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Abstract

We continue the investigation of computational aspects of restricted-orientation convexity
(O-convexity) in two dimensions. We introduce one notion of an O-halfplane, for a set O of
orientations, and we investigate O)-connected convexity. The O-connected convex hull of a finite
set X can be computed in time O(| X | log | X | + |@]). The O-connected hull is a basis
for determining the O-convex hull of a finite set X and a finite set O of orientations in time
O(IX]|O] log |X]). We also consider two new problems. First, we give an algorithm to determine
a minimum-area O-connected convex outer approximation of an O-polygon with n vertices when
the number r of O-halfplanes forming the approximation is given. The approximation can be
determined in time O(n?r+ |O|). Second, we give an algorithm to find the largest orientation
set for a simple polygon. This problem can be solved in time O(nlogn), where n is the number
of vertices of the polygon. For each of these complexity bounds we assume that O is sorted.

1 Introduction

Let O be a set of unit vectors (orientations) in R?. A line (segment, ray) in the plane is called
an O-line (O-segment, O-ray) if its orientation vector is collinear to a vector of O. Giiting [3]
introduced, essentially, the notion of an J-oriented polygon; that is, a polygon whose edges are
(O-segments.

A planar point set X is O-convex if the intersection of X with any O-line is empty or connected.
The O-convex hull of a planar set is defined to be the smallest O-convex set that contains the
set. Rawlins [6] initiated the study of O-convexity, Schuierer [11] examined the relationship of
O-convexity and O-visibility. Investigation of these notions in higher dimensions has recently been
initiated by Fink and Wood [1, 2] and Metelski [4].

Following Rawlins and Wood [6, 8, 10], we also refer to O-convexity as restricted-orientation
convexity. This natural generalization (or relaxation) of standard convexity arose in computa-
tional geometry in the eighties, initially for two axial orientations in the plane (isothetic convexity
or ortho-convexity). It has applications to problems of VLSI layout synthesis, database design,
computational morphology, image processing, and stock cutting.

The problem of determining the ortho-convex hull of ortho-polygons was the first computational
problem in O-convexity. Consult Wood’s review [12] for more details and references. Rawlins and
Wood [6, 7] showed that the four kinds of O-convex hull of an O-oriented polygon can be determined
in optimal (linear) time.

It should be noted that there are substantial difficulties in developing algorithms for computing
the @-convex hulls of disconnected sets. For example, Rawlin’s decomposition theorem [6, 9] that
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leads to a natural approach to compute the O-convex hull of a connected planar set, for finite O,
is not valid for disconnected sets. The O-convex hull of a disconnected planar ortho-region and a
finite point set have been determined for only two orientations [5, 12]. In these cases, halfplane-
convexity, a restriction of ortho-convexity, plays a key role in the construction of the boundaries
of the connected components of the O-convex hull. To compute the O-convex hull of a finite planar
point set X, for any finite O, we introduce, in Section 2, an analog of halfplane-convexity (we call
it O-connected convexity) and we give an algorithm to construct the O-connected convex hull
of X in O(]X|log | X| + |O|) time and in O(|X| + |O|) space. An algorithm to compute the
O-convex hull of a set is given in Section 3. It runs in O(|X||0)| log |X]) time and uses 0l(>4|[%)]
space.

In Section 4, we consider the construction of an outer approximation of a finite planar set X
with an O-connected convex polygon OA(X) that is further restricted. It turns out that the ap-
proximation problem can be effectively reduced to a polynomial-time solvable network optimization
problem.

In all previous work, it is assumed that an orientation set is given and that computational
properties of O-convex sets are studied. In Section 5, we consider an “inverse” problem; namely,
determine the set Or(X) of all vectors v such that each v-line has a connected intersection with X.
The notion of Or(X) leads to measures of the convexity of point sets which may find applications in
shape analysis and image processing. An O(nlogn)-time algorithm to compute Or(P) of a polygon
P with n vertices is also sketched.

2 (O-Connected convexity

We begin with the following important notion [7].

Definition 1 For a planar set X, the conver O-hull of X is the smallest convez (O-oriented polygon
that contains X.

If X is an O-oriented polygon with n vertices, then the convex O-hull of (X) can be found in
O(n+ |O|) optimal time [7]. Starting from the convex hull of X and exploiting notions of O-
oriented supporting lines, antipodal points, and Coxeter’s star structure, we obtain the following
result; see Fig. 1.

Theorem 1 Let X be a finite planar point set and O be a sorted finite-orientation set. Then, the
convez O-hull of X can be determined in O(|X| log |X| + |O]) time and in O(|X]| + |O)) space,

Convex cones play an important role in the definition of an analog of halfplane-convexity. Recall
that a set C is a convex cone if, for all vectors z,y € C and for all nonnegative real numbers A
and p, we have Az + puy € C. A convex cone C is pointed if whenever we havez € C and —z € C,
then z = 0. The conic hull of a planar set is the smallest convex cone that contains the set.

