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Abstract

A chain is a sequence of rigid rods or links con-
secutively connected at their endjoints, about
which they may rotate freely. A planar chain is
a chain whose rods lie in the plane, with rods
allowed to pass over one another as they move.

This paper studies properties of the reachable
regions of the endjoints of an n—link chain T ly-
ing inside a convex polygon P. We show that
if the length of the longest link in I' is suffi-
ciently small, then the reachability of a point
p € P by the endpoint of I' is independent of
the initial configuration of I'. Then we ask how
large the bound on the longest link may be made
so that reachability does not depend on initial
placement of I'. Here the bound is a function of
P.

1 Introduction

An n-link chain is a sequence of n rigid rods
consecutively connected together at their end-
joints, about which the rods may rotate freely.
This paper considers the reachability properties
of the endjoints of chains confined inside convex
polygons.

Figure 1 illustrates an n-link chain I' with
joints Ag,..., An. Here [; denotes the length of
link L; = [4;-1, A;]. Joints Ag and A, are called
endjoints and the others are called intermediate
joints.

We denote maxi<i<n{li} by lmas and say that
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Figure 1: Notation for chains.

I' is bounded by b, denoted by I' < b, if [,,5- < b.

We propose a strong notion of reachability,
namely, we say that a point p € P is reachable by
chain I' provided that I can be moved from any
arbitrary initial configuration to one in which A,
touches p. The set of reachable points of P for
a given chain I is called the reachability region
of ', denoted Pr(A,). This paper studies such
reachability regions.

We give conditions under which the reacha-
bility region of a chain I' in a convex polygon P
is exactly that of an equivalent, one-link chain
I'® in P, and we use this equivalence to compute
the reachability region in linear time.

We show that the reachability regions of the
chains inside a convex polygon P are linearly or-
dered by set inclusion, provided their links are
not too long. This motivates us to propose an
even stronger notion of reachability; namely, we
say that a point p € P is l-reachable provided
that it is a reachable point for all chains I' whose
longest link has length at most [. We also de-
velop the notion of a hardest reachable point. A
point p € P is a hardest reachable point if being
reachable by I’ implies that every other point is
reachable by I'. We show such a point exists and
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is unique; in fact, it is the center of the minimal
spanning circle of P.

Our study of reachability is novel in two ways.
First, it asks when reachability by a given chain
is independent of its initial configuration. Sec-
ond, it asks for environment dependent condi-
tions that, when satisfied, guarantee reachabil-
ity by an otherwise arbitrary chain.

1.1 Motivation

A problem closely related to reachability is re-
configuration. Reconfiguration problems ask

whether an object or ensemble of objects can be"

moved from one given configuration to another,
often in the presence of obstacles. Reachabil-
ity and reconfiguration problems in which the
number n of degrees of freedom is allowed to
vary from instance to instance are often at least
NP-hard. Hence it is interesting to find big sub-
families of problems that can be solved quickly.

In this paper, we ask whether there are sim-
ple properties one could require of a confining
region and an enclosed chain that, if satisfied,
would ensure that point reachability is easy to
determine. To this end, denote by dp.z(p) the
distance between p € P and a point ¢ € P that
is farthest from p; then note that a necessary
condition that a point p be reachable by the
endpoint A, of a chain T is the following (see
Figure 2).

Condition (x): For all 7 € {1,...,n}
li = Yicip1 lj < dmaz(p)- (*)

This condition is obviously necessary because,
if not satisfied, there is no way to place A4, at
p while also keeping in P the joint A;_; of the
link L; associated with the maximum in Condi-
tion (x). However, this condition is so mild that
it does not guarantee the existence of a config-
uration of I' lying in P and placing A, at p.

162

Intuitively, it seems reasonable that if all the
links of T’ are very tiny compared to some mea-
sure of P, then the initial configuration of I' will
not matter, Condition (%) will be satisfied by
every point p € P, and it will be possible to re-
configure I' so that A, is brought to p. Thus
Condition (*) will trivially determines reacha-
bility.

