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Extended Abstract

1 Introduction

The sweep technique has proved to be one of the most powerful paradigms in Com-
putational and Combinatorial Geometry, especially when dealing with problems in
the 2-dimensional Euclidean plane. In most cases the plane is swept by a straight
line whose normal vector never changes its direction. Such a plane sweep is called
translational. In some other cases it is more appropriate to perform a rotational
plane sweep, i.e. the plane is swept by rotating a straight line or halfline (ray)
around a point.

Starting from previous works by J.E. Goodman and R. Pollack ([GoP080], [GoP093])
one of the authors studied the following problem ([Schm92]): Let P = {ps,---,pa} 2
set of points in the plane R? and G(7) C IR? astraight line to be used as a sweep line.
We perform a translational sweep through IR? by varying the parameter 7 from —co
to +co and assume general position, i.e. at no moment (i.e. for no value of 7) G(7)
contains more than one point of P. By doing this we impose an order on P and thus
generate a permutation of the corresponding index set {1,---,n} which we denote
by m: Let 7; be the value of 7 uniquely determined by p; € G(7) (¢ =1,--- , ).
We define = by 7(i) < 7(j) iff 7 <7;. [GoPo80] and [Schm92] examine which of
the n! orders of P or permutations of {1,---,n}, respectively, can be generated in
this way by translational sweeps. It is shown that their number is in O(n?), and in
[Schm92] an algorithm to find all these orders is given.

In the present paper we study an analogous but more general problem by considering
rotational instead of translational sweeps. One common kind of rotational sweeps
sweeps the plane by rotating a straight line around a fixed point by an angle of 180°,
a second kind rotates a straight halfline (ray) around its endpoint by an angle of
360°. We will call these two kinds of rotational sweeps Ry-sweep and Ry -sweep,
respectively. They impose different orders on a given set P, in general.

First we give precise definitions of Rz —sweeps and Ry-sweeps and of the quantities
we want to determine. We compare the two kinds of sweeps with regard to the
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permutations they generate for the same set P. Lower and upper bounds on the
number of permutations are determined and it is shown that for R -sweeps as well
as for Ry-sweeps the maximal number of permutations that can be generated in
case of n points is in ©(n*). Finally we present for both kinds of rotational sweeps
an optimal algorithm which finds for a given set of points all permutations that can
be generated.

2 Fundamentals

In order to define more precisely the two kinds of rotational plane sweeps introduced
above, we assume JR? to be equipped with its natural basis and choose any point
q = (z,y) € IR? as a center of rotation. A Rp-sweep around q is defined by an angle
7 € [0,27) and a sweep line L(q,7) = {(z+rcos7, y+rsinT): r € IR} depending
on a parameter 7 which is assumed to run through the interval [ry, 7y + 7). This
means that a straight line whose initial position is defined by the angle 7 turns
around the point ¢ by an angle of 180°. Every point p € IR?, p # q, is swept exactly
once.

In an analogous way, a Ry -sweep around q is defined by an angle 7, € [0,27) and
a sweep halfline H(q,7) = {(z 4+ rcos7, y + rsin7) : r € IRy} depending on 7.
Here the parameter 7 is assumed to run through the interval [r, 7 + 27). This
means that a straight halfline whose initial position is defined by 7 turns around its
endpoint g by an angle of 360°. Again every point p € IR?, p # q, is swept exactly
once.

Now we consider a nonempty finite set P C IR? being in general position in the
following sense: Let H(P) be the set of all straight lines joining two points of P.
We assume that no two lines of H(P) are parallel and no three lines of H(P) meet
in one point. (Every point set P we will consider in this paper is assumed to be in
IR?, finite and in general position.) H(P) partitions the plane IR? into finitely many
relatively open convex cells of dimensions 0,1 or 2 which represent an arrangement
A(P). Let D denote the union of all 2-dimensional cells of A(P).

By choosing g € D and performing a Ry-sweep around g we obviously define a linear
order <p, on P and a permutation 74 of the corresponding index set {1,---,n}.
More precisely, we define them as follows: We denote by 7; the value of 7 uniquely
determined by p; € L(g,7) (i =1,---,n), which implies — without loss of generality
— that the sweep is assumed to start at point p;. The linear order <z, imposed on P
is then defined by p; <p, p; iff 7 < 7j, and the corresponding permutation 7z g

of {1,---,n} is analogously defined by mr4(i) < 71 q(j) iff 7 < 7;. In case of a
Ry—sweep, the linear order <y, imposed on P and the corresponding permutation
i of {1,--+,n} are defined analogously. Of course, we could also work with cyclic

instead of linear orders.

Some of the following considerations apply to both, R -sweeps and Ry-sweeps. In
order to indicate that we do not have to examine the two cases separately we will use
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the symbol S instead of Ry or Ry. By IIs(P) we denote the set of all permutations
of {1,---,n} which can be obtained by means of S-sweeps applied to P. IIs(P)
is assumed to be (arbitrarily) ordered, and permutations in IIs(P) will then just
be denoted by 7; or in the form (r;(1)---7j(n)) (j = 1,---,card(IIs(P))) Our
assumption that every S-sweep starts at p; implies that we actually only look for
permutations of {2,---,n}, i.e. we examine which of (n — 1)! possible permutations
can be generated by S-sweeps. IIs(P) and card(IIs(P)) do not only depend on
the number of points in P, in general, but also on how these points are arranged.
Therefore

Ns(n) := max{card (IIs(P)) : card(P) =n}

is another quantity we are interested in (n € IV).

