‘Maintaining Visibility of a Polygon with
a Moving Point of View*

Danny Z. Chen'

Abstract

The following problem is studied in this paper: Givena
scene with an n-vertex simple polygon and a trajectory
path in the plane, construct a data structure for report-
ing the perspective view from a moving point along the
trajectory. We present conceptually simple algorithms
for the cases of this problem in which the trajectory
path consists of several line segments or of a conic
curve that contains the polygon. Our algorithms take
O(nlogn) time and O(n) space. We also prove that
the problem of reporting perspective views from suc-
cessive points along a trajectory path takes 2(nlogn)
time in the worst case in the algebraic computation
tree model. Our data structure reports the view from
any query point on the trajectory in O(k + logn) time
for a view of size k.

1 Introduction

In this paper, we study the following problem: Given
a scene with an n-vertex simple polygon P and a tra-
jectory path in the plane, report the perspective view
from each of a sequence of successive points on the tra-
jectory. We present conceptually simple and optimal
algorithms for the cases of this problem in which the
trajectory path consists of several line segments or of
a conic curve that contains the polygon. Intuitively,
the polygon P could represent the “opaque” walls of a
building.

The general problem of computing visibility infor-
mation of a geometric scene along a trajectory arises
in several application areas, such as computer anima-
tion, computer vision, image compression, and flight
simulation. Bern et al. [2] and Mulmuley [11] studied a
case of this problem in which the trajectory is a straight
line and the scene consists of a set of polygons in the
3-dimensional (3-D) space. Lenhof and Smid [10] con-
sidered a related problem of computing the visibility

*This research was supported in part by the National Science
Foundation under Grant CCR-9623585.

tDept. of Computer Science & Engineering, University of
Notre Dame, Notre Dame, IN 46556, USA. chen@cse.nd.edu.

tDept. of Computer Science & Engineering, Univer-
sity of Notre Dame, Notre Dame, IN 46556, USA.
odaescu@bach.helios.nd.edu.

240

Ovidiu Daescut

map for a 3-D scene consisting of disjoint spheres from
a moving point on a circle at infinity.

Note that the visibility from points along a trajec-
tory path can be captured by a sequence of “similar”
views in the sense that one view differs topologically
from the next view only slightly. That is, at certain
points along the path, topology changes occur to the
view (e.g., a newly seen object emerges in the view or
a previously visible object disappears from the view).
We call these points on the trajectory its critical points.
The solutions of Bern et al. [2] and Mulmuley [11], for
a more complicated 3-D version of the problem, use
persistent data structures [5, 13] to capture the topo-
logical changes of the visibility from points along the
trajectory. However, their data structures support only
ray shooting queries and it is not immediately clear
how these data structures can be modified to report
the complete view from a query point in an output-
sensitive manner.

We also use a persistent data structure to maintain
visibility from points along a trajectory for a simpler
(planar) scene. Our data structure requires O(nlogn)
time and O(n) space to construct. This data structure
reports the view from any query point on the trajec-
tory in an output-sensitive fashion (i.e., in O(k+logn)
time for a view of size k). Further, we prove that re-
porting all critical points in the order along the tra-
jectory (at which topological changes of the visibility
occur) requires)(n logn) time in the worst case in the
algebraic computation tree model. Hence we solve op-
timally the problem of reporting the view from a mov-
ing point along a trajectory path. Our algorithms are
quite simple conceptually.

Note that the visibility of a moving point along a
trajectory path is closely related to the weak visibility
of the path. With the boundary of the polygon P being
the only “opaque” object, a point p is said to be weakly
visible from the trajectory if and only if p is visible
from some point (depending on p) on the trajectory.
Many algorithms have been developed for computing
the weak visibility of a polygon from a line segment
[4,6-9,14]. Our solutions will make substantial use of
several structures of the weak visibility of P from the
trajectory.

The rest of the paper consists of 3 sections. Section 2

reviews some notations and preliminary results needed
by our algorithms. Sections 3 describes in detail our
algorithm for the case with the trajectory path being a
line segment inside P. Section 4 extends our solution
to several other cases of the problem.