Kantabutra [4] has shown that Condition (x*)
is not only necessary but also sufficient for de-
termining whether a point in a square can be
reached by the endpoint of a chain whose link
lengths are bounded by the length of the side
of the square. In this case, not every point
is reachable, but Condition (%) determines ex-
actly which points can be reached; furthermore,
reachability turns out to be independent of ini-
tial configuration and can be tested in linear
time.

Inspired by Kantabutra’s example, we define
for a given confining convex polygon P, a bound
5% on maximum link length I, that guaran-
tees that Condition (%) is sufficient (hence the
superscript S on b) as well as necessary for deter-
imining reachability independent of initial con-
figuration. In terms of this notation, Kantabu-
tra’s result can be restated as saying that for
a square of side length s, we have s < b as
long as a chain T' confined inside S has no link
that is longer than s, then Condition (*) tests
reachability.

1.2 Results

One of our results is that for a convex polygon
P, b5 < w, where w is the width of P. The
width of P is the minimum possible distance be-
tween two parallel lines of support of P. Con-
cerning [-reachability, we show that the largest
value [ for which a polygon P is [-reachableis | =
min{r,b%}, where 7 is the radius of the minimal
spanning circle. The (unique) minimal span-
ning circle of a convex polygon P is the circle of
smallest radius that contains P. We show that
the point of P that is “hardest reachable” is the
center, o, of the minimal spanning circle.




1.3 Previous Work

Reconfiguration problems for linkages have been
investigated by several researchers.

Paper [1] shows that a kind of reachability
problem for a planar linkage with certain joints
possibly fixed to the plane is PSPACE-hard.
Here the problem is to determine, given an ini-
tial configuration of the linkage, some joint j
of the linkage, and some point p in the plane,
whether the linkage can be moved to place j at
p. The desired configuration of the linkage is not
further specified.

Paper [2] studies reachability problems for n-
link chains with one endpoint fixed to the plane
and with an initial configuration specified in the
input to the problem. It shows that this kind of
reachability problem is NP-hard when the en-
vironment is polygonal. However, for environ-
ments that consist of an enclosing circle, it gives
an order O(n?) algorithm to solve the reacha-
bility problem in decision form. When a point
is reachable, [2] gives an O(n®) algorithm to
move the chain to some configuration in which
the endpoint touches the given point. Kantabu-
tra and Kosaraju [5] improved this running time
from O(n?) to O(n).

Algorithms for fast reconfiguration of n-link
chains have been given for very simple confining
regions: circles, squares, equilateral triangles, or
no confining region at all.

Lenhart and Whitesides [6] gave a linear time
algorithm for reconfiguring closed link chains
in d-dimensional space, with no confining re-
gion. Kantabutra (see [5] and [4]) gave fast al-
gorithms for reconfiguring chains inside squares,
where the lengths of the links are bounded by
the length of the side of the square. The prob-
lem of folding an n-link chain of equal-length
links onto one link inside an equilateral trian-
gle of unit side was considered by van Kreveld,
Snoeyink and Whitesides [3].

Pei and Whitesides [7] solved the reachability
problem for n-link planar chains confined within
convex obtuse polygons. A convez obtuse poly-
gon is a convex polygon whose internal angles
each measure m/2 or more. In particular, [7]
gives a polynomial time algorithm that decides
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whether a given endjoint of a chain confined
within a convex obtuse polygon P can reach a
given point p € P and that produces a sequence
of moves that bring the endjoint to p when p is
reachable.

1.4 Additional Preliminaries

The angle at intermediate joint A;, denoted by
o, is that determined by rotating L; about A;
counterclockwise to bring L; to L;y;. We use
[A, B] to denote a single link chain having joints
A and B. We denote the distance between two
points z,y by d(z,y).

We use V to denote the set of vertices
of a polygon P. We regard polygons as 2-
dimensional closed sets and denote the bound-
ary of P by 0P. We denote the length of the
shortest side of P by s,:n. We denote the circle
centered at o with radius r by C(o,r), or simply
by C if o,r are clear from the context.