Ryp—sweep Ry-sweep
Ty m = (123) T2
Ps3 7y = (132) p3
m m ™ T
T ™

ﬂ-%l ™ PNQ 71_%1 m P2 T

Figure 1: An arrangement A{p:,ps,ps} with each of its 2-dimensional cells marked
with the corresponding permutation 7; of {1,2,3}, for §$ = Ry and S = Ry.

Given P, it is natural to ask for all points ¢ € D whose corresponding S—sweeps
impose the same order on P. These points form obviously an equivalence class of
the equivalence relation ~g defined on D by

q~sq <> s, =rmsgy forall ¢g,¢' €D.

It is easily seen that all ¢ belonging to the same 2-dimensional cell are equivalent
with respect to ~s. Hence every equivalence class of ~s is the union of certain
9-dimensional cells of A(P). Sometimes we will indicate an equivalence class of ~s
just by its corresponding permutation. Figure 1 shows the equivalence classes of
~r and ~pg for a set P = {p;,p2,p3} whose corresponding triangle A(p1,p2,ps) is
positively oriented. II.(P) = IIy(P) and card(Ils(P)) = 2, but ~r#~p.

3 Two general results
As already mentioned, Ry -sweeps and Ry-sweeps do not generate the same permu-

tations of {1,---,n}, in general, i.e. II;(P) # IIx(P). A more precise comparison
is given by the following
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Theorem 1 For every P the following assertions hold:
o) TL(P) =y (P) if card(P) < 4 (cf. Figure 2).
b) TL(P) D Mu(P) if card(P) = 5.
¢) Either TIL(P) D My (P) or (Uz(P) 2 Mx(P) A ML(P) € x(P))

if card(P) = n > 6. For every such n both cases occur.

e m = (1234) Te | T4
my = (1243)
3 = (1324)
T4 = (1342) P3
Ty = (1423) s s
T3 e = (1432)
T2
T4 e
P4
76 T2 1
Te | T4
e AN
T4 T3 T2 1 ™3
(b)

Figure 2: The two possible kinds of arrangements belonging to 4-point sets together
with the corresponding permutations generated by Rp-sweeps.

Let S € {Ry,Ry}. As already indicated in the introduction, the number of permu-
tations that can be generated by S—sweeps of a set of n points is much smaller than
(n — 1)}, in general. A more precise statement is the following

Theorem 2 Ng(n) € O(n*) for everyn € IN.

4 An algorithm for finding IIs(P)

Let n > 1 and given P = {p1,---,p.} C IR® in general position. H(P) consists
of (’2‘) € O(n?) lines. Every 2-dimensional cell C € A(P) is the intersection of
open halfplanes belonging to lines of H(P). C can be specified, therefore, e.g.
by providing for each such halfplane a number identifying the corresponding line of
H(P) and a sign which indicates if the halfplane is positive or negative. We conceive
all these 2-dimensional cells of A(P) as nodes of a graph G(P). Two nodes of G(P)
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are joined by an edge iff there exists a 1-dimensional cell in A(P) which is adherent
to both 2-dimensional cells represented by them.

Figure 3 shows A(P) and G(P) for a set P of only three points. The graph G(P)
contains ©(n*) nodes and is closely related to the well-known incidence graph G*(P)
introduced by [Ed0S86] to represent A(P). As G*(P) can be constructed in optimal
time ©(n?) (cf. [EdOS86]) the same is true for G(P).

The graph G(P) can be constructed incrementally, using the same ideas as the
construction of G*(P).

Next we perform a depth—first traversal of G(P) which costs ©(n*) time. That is, we
traverse all 2-dimensional cells C € A(P), hence find all equivalence classes of ~s.
The permutation belonging to the first cell we traverse can be found in ©(n -logn)
time by determining a point ¢ € C' and executing the corresponding S-sweep. The
permutations of any two incident cells differ only by a transposition. Hence, by
reporting just these transpositions we can find the permutation of any cell (except
the first one) from the permutation of the previous one in constant time. In this
way, we can find all permutations — in general more than once - in ©(n*) time.

Considering that card(IIs(P)) € ©(n*) (Theorem 2) we conclude:

Theorem 3 For a n—point set P, IIs(P) can be found in time ©(n*), which is
optimal.

Cr

p3
C4 CS

Cs
P1 D2
01 Cz C3

Figure 3: The arrangement A (P) and the graph G(P) for P = {p1,p2,p3}-

We summarize our approach in form of an algorithm FINDPERM:

input: P = {p;,---,p.} C R’ in general position. S € {Rr, Ru}.
output: All permutations generated by S-sweeps.

procedure FINDPERM
1. Construct the graph G(P).
2. For any 2-dimensional cell C € A(P) choose ¢ € C and find 7s,.
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3. Depth-first traversal of G(P), starting at C.
For each traversed edge, find the corresponding transposition.

4. Optionally: Report complete permutations.
5. Optionally: Eliminate duplicates.

6. Optionally: Report for each 7; € Ils(P) the list C (m;) of all 2-dimensional
cells C € A(P) belonging to ;.

end FINDPERM

5 OQOutlook

From several points of view it seems to be a challenging problem to characterize
geometrically the equivalence classes of ~ and ~p, respectively, probably in the
context of projective geometry. It also would certainly be interesting to characterize
(for » > 6) those permutations 7 which are in II.(P) Ny (P), and those P for
which II (P) D IIg(P) holds. It might be worthwhile to examine also

Ms(n) := min{card(IIs(P)) : card(P) =n}.

Our conjecture is, that Ms(n) € O(n?), which would mean that the order of ma-
gnitude of card(IIs(P)) does not depend on the position of p1,-+*,pn. But such
a result, although interesting, should not affect our algorithm FINDPERM for de-
termining IIs(P). Finally, the generalization to higher dimensions represents an
obvious subject for further research.
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