2 Preliminary

Let P be the input simple polygon, specified by the
list of vertices V = (v1,vs,...,v,) along the bound-
ary bd(P) of P clockwise. Without loss of generality
(WLOG), we assume that no three distinct vertices of
P are collinear. We denote the z (resp., y) coordinate
of a point p in the plane by z(p) (resp., y(p))-

It is well known that a triangulation of P can be
obtained in linear time [3]. In [7], it was proved that
the weakly visible polygon of a triangulated polygon P
from a line segment ! that does not cross the bound-
ary bd(P) of P can be computed in linear time. We
will denote the weakly visible polygon of P from [as
Vis(P,l). Consider the case in which the segment [is
the input trajectory. Observe that for each point z on
l, the visible portion of P from z, denoted by Vis(P, z),
is completely contained in Vis(P,!l) (i.e., Vis(P,z) C
Vis(P,l)). Hence the visibility of a moving point along
the segment [is concerned only with points in Vis(P,).
WLOG, we assume that for a segment [in P, we have
computed Vis(P,!) (in linear time). From now on, our
discussion will focus on Vis(P,1). We denote Vis(P,1)
still by P and denote the number of vertices of P as
|P| = n.

Consider Vis(P, z) for a given point z € l. Vis(P, z)
is said to be star-shaped and it is well known that when
traversing the boundary of Vis(P,), its vertices and
edges are visited in the sorted order by their polar an-
gles with respect to z [12]. The edges e of Vis(P,z)
can be classified into two types: (i) e is either part of
an edge of P, or (ii) e is not on bd(P) except its end
vertices. We call the edges of the first type real edges
(because they are part of some edges of P), and the
edges of the second type false edges. It is easy to see
that the vertices of Vis(P,z) are all on bd(P).

Let [be the line segment from which weak visibility
of the input polygon was computed, and let a and b be
the endpoints of /. Suppose a point z traverses along [
from a to b. At certain “moments” of this traversing,
the visibility of P from the point z, Vis(P, z), may
change its topology as some edge of Vis(P,z) becomes
no longer visible from z or a “new” edge becomes vis-
ible from z. These special “moments” correspond to
certain points on [, called critical points. One of our
main tasks is to characterize the critical points on [.
This characterization is done by exploiting the relation
between a weakly visible polygon and certain shortest
paths inside it.

241

It is known [1] that the shortest path tree inside P
rooted at an end point s of | can be computed in linear
time (since P is weakly visible from !). The algorithm
for computing such a shortest path tree is based on the
outward convexity of the shortest paths to s whose ver-
tices are also vertices of P. Figure 1 gives an example
of such an outward convex path from v to b.

a real edge of Vis(P,x)

a false edge of Vis(P,x)

Vis(P,1)

Vis(P,x)

Figure 1: Ilustrating Vis(P, 1), Vis(P,z), and a short-
est v-to-b path in P.

To maintain the visibility information for points on
the segment !, we make use of persistent data struc-
tures [5,13]. Ordinary data structures are “ephemeral”
because any change to the structure destroys the old
version. In contrast, a “persistent” data structure al-
lows accesses to the current version as well as to the
old versions that had occurred in a past time. A time
in our problem corresponds to a point on the segment
I visited during the traversing of . Techniques for de-
signing persistent versions of binary search trees that
support logarithmic time operations of search, inser-
tion, and deletion were presented in [5,13]. In par-
ticular, a persistent red-black tree was used in [13] to
maintain a sorted list. Let m be the total number
of update operations on the list. The persistent data
structure in [13] implements update and search queries
(even in the past) in O(logm) time each. The space
used by this data structure is O(1) per update oper-
ation amortizedly (and hence O(m) total space in the
worst case). We will reduce the computation for main-
taining the visibility from points along the segment I
to a sequence of O(n) update operations (i.e., insertion
and deletion) that can be handled by the data structure
in [13].

3 The Basic Algorithm

In this section, we present an algorithm for the basic
case with the trajectory path being the line segment !
inside P. This algorithm, nevertheless, illustrates our
key ideas. The algorithm takes O(nlogn) time and

O(n) space to build the persistent data structure for
our visibility problem. We also prove that sorting all
critical points in the order along the trajectory requires
Q(nlogn) time in the worst case in the algebraic com-
putation tree model. This implies that we solve opti-
mally the problem of reporting the view from a moving
point along a trajectory path. Our algorithm consists
of the following three steps:

Step 1: Let a and b be the starting and ending points
of I. Compute shortest paths inside P from the vertices
of P to each of a and b. Use this shortest path infor-
mation to characterize the critical points of I.

Step 2: Partition ! into a set S of O(n) intervals
such that the view from a point moving along such an
interval of S is topologically unchanged.

