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Abstract

Given a set P, of n points on the plane la-
beled with the integers {1,...,n}, an increas-
ing path of P, is a sequence of points z; <

. < 13 such that the polygonal path ob-
tained by connecting i; to ;41,7 =1,...,k—
1 is non-self intersecting. We show that any
point set on the plane admits an increasing
path of length at least v2n. We also study
the problem of finding the longest common
increasing path of two convex point sets on
the plane and give an O(n?logn) time algo-
rithm to find such a path.

1 Introduction

Let P, = {p1,.-.,pn} be a set of n points on
the plane. We say that P, supports a planar
graph G(V, E) if there is a plane embedding
of G(V, E) on the plane in such a way that its
vertices are mapped to the elements of P, and
its edges to straight line segments connecting
pairs of adjacent vertices. Given two point
sets P, and @, the problem of finding graphs
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supported by both of them has received at-
tention recently. For example, Aronov, Seidel
and Souvaine [1] and Kranakis and Urrutia [3]
studied the problem of finding common tri-
angulations of point sets of polygons; see also
Shapira and Rappaport [7]. The problem of
finding embeddings of trees on point sets has
also been studied recently by Bose, McAllis-
ter and Snoeyink [2], Ibeke, Perles, Tamura
and Tokunaga [4].

Let P, and @, be labeled point sets, both
labeled with the integers 1,...,n. A non-
intersecting path 7 (henceforth called path)
of P, is a non-repeating sequence of points
i1,...,%; such that the polygonal path ob-
tained by connecting i; to 141 ,J =1,...,k—
1 is non-self intersecting. In addition, we say
that 7 is an increasing pathof P, if¢; < ... <
ik-

In this paper, we study the problem of
finding the longest common increasing path
of P, and @,, for the case when both P, and
Q. are convex point sets, that is they are ver-
tices of convex polygons. We give efficient
algorithms to solve the longest common in-
creasing path for this case. Our motivation
arises also in part from the well known result
of Erdos and Szekereres that states that any
sequence of n numbers contains an increas-
ing or decreasing subsequence of size /n. In
particular, we prove that any labeled convex
point set P, always contains an increasing

path of length /2n.




Figure 1: Point set P, and its associated per-
mutation ¢ = (1,7,5,3,8,6,9,2,4). The in-
creasing path obtained is 1,2, 3,6, 8.

2 Longest increasing path

To start our paper, we show first that any
convex point set P, contains an increasing
path of length +/2n. This technique will then
be extended to develop an algorithm to find
the longest common path of the convex point
sets.

Let m be the longest increasing path of
P, and suppose that 7 starts at point ¢ and
ends at a point k. If we read the labels of the
elements of P, in the clockwise order start-
ing from index ¢, we obtain a permutation
o(1),0(2),...,0(n) of {1,...,n}. See Figure
1.

The following observation will prove use-

ful.

Observation 2.1 The elements of T contained

between i and k (resp. between k and i) in the
clockwise order around P, form an increasing
(resp. decreasing) subsequence of w, ending at

k.

For example for the path shown in Figure 1,
the elements 1, 3,8 form an increasing subse-
quence of {1,7,5,3,8,6,9,2,4}, and 8,6,2 a
decreasing subsequence.

We next observe that the elements of any
increasing subsequence 0¥ (k) of o ending at
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k, together with those of any decreasing sub-
sequence o~ (k) starting at k, can be "merged”
to obtain an increasing path of P,,. To achieve
this, we first take the smallest element of the
set o7(k) U o~ (k) and join it to the second
smallest, etc. until we reach k. For exam-
ple for the permutation in Figure 1, using
the increasing and decreasing subsequences
{1,7,8} and {8,6,2} ending and starting at
8 resp. we can obtain the increasing path
{1,2,6,7,8}.

Next, we associate to every element ¢ of o
a point on the plane with coordinates (z;, y;)
such that z; is the length of the longest in-
creasing subsequence of o ending at 2, and y;
is the length of the longest decreasing subse-
quence of o starting at ¢:. For example the
coordinates associated to point 6 in the same
example are (3,2). It is well known that this
mapping sends different elements of o to dif-
ferent points on the plane; see for example
Exercise 14.7 in [8]. Since the number of
points on the plane with integer coordinates
(2,7) such that 2 4+ 5 < V/2n is less than n, we
conclude that there is a point k of o that is
mapped to a point (zk, yx) such that zx+yi >
\V/2n. Thus we have proved:

Theorem 2.1 Any convez point set P, with
n elements has an increasing path of length at

least \/2n.