For a closed polygonal region P, vyq.(p) de-
notes a point of P farthest from p, and dp,,4(p)
denotes d(p, Vmqez(p)). Obviously, vmez(p) is a
vertex of P.

For an n-link chain I' confined by a region
P, the set of points of P that are reachable by
A,, independent of the initial configuration of
T, is denoted by Pr(A,) and called the reachable
region of A,. The complement with respect to
P of Pr(A,), denoted by Pr(A,), is called the
unreachable region of A,.

In terms of this notation, a point p € P is
called an l-reachable point if p € Pr(Ay) for ev-
ery I' < [ no matter where I initially lies. The
set of [-reachable points in P, denoted by P, is
called the l-reachable region of P, and if P, = P,
P is said to be [-reachable.

Clearly these concepts remain valid for non-
polygonal confining regions as well.

2 ¥ <w

To show % < w, the width of the confining con-
vex polygon P, we first establish the following.

Lemma 2.1 If p € 0P, then dm.z(p) > w.
Furthermore, if v € V, then dpyq..(v) > w.




Theorem 2.1 % < w.

proof sketch: Figure 3 illustrates the general idea
of the proof, which goes by contradiction. If
for some convex polygon P, the bound b were
greater than the width w, then the situation
illustrated in the figure could arise. Here the
chain consists of a single link [A, B], initially
placed so that A lies at vertex v, and [A, B]
points, as a first case, upward and leftward to-
ward a vertex vj farthest from v,. By the pre-
vious lemma, w < dpaz(v2). Suppose further
that the line / through edge (v1,v2) is a sup-
port line of P that, together with a parallel sup-
port line /3, achieves the width w of P. Suppose
the length of [A, B] is greater than w but less
than dmaz(v2), dmaz(v) and b5. Such a length
is always possible under the assumption that
b5 > w. Then in order to bring B to the right-
most vertex v of P, where possibly v is v, or
lies on [, it is necessary to turn the link around,
making it parallel to [ at some moment. But
this is impossible since the link is longer than
the distance between I; and l;. Nevertheless,
vertex v satisfies Condition (*) and so should be
reachable, since I, qop < b, a contradiction. O

Figure 3: B cannot reach v.

We remark that 5° < w may be consider-
ably less than w, as illustrated in Figure 4. In
this figure, the polygon P is constructed by cut-
ting off three congruent tiny right triangles of
an equilateral triangle A with unit side. Thus
w = 1/3/2 — € for some small e. We claim that
b% < win P.
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To see this, consider a 3-link chain I' having
joints A, B, C, D whose initial configuration is as
follows: B,C are at the midpoints of two sides
of A, respectively; A, D are at two right corners
of A, respectively. Then ' < 1/2. If b5 = w,
then the top vertex of A is reachable by D. But
this is impossible as I' is completely stuck.

A D

Figure 4: b5 < w.

3 Reachable Regions

Definition 3.1 Let T be confined inside convex
polygon P, where I, < b5, and let I4,...,1,
be the lengths of the links of I'. We call the
chain I'° consisting of a single link of length 1°
= maXoci<n{li=Y =11 [;} the equivalent chain
of I', and we call I° the equivalent length of I

The notion of an equivalent chain provides a
simple way to compute, for (I' and P such that
I' < b5, the unreachable regions or P, i.e., the
points of P not reachable by T'.

notation: From now on, I'® consisting of a sin-
gle link [Ap, A;] denotes the equivalent chain of
I', and [¢ denotes the equivalent length of T'.

Observation: Note that I' < b5 implies that
I'® < b5. In this case, a point p is reachable A,
of I' if and only if it is reachable by point B of
I'*. This enables us to establish the following
theorem.

Theorem 3.1 Let T < b°. Then Pr(A,) is ei-
ther empty or has boundary composed of at most
m circular arcs centered at certain vertices of P
and all having radius [°.