Step 3: Build a persistent data structure to store the
visibility information along l. The data structure will
support a fast report of Vis(P, z) for any query point
z el

We first show in Section 3.1 how to perform Steps 1
and 2. In Section 3.2, we present the persistent data
structure that stores the visibility information along {
(Step 3). We prove in Section 3.3 an (nlogn) worst
case lower bound in the algebraic computation tree
model for sorting the critical points along I.

3.1 Computing the
Changes in Visibility

Topological

Since we assumed (WLOG) that the polygon P is
weakly visible from the segment [, the shortest paths
in P from all vertices of P to the endpoints of ! can
be computed in O(n) time [1]. Hence we only need to
discuss the characterization of the critical points of [.
We will first show how to identify the critical points
on ! and how to use them to obtain a partition S of
I. We will then prove that Q(nlogn) is a worst case
lower bound in the algebraic computation tree model
for sorting the critical points along I.

Let z be a point moving on ! by starting at its
end point a and consider how Vis(P,z) changes cor-
respondingly (see Figure 2). Recall that the boundary
bd(Vis(P,z)) consists of real edges and false edges, as
defined in Section 2. Suppose that when z is moving
towards a position z’ € [, the topology of Vis(P, z) re-
mains unchanged. But nevertheless, other changes can
occur to some real and false edges of Vis(P,z) dur-
ing this movement of z to z', as follows. The changes
to a real edge e of Vis(P,z) may be that e becomes
longer or shorter, and one or even both of its end ver-
tices change their actual locations on bd(P). Note that
a false edge e* of Vis(P, z) is always collinear with z,
and that the end vertex of e* that is closer to z than the
other end vertex of e*, called the closer verter u.(e*)
of e*, is always a vertex of P. The change to a false
edge e* of Vis(P,z) may be that the end vertex of e*

242

’
’

‘<0 ~
.,
!
* @-
’

!

P

Figure 2: Nllustrating various types of critical points on
the trajectory l.

that is not u.(e*), called the farther vertex us(e*) of
e*, changes its actual location on bd(P) (the location
of uc(e*) remains the same). The changes to each real
edge e are in fact caused by the changes to one or two
false edges of Vis(P, z) whose farther vertex defines an
end vertex of e.

Now consider a real edge e and a false edge e’ of
Vis(P,z) such that the farther vertex uy(e’) of €' de-
fines an end vertex of e. Let e be contained by the
edge e; = T;0;+1 of P and WLOG let the farther ver-
tex us(e) of e falls in the interior of e;. Suppose the
point z passes z' and continues moving to the end point
b of I. Then uy(e') also continues to move towards the
vertex v;4; of P, maybe until the edge e’ encounters
a vertex v of P. There are two possible cases for e’
encountering a vertex v of P: (i) v = vi41, and (ii) v
viy1. When v # vjy1, v must occur in the interior
of €.

In case (i) (i-e., v = vi41), a topological change may
(but does not have to) occur to Vis(P,z) when uy(e’)
is at vi4;. This is the situation if at this “moment”
of z, the real edge e “shrinks” into a single vertex of
Vis(P,z). An example of this situation is given in
Figure 2 for = being at the position y’. Furthermore,
if the vertex v;j4; of P was also the closer vertex of
another false edge " of Vis(P,z) just before z moved
onto the position y’, then when z is at y’, the two
false edges e’ and e of Vis(P,z) “merge” into a single
false edge of Vis(P,z), also a topological change to
Vis(P,z). If the real edge e does not shrink into a
single vertex of Vis(P,z), then when z continues to
move such that us(e’) passes v;41, a topological change
occurs to Vis(P, z). This is the situation when a “new”
real edge that begins at v;y1 appears in Vis(P,z). An
example of this situation is given in Figure 2 for z
being at the position y” (illustrated with the edge e;
= 5547 of P).

In case (i) (i.e., v # viy1), the false edge e’ of 3.2 Building the Persistent Data Struc-

Vis(P,z) is “split” into two false edges of Vis(P, z)
(one has v as its closer vertex), a topological change
to Vis(P,z). An example of this situation is given in
Figure 2 for z being at the position z (e.g., the false
edge of Vis(P,z) at the position z' results into two
false edges at z’'). If z continues to move and passes z,
then a “new” real edge of Vis(P,z) that begins with
v emerges in Vis(P,z), also a topological change to
Vis(P,z).

From the above discussion, it is clear that a topo-
logical change to Vis(P,z) occurs when the point z
becomes collinear with and is visible from two differ-
ent vertices v and w of P simultaneously such that v
and w are on the same side of . The following lem-
mas summarize the useful geometric structures of this
situation.