We notice that our method leads easily to
an O(n’log n) time algorithm to compute the
longest increasing path of P,. To see this,
we notice that for each z, 1 < : < n, we
can calculate (z;,y;) in O(nlogn) time using
well known algorithms to compute the longest
increasing subsequence of a permutation [3].
This has to be repeated O(n) times, yielding
an O(n’logn) time algorithm. We do not
believe that this is optimal, and conjecture
the existence of an O(nlogn) time algorithm
to solve this problem.




Figure 2: Point set @, and its associated per-
mutation p = (1,6,4,2,7,8,9,5,3). The path
corresponding to the increasing path of P, is
1,5,2,8,7.

3 The longest common sub-

sequence

In this section, we present an O(n?log n) time
algorithm to solve the longest common in-
creasing path of two convex sets P, and Q.
As in the previous section, let us assume first
that we know that the initial point of 7 is ¢
and assume that 7 ends at an unknown point
k.

Using the same arguments as those used
to prove Theorem 2.1, we can see that if we
read the elements of P, and @, in the clock-
wise direction starting from ¢, we get two per-
mutations ¢ and p of {1,...,n}. In each of
them, m defines common increasing and de-
creasing subsequence of ¢ and p ending at k.
See Figure 2.

We now show how to find &k in O(nlogn)
time. Given two permutations o and p of
{1,...,n} and an element 7 € {1,...,n} we
define i(c, p) (respectively ¢'(a,p)) to be the
length of the longest common increasing sub-
sequence (resp. decreasing subsequence) of o
and p that ends at 7 (resp. starts at ). Thus
finding k£ (and thus = itself) is equivalent to
finding the point 7 of {1,...,n} that maxi-
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mizes (0, p) + 1'(a,p). We now show how to
find all ¢(o, p) in O(nlog n) time.

Given o and p, we define a permutation
diagram of o and p as follows: Consider two
parallel line segments L; and L, each with
n points labeled according to o and p. Next
join the point labeled 7 in L; to that labeled
i in L, using a line segment [;, 2 = 1,...,n.
We now notice that any common increasing
subsequence ji,...,7s = 1 ending at ¢ of o
and p corresponds to a set of mutually non-
intersecting line segments /; , ..., /; contained
to the left of I;; see Figure 3. Using the per-
mutation diagram of o and p, we now obtain
a new permutation v of {1,...,n} as follows:
relabel the elements on L; in increasing or-
der from left to right 1,...,n. This induces
a relabeling on the elements of L, as shown
in Figure 3. Let v be the permutation ob-
tained by reading these labels on L, from left
to right. Notice now that each common in-
creasing subsequence of o and p corresponds
to exactly one increasing subsequence of 7.
Again referring to the permutations of Fig-
ure 3, the increasing subsequence 1,4,6,7 of
~ corresponds to the common increasing sub-
sequence 1,7,8,9 of o and p. But now using
~ and results in [3], we can calculate all i(o, p)
in O(nlogn) time.

The permutation graph G obtained from
the permutations ¢ and p is now defined as
the graph with vertex set {1,...,n} in which
¢ and j are adjacent iff /; intersects I;. See
Figure 3.

Using similar techniques, we can find for
all ¢ the length ¢'(o, p) of all common decreas-
ing subsequences of o and p that start ¢ in
O(nlog n) time. Thus we have proved:

Lemma 3.1 Given two permutations o and
pof{1,...,n} we can findi(o,p),and i'(a, p),
i=1,...,n in O(nlogn) time.

Consequently, we have:




Figure 3: The top picture represents
the permutation diagram of the permuta-
tions ¢ = (1,7,5,3,8,6,9,2,4) and p
(1,6,4,2,7,8,9,5,3), respectively. The bot-
tom picture represents the permutation v =
(1,4,8,9,6,2,7,4,3) obtained by relabeling
the permutations o and p.
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Lemma 3.2 Given two permutations o and
p of {1,...,n}, we can find the path = as de-
fined before in O(nlogn) time.

We can now prove:

Theorem 3.1 Finding the longest common
increasing path of two labeled convex point
sets P, and Q, can be done in O(n*logn)
time.

Proof: For each : € {1,...,n} find two per-
mutations o and p by reading the elements of
P, and @, in the clockwise direction starting
at 2. Find the longest common path 7; gener-
ated by these permutations as in Lemma 3.2
in O(nlog n) time. Choose the largest 7;, and
our result follows.

4 Conclusions

We proved that any convex point set on the
plane admits an increasing path of length v/2n.
We believe that this bound is not tight, and
that the correct value is around 3,/n. An
O(n?logn) algorithm was also obtained to
find the longest increasing path of a convex
point set. We believe that this algorithm is
not optimal. An O(n?logn) algorithm to ob-
tain the longest common increasing path of
two labeled convex point sets was also ob-
tained.
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