection process, one can establish error bounds on the metrics 
constructed from the observed data. 
 
Another key finding was that the four centrality measures considered in this paper are 
surprisingly similar with respect to pattern and level of robustness. In terms of pattern of 
robustness – the response curves across experimental conditions – the measures are essentially 
identical. In terms of overall level of robustness, the measures are extremely similar, with 
betweenness consistently a hair lower than the other three across all measures of accuracy. This 
goes against the intuitive notion that global measures of centrality like betweenness would be 
more sensitive to changes in the network than local measures like degree, since they are 
potentially affected by any change in the network no matter how distant. It may be that the 
networks in our study – all of which were random graphs -- contained enough redundancy at the 
path level to counteract the sensitivity of the global measures. If each pair of nodes were 
connected by multiple geodesic paths, the loss of a few nodes or lines would have much less 
effect on the global measures. 
 
Another surprising result was that the different types of error had relatively similar effects on 
centrality robustness. We might have expected a priori that node perturbations would create 
greater problems for measuring centrality than edge perturbations, because the loss of a node 
necessarily entails the loss of edges as well. But the results show that type of error makes 
relatively little difference, and what difference there is runs in the opposite direction: edge 
perturbation makes more difference. We believe the reason is that most graphs contain many 
more edges than nodes, so that eliminating a fixed percentage of ties will typically create a larger 
Hamming distance between the true and observed networks than dropping the same percentage 
of nodes. For example, when the density of a network of 100 nodes is 10%, losing 10% of edges 
will mean removing almost 500 edges. But losing 10% of nodes would typically eliminate just 
100 or so edges. 
 
Density of the true network tends to reduce accuracy for all kinds of error except edge addition, 
where it increases accuracy. The contingent effect of density on accuracy is due to the number of 
dyads available to be changed. In the case of edge removal, greater density means more ties 
available to be removed, making greater changes in the network as a whole. In the case of edge 
addition, greater density means fewer untied dyads available to be tied, and so fewer changes to 
the network as a whole. Thus, the underlying variable is the absolute amount of change to the 
network – the Hamming distance between the true and observed networks. 
 



One question that we have not specifically addressed is the practical bottom-line – is it 
reasonable to compute centrality indices when we know that the data contain errors? Based on 
our results, the answer would seem to be ‘yes’, as the measures of centrality tested were quite 
robust under small amounts of error (such as 10% and under). Of course, whether the levels of 
accuracy are sufficient for any given purpose is difficult to assess since it depends on external 
factors such as the consequences of error. For example, the results suggest that if our data 
collection method misses 5% of ties, then the correlation between true and observed centrality 
will be in the .90s. By social science research standards, the observed score is clearly a superb 
proxy for the true score. On the other hand, for some applications even this level accuracy may 
not be sufficient. At that error rate, the probability of correctly identifying the most central node 
is around 90%, and the expected overlap in the top 10% is just 67%. One can imagine a situation, 
perhaps in managing an epidemic, where failing to quarantine or immunize the most central 
actors could have huge costs in human lives. In such a case, these results might suggest the need 
for more accurate methods of data collection.  
 
A crucial limitation of this study is that we have studied only random error on random networks. 
This is appropriate as a first step in understanding how measurement error affects the calculation 
of network indices, but it should be clear the results could be quite different for practical settings 
in which (a) the data collection methodology makes systematic errors (such as more readily 
losing nodes with low degree), and (b) the networks themselves are not randomly constructed (as 
we expect for most human networks).  
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Table 2. Accuracy results for graphs of 100 nodes and 50% density  
 

 Degree Centrality Betweenness Closeness Eigenvector 

 
% 

Error 
Node 
Rem 

Node 
Add 

Edge 
Rem 

Edge 
Add 

Node 
Rem 

Node 
Add 

Edge 
Rem 

Edge 
Add 

Node 
Rem 

Node 
Add 

Edge 
Rem 

Edge 
Add 

Node 
Rem 

Node 
Add 

Edge 
Rem 

Edge 
Add 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1 .86 .88 .83 .84 .86 .86 .82 .82 .86 .88 .83 .84 .86 .87 .83 .83 
5 .68 .71 .62 .62 .68 .69 .61 .62 .68 .71 .62 .62 .68 .71 .61 .61 

10 .57 .62 .49 .49 .56 .58 .48 .48 .57 .62 .49 .49 .56 .62 .49 .48 
25 .34 .47 .29 .30 .34 .41 .28 .29 .34 .47 .29 .30 .34 .49 .29 .29 

Top 1 

50 .16 .35 .15 .14 .15 .27 .14 .13 .16 .35 .15 .14 .16 .38 .15 .14 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1 1.00 1.00 .99 .97 .99 .99 .99 .97 1.00 1.00 .99 .97 .99 1.00 .99 .97 
5 .94 .95 .91 .87 .93 .94 .90 .86 .94 .95 .91 .87 .93 .95 .91 .87 

10 .86 .89 .80 .77 .85 .87 .80 .75 .86 .89 .80 .77 .85 .89 .80 .76 
25 .63 .75 .55 .53 .63 .70 .54 .51 .63 .75 .55 .53 .62 .78 .54 .53 

Top 3 

50 .34 .61 .32 .29 .33 .51 .30 .28 .34 .61 .32 .29 .34 .65 .31 .29 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
5 1.00 1.00 1.00 .99 1.00 1.00 1.00 .98 1.00 1.00 1.00 .99 1.00 1.00 1.00 .99 

10 .99 1.00 .98 .95 .99 .99 .98 .95 .99 1.00 .98 .95 .99 1.00 .98 .95 
25 .91 .96 .85 .81 .90 .94 .85 .79 .91 .96 .85 .81 .91 .97 .85 .80 

Top 10% 

50 .64 .88 .61 .55 .63 .81 .59 .54 .64 .88 .61 .55 .64 .91 .59 .54 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1 .84 .85 .82 .82 .84 .84 .81 .81 .84 .85 .82 .82 .84 .85 .82 .81 
5 .68 .72 .64 .64 .68 .71 .63 .63 .68 .72 .64 .64 .68 .73 .64 .64 

10 .58 .64 .54 .53 .57 .61 .53 .53 .58 .64 .54 .53 .58 .65 .53 .53 
25 .39 .51 .37 .37 .38 .46 .36 .36 .39 .51 .37 .37 .38 .54 .37 .37 

Overlap 

50 .21 .42 .24 .23 .20 .35 .23 .23 .21 .42 .24 .23 .21 .45 .23 .23 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1 1.00 1.00 .98 .98 1.00 .98 .98 .98 1.00 1.00 .98 .98 1.00 1.00 .98 .98 
5 .94 .94 .90 .90 .94 .94 .90 .90 .94 .94 .90 .90 .94 .96 .90 .90 

10 .90 .90 .81 .81 .88 .88 .81 .81 .90 .90 .81 .81 .90 .92 .81 .81 
25 .74 .81 .59 .59 .72 .74 .58 .58 .74 .81 .59 .59 .74 .83 .59 .59 

R-
Squared 

50 .48 .69 .32 .34 .46 .58 .31 .31 .48 .69 .32 .32 .48 .72 .32 .32 



 