Lemma 1 Let a point z be moving along the segment
l. A topological change to Vis(P,z) occurs or is about
to occur if and only if z is at a position that is collinear
with and is visible from two different vertices v and w
of P simultaneously such that v and w are on the same
side of l. Such a position is a critical point of [.

Proof. Followed from the above discussion. [|

Lemma 2 Let a and b be the two end points of l. Letv
and w be two different vertices of P such that (1) they
are on the same side of 1, and (2) there is a critical
point x of | that is collinear with and is visible to both

" of them simultaneously. Then the segment TW is an
edge on a shortest path from one of v and w to one of
a andb in P.

Proof. Easy and omitted.]

The characterization of the critical points of I follows
from Lemmas 1 and 2. To identify the critical points,
we do the following. For each vertex v of P, let vv(a)
(resp., vv(b)) be the first edge on the v-to-a (resp.,
v-to-b) shortest path inside P. Let the ray originating
from v and along vv(a) (resp., vv(b)) cross the segment
l at a point ¢,(a) (resp., ¢y(b)). Then when a point z
travels along [from a to b, ¢, (a) (resp., ¢, (b)) is the first
(resp., last) position at which v is visible from z, and v
is visible from z while z is in the interval ¢, (a)c, (b) on
[. The set C of critical points of I is then {c,(a), cy(b)
| vis a vertex of P}. It is clear that |C| = O(n) and
that given the shortest paths from the vertices of P to
a and b, C can be easily obtained in O(n) time.

The set S of intervals on [is obtained by first sorting
in O(nlogn) time the points of C along ! and then using
these sorted points to divide [into intervals. If several
critical points coincide at some position of [, then we
break the tie arbitrarily and let the interval between
two such points be of zero length.

It is easy to see that the computation in this subsec-
tion takes O(nlogn) time and O(n) space.

243

ture

There are two facts that enable us to use the persistent
data structure of [13] to maintain visibility information
from points along the segment I.

1. The order of the vertices and edges of Vis(P,z)
based on their polar angles with respect to any
point z € ! is consistent with the order of the ver-
tices and edges of P along bd(P).

2. Each critical point in C can be associated with
O(1) operations on Vis(P,z) such as “delete an
edge” (e.g., when a real edge shrinks into a vertex
or two false edges merge into one) and “insert an
edge” (e.g., when a “new” real edge emerges or
a false edge is “split” into two false edges). For
example, when an existing false edge €' is “split”
into two false edges because a vertex v of P touches
the interior of €' (with one of the two false edges
having v as its closer vertex), what we can actually
do is the following O(1) operations on Vis(P,z):
(a) delete e’ (since its farther vertex changes), (b)
insert each of the two “new” false edges, and (3)
insert a “new” real edge that begins at the vertex
v of P. If we associate the two collinear vertices v
and w of P with their corresponding critical point
pon [, then it is easy to decide what operations
to perform on Vis(P,p) based on the position of
p and the edges of P adjacent to each of v and w.

From the above facts, we maintain Vis(P,z) as a
(circular) list of real and false edges sorted by their
polar angles with respect to z. In the list Vis(P,z),
we represent each real edge e by the “name” e; if e is
contained by the edge e; of P, and represent each false
edge by its closer vertex. The following facts are also
useful:

o In the sorted list Vis(P,z), two different false
edges cannot be consecutive to each other unless
they are collinear. If two real edges are consecu-
tive to each other in the list, then the two edges are
also adjacent to each other on bd(P) (and hence
their common vertex in P belongs to Vis(P, z)).

The above facts imply that there is a vertex of P
in every (at most) two edges of Vis(P,z). These ver-
tices of P in Vis(P,z) enable us to perform a binary
search in Vis(P, z) based on a polar angle with respect
to z. This property also enables us to compute, in
O(|Vis(P,z)|) time, the actual edges of Vis(P,z) once
we are given these vertices of P that are on Vis(P,z),
the ordered list Vis(P, z) containing the “names” of its
edges, and the position of z.

We are now ready to describe the construction of
our persistent data structure based on the technique

of [13]. First we compute Vis(P,a) from the starting
point a of I; this takes O(n) time [12]. Then using the
sorted sequence C of critical points along [, we perform
appropriate insertion/deletion operations on Vis(P, z)
at each critical point, corresponding to the traveling of
a point z along . The insertion/deletion of an edge
in Vis(P,z) is guided by binary search based on the
angular information of an appropriate vertex of P with
respect to z.