Since every (@’ such that O C O C O U -0 defines the same class of restricted-orientation
convex sets, we can assume that O is a symmetric vector set; that is, we have © = OU -0. Let
cl(X) denote the topological closure of a set X.

Definition 2 A cone is an O-cone if it is the conic hull of some subset of O. Let a be a point in
the plane and C be a mazimal pointed O-cone; then, the set c(R?\ (a+ C)) is an O-halfplane at
the point a; seeF'ig. 2.

Definition 3 The intersection of all O-halfplanes that contain a planar set is called the (O-connected
hull of the set. A set is O-connected convez if it equals its O-connected hull.

Theorem 2 Let @ be a finite orientation set. Then, all O-connected conver sets are O-convez.
Conversely, all closed connected O-convez sets are (O-connected convez.

Theorem 3 For a sorted finite orientation set O and a finite set X, the O-connected hull of X
can be computed in O(|X|log |X| + |0]) time and in O(|X| + |O]) space.




3 The O-convex hull of a finite point set

From Theorem 2 it follows that, for closed connected sets, the O-convex hull of X coincides with
the O-connected hull of X. As we have remarked, the disconnected case is more complex. Having
O-connected convexity as the appropriate generalization of ortho-orientation halfplane-convexity
at our disposal, we are able to extend the approach of Ottmann et al. [5] to arbitrary finite O and
X. Our algorithm also has the following two steps:

Step 1: Determine maximum subsets of the given set X (clusters) that generate connected com-
ponents of the O-convex hull of X; see Fig. 3.

Step 2: Construct the boundaries of the components by computing the O-connected hulls of the
clusters.

Theorem 4 For sorted finite © and X, the O-convez hull of X can be computed in O(|X||O| log |
X|) time and in O(|X||O|) space.

4 (O-connected convex approximations

A number of algorithms in the fields of VLSI synthesis and cutting-stock problems are based on
outer approximations that simplify the geometric shapes of objects. In the case of finite O, the
class of all O-convex sets is too vast and contains rather unusual sets. In this context, O-connected
convex sets, which are formed by intersections of O-halfplanes, appear to be more regular and more
suitable for approximation.

When the intersection of a finite planar set of O-halfplanes is a polygon, the polygon is clearly
an O-connected convex @-oriented polygon. We call it an fhp-polygon. The following proposition,
which results from Definitions 2 and 3, makes clear the structure of fhp-polygons.

Theorem 5 Let P be a fhp-polygon that is not classically conver; then, there are mazimal pointed
O-cones Cy,...,Cy such that P is the set-theoretic difference of the conver O-hull of P and the
interior of the cones; see Fig. 4.

The minimal number of the cones Cy, ..., C;, for the fhp-polygon P, is called its rank. The rank
of a classically convex polygon is defined to be zero. We consider the rank of an fhp-polygon to be
a measure of its shape convexity.

Approximation problem: Given an O-oriented polygon P and a positive integer r, determine a
minimum-area fhp-polygon OC A(P,r) that contains P and has rank at most r.

Theorem 6 The approzimation problem can be reduced to the problem of searching for a path
of mazimal total weight, with at most r arcs, in a weighted acyclic digraph. For an O-oriented
polygon P with n vertices, OCA(P,r) can be computed in O(n*r+ |O|) time and in O(nr+ |O|)
space.

5 Computing the cone of convex orientations of a polygon

Definition 4 Let X be a planar set and Or(X) be the set of all unit planar vectors v that have
a connected intersection with X. The set K(X) = {\v | v € Or(X) and X > 0} is the cone of
convex orientations of X.

Let P be a simple polygon. A chain (vy,vs),(v2,v3),-.,(Vk, k1), k > 2 of edges of P is
concave if the inner angles of the vertices vy, v3,. .., v are of more than 7 radians.

Theorem 7 Suppose that Chy,Cha,...,Ch, is the set of all mazimal concave chains of P; then,
K(P) = NI_, K(Ch;), where the chains are considered to be planar point sets; see Fig. 5.

This theorem is the basis for our algorithm, which leads to the following result.

Theorem 8 The cone of conver orientations of a simple polygon with n vertices can be computed
in O(nlogn) time and O(n) space.
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Figure 1: a. The standard convex hull (outlined with heavy lines) and the convex O-hull (vertices:
b1, b2, b3, b, bs, bs) of a finite point set X. b. Superposition of Coxeter’s star (the arrows) and the
given O-lines. The pairs (a1, a4), (@2,as), and (a3, ag) are antipodal.
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Figure 2: An O-cone C and the O-halfplane cI(R?\ (a + C)).

Figure 3: The O-connected hull (outlined with heavy lines) and components of the O-convex hull
of a finite set X (the inner polygon, the segment [a,b], and all the other points of X).
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Figure 4: An Q-oriented polygon P, its maximal pointed O-cones Cy,...,C4, and its corresponding
digraph.
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Figure 5: A polygon P with its unique, maximal concave chain Chy such that K(P) = K(Chy).