We remark that the number of circular arcs
bounding the unreachable region for different
chains sharing the same P may change, as shown
in Figure 5. This figure shows a convex 5-gon
that is nearly regular. The solid and dashed
arcs show the construction lines for the bound-
ary of the unreachable region of a longer and
a shorter single link chain, respectively. Note
that the boundary of the unreachable region of
the longer link chain is composed of five circular
arcs, whereas the boundary of the unreachable
region of the shorter link chain is composed of
three arcs.

Figure 5: The circular arc number of unreach-
able regions may change

Theorem 3.2 All Pr(A,) for T < b5 are lin-
early ordered by set inclusion.

Definition 3.2 Let T < b° be an n-link chain
confined within P. We say that T is covering for
P orcovers P, denoted by I' + P, if Rr(A,) = P.

By the previous theorem, the unreachable re-
gions of the noncovering chains are also lin-
early ordered by set inclusion. The supremum
of these regions, Ur<,s ryp Br(An), is clearly
the complement of Pys. In the next section,
we will show that the infimum of these regions,
Nr<ss,ryp Br(Axr), is a unique point that is
“hardest reachable” (to be defined), which co-
incides with the center of the minimal spanning

circle of P.
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4 [-Reachability

First we recall some facts about minimal span-
ning circles. See [8].

Let P be a convex polygon. A spanning circle
of P is a circle C such that each vertex of P lies
either inside or on C. A minimal spanning cir-
cleof P is a spanning circle of P having minimum
radius. Every convex polygon P has a minimal
spanning circle, which is unique. Furthermore,
a spanning circle C' of a convex polygon P is the
minimal spanning circle of P if and only if C
passes through two diametrically opposite ver-
tices (i.e. the line segment between the two ver-
tices defines a diameter of C) or through three
vertices that define an acute triangle. Conse-
quences of these facts include the following.
Facts. Suppose P is a convex polygon, and let
C(o,r) be its minimal spanning circle. Then
0 € P and r = dpu.(0). Furthermore, a point
o € P is the center of C if and only if for any
pE P, dmaz(p) > dmax(o)-

The above facts are used in the proof of our
main result on /-reachability, which is as follows.

Theorem 4.1 Let P be a convezr polygon and
let v be the radius of its minimal spanning circle.
Then sup{l| P is l-reachable } = min{r, b}.

We now illustrate applications of the above
in the next three theorems. Our results suggest
that the shape of P determines its [-reachability.

Theorem 4.2 Let A be a triangle with an in-
terior angle > m/2. Then A is b5-reachable.

Theorem 4.3 Let P be a rectangle having sides
a,b with a > b. Then P is w-reachable if and

only if a/b > /3.

Theorem 4.4 Let P be a convez obtuse m-gon.
If m > 5, then P is Spin-reachable.

We conclude by stating a result that says
the center of the minimal spanning circle is the
unique, hardest reachable point of a convex poly-
gon.




Definition 4.1 Suppose P is not bS-reachable.
A point o € P is the hardest reachable point if
for any n-link chain T, o € Rr(A,) implies that
THP.

Theorem 4.5 Let P be a convez polygon that is
not bS-reachable and let C be its minimal span-
ning circle with radius r. Then the following are
equivalent.

(1) o is the center of C;

(2) o is the hardest reachable point;

(8) o is the infimum of non-empty unreachable

regions, i.e., 0 = [rps ryp Br(4An).

5 Conclusion

We have proposed a novel study of reachability
in which we ask for conditions that guarantee
that testing a point for reachability, indepen-
dent of initial configuration, by the endpoint of
a chain T is just a matter of checking whether
Condition (*) holds. We proposed bounding the
link lengths by some best possible number &5
depending on P. For convex polygons, we ob-
tained the result that 55 is at most w. We
also defined a very strong notion of reachabil-
ity, called /-reachability, and showed for convex
polygons P that P is [-reachable for every ! up
to the minimum of the radius of the minimal
spanning circle and 5. We also showed that
the center of the minimal spanning circle is the
hardest point to reach of a convex polygon, and
we gave several special applications of our re-

sults.
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