Our construction of the persistent data structure re-
quires O(nlogn) time and O(n) space, because totally
O(n) update operations are done (for O(n) critical
points, each causing O(1) such operations). This data
structure enables us to do binary search in Vis(P,z)
(based on angular information) in O(logn) time. In
fact, it allows us to compute all edges of Vis(P,z) be-
tween two polar angles with respect to z in O(k+logn)
time, where k is the number of edges reported [13].
Hence with this data structure, we can report Vis(P, z)
for any query point z € I in an output-sensitive
O(|Vis(P, z)| + logn) time.

3.3 Lower Bound of Sorting the Criti-
cal Points along a Trajectory

Since P is a weakly visible polygon from the segment [
and since the critical points of [are obtained by “pro-
jecting” onto ! the vertices of P along their first edges
on the shortest paths to the end points a and b of I, one
could suspect that it might be possible to sort the set of
critical points along ! in less than O(nlogn) time. But
the following lemma shows that this is not the case.

Lemma 3 The problem of reporting all the critical
points in their order along the segment | requires
Q(nlogn) time in the worst case in the algebraic com-
putation lree model.

Proof. The lemma is proved by reducing, in linear
time, the problem of sorting arbitrary integers to that
of reporting all the critical points in their order along
l. Note that from Yao’s results in [15], sorting n in-
tegers in an arbitrary range requires)(nlogn) time in
the worst case in the algebraic computation tree model.
Further, note that it is easy to reduce, in linear time,
the problem of sorting n arbitrary integers to the case
of sorting n positive integers in an arbitrary range. Ac-
tually, we reduce the problem of sorting n positive in-
tegers (in an arbitrary range) to that of reporting the
critical points along I. Also, it is sufficient to consider
only those critical points that are generated by using
the shortest paths in P from the vertices of P to the
starting end point a of [.

Our reduction works as follows. Given a set Ay of n
arbitrary positive integers a;,as, . .., @, we first create
a polygonal chain P; = (w;, wa, - . ., ws,) of 2n vertices
that is monotone to the z-axis. The vertices wg;—; of

244

Py are at points (i,n—i+1) in the plane, i =1,2,...,n.
Each vertex wo; of P; is at the point in the first quad-
rant of the point ws;_; such that the length of the edge
Wai—1Wa; of Pr is 0.5 and the slope of W3;_1w=; is a; (see
Figure 3). P so obtained is clearly monotone to the

y-axis

X-axis a

Figure 3: Reducing the integer sorting problem to that
of sorting critical points along R;.

z axis. Now consider an almost vertical ray R; (slant
slightly to the right) that is to the right of P; and that
originates from a point a on the z-axis (we will choose
a later). Observe that P; is weakly visible from R;
(provided that Ry is long enough) since the ray from
every vertex ws;_; and along the edge Wa;—1wa; of Pr
hits a point h; on R;. Also, note that h; is the critical
point on R; for the vertex wy;_; of Py generated by the
edge Wa;_1Wz; on the shortest wp;—1-to-a path that is
inside the region enclosed by Ry and P;. Observe that
if R; is sufficiently far to the right of Py (because of its
starting point a), then the following will hold: For any
i,j € {1,2,...,n} with i < j, (i) a; > a; if and only
if y(hi) > y(h;), and (i) a; < a; if and only if y(h;)
< y(h;). But the sorted order of the critical points h;
based on their y coordinates is the same as their order
along R;. Therefore, for an appropriate ray Ry, the
sorted sequence of A; can be obtained in O(n) time
from the sorted sequence of the critical points h; (for
the vertices wo;_; of Pr) along Ry.

The only thing left is to show how to choose the ray
Ry (i.e., choose the starting point a for R;). Find the
smallest integer in A;; let it be a;. Let L be the line
passing the vertex of P; at the point (n,1) and with
slope a;, and L' be the line passing the vertex at the
point (1,n) and with slope a; — 1 (a; — 1 is the largest
integer that is smaller than a;). Then the intersection
point of the ray from each vertex wax—; of Pr and along
the edge War_jwax with the ray from any other vertex
woj—1 and along the edge Wz;_1wz; is to the left of the
intersection point of L and L'. The starting point a of
R can be obtained by finding the intersection point of

L and L' and then projecting this point vertically onto
the z axis. Note that it is easy to construct a weakly
visible polygon P from R; with the chain Py as part of
bd(P). This finishes the linear time reduction. |

The above lemma immediately implies that the prob-
lem of reporting all critical points in the order along
a trajectory path requires Q(nlogn) time in the worst
case in the algebraic computation tree model. Since we
can use the O(nlogn) time algorithm in this section to
solve the case of the problem with the trajectory being
a line segment, our solution for this case is optimal.

4 Extensions

We can easily extend our algorithm in the previous
section to several other cases of maintaining visibility
information of a polygon P along a trajectory path.
Note that in this section, we do not assume that P is
weakly visible from the trajectory path.

The first case is that the trajectory path consists of h
> 1 line segments inside the polygon P. In this case, a
direct application of our algorithm in Section 3 to each
of the h segments on the path results in a solution that
requires O(hnlogn) time and O(hn) space. The case in
which the h-segment trajectory path is outside P can
also be handled in a similar way.

Another case is that the trajectory path is a conic
curve that contains the polygon P. We sketch below
only the algorithm for the case in which the trajectory
path is a circle C containing P (other conic curves can
be processed in a similar manner).

We first compute the convex hull CH(P) of P in lin-
ear time [12]. Note that the circle C contains CH(P)
because C contains P. Now consider each connected
region that is enclosed between the convex hull CH(P)
and bd(P). Let R be such a region. Then R forms a
simple polygon and the boundary bd(R) of R consists
of exactly one edge from CH(P) and the rest of edges
from bd(P). We denote the edge of R from CH(P)
by e(R). Note that each edge of bd(P) belongs to
at most one such region. We next compute, for each
such region R, its weakly visible portion Vis(R,e(R))
from the edge e(R). Then we apply our algorithm in
Section 3 to Vis(R,e(R)) and e(R) for each region R,
with one modification. The modification is that instead
of obtaining critical points by “projecting” vertices of
Vis(R, e(R)) onto the edge e(R), the “projections™ are
onto C. It is easy to show that there are O(n) criti-
cal points on C (this is the same as the case with the
trajectory being a segment). Then the rest of the algo-
rithm follows as in Section 3. The complexity bounds
of the algorithm for the conic curve case are O(nlogn)
time and O(n) space.

245

References

[1] D. Avis and G.T. Toussaint. An optimal algorithm for
determining the visibility polygon from an edge. IEEE
Trans. Comput., pages 910-914, C-30 (12), 1981.

[2] M. Bern, D. Dobkin, D. Eppstein, and R. Grossman.
Visibility with a moving point of view. Algorithmica,
11:360-378, 1994.

[3] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete and Computational Geometry, pages
485-524, 1991.

[4] B. Chazelle and L. Guibas. Visibility and intersection
problems in plane geometry. Discrete and Computa-
tional Geometry, 4:551-581, 1989.

[5] J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tar-
jan. Making data structures persistent. Communica-
tions of the ACM, 5:109-121, 1986.

[6] H. ElGindy.
with applications.
1985.

[7] L. Guibas, J. Hershberger, D. Leven, M.E. Sharir,
and R.E. Tarjan. Linear-time algorithms for visibility
and shortest path problems inside triangulated simple
poligons. Algorithmica, 2:209-233, 1987.

[8] P.J. Heffernan and J.S.B. Mitchell. Structured visi-
bility profiles with applications to problems in simple
polygons. Proc. 6th Anual ACM Symp. Computational
Geometry, pages 53-62, 1990.

[9] D.T. Lee and A K. Lin. Computing the visibility poly-
gon from an edge. Computer Vision, Graphics, and
Image Processing, 34:1-19, 1986.

H.P. Lenhof and M. Smid. Maintaining the visibility
map of spheres while moving the viewpoint on a circle
at infinity. MPI-I, pages 92-102, 1992.

K. Mulmuley. Hidden surface removal with respect to a
moving view point. Proc. 29rd ACM Symp. on Theory
of Computing, pages 512-522, 1991.

F.P. Preparata and M.I. Shamos. Computational Ge-
ometry: An Introduction. Springer-Verlag, New York,
1985.

N. Sarnak and R.E. Tarjan. Planar point location us-
ing persistent search trees. Communications of the
ACM, 29(7):669-679, 1986.

G.T. Toussaint. A linear-time algorithm for solving the
strong hidden-line problem in simple polygon. Pattern
Recognition letters, 4:449-451, 1986.

A.C.-C. Yao. Lower bounds for algebraic computation
trees with integer inputs. SIAM Journal on Comput-
ing, pages 655-668, 1991.

Hierarchical decomposition of polygon

Ph.D. thesis, McGill University,

[10]

(11]

(12]

(23]

(14]

[15]

