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1 Introduction

An inner diagonal of a polytope P is a segment that joins
two vertices of P and that lies, except for its ends, in P ’s
relative interior. For 1 ≤ i ≤ d, an i-diagonal of a d-polytope
P is a segment [x, y] whose ends are vertices of P and whose
carrier in P (i.e., the smallest face of P that contains [x, y])
is of dimension i. The number of P ’s i-diagonals is denoted
by δi(P ). Thus δ1(P ) is the number of P ’s edges and δd(P )
is the number of P ’s inner diagonals. The focus here is on δd.

It seems strange that, except for d = 2, so little atten-
tion has been paid to inner diagonals of d-polytopes. There
is an interesting paper of Mani [10] and an attractive open
problem of von Stengel [13] (see Section 4), but we know
of little else. Following some preliminaries in Section 2, our
main results appear in Section 3. They consist of the de-
termination, for each f ≥ 4, of both the minimum and the
maximum of δ3(P ) as P ranges over all simple 3-polytopes
that have precisely f facets. Section 4 contains some results
on inner diagonals of higher-dimensional polytopes, includ-
ing the determination for all d of the maximum number of
inner diagonals of d-polytopes having a given number of ver-
tices.

2 Preliminaries

We use v(P ) and f(P ) to denote respectively the number
of vertices and the number of facets ((d − 1)-faces) of a d-
polytope P . A d-polytope is simplicial if each of its facets is
a simplex, and it is simple if each of its vertices is incident
to precisely d edges (equivalently, to precisely d facets).

We say that two vertices of a polytope are estranged if
they do do not lie together on any facet, and that two facets
are estranged if they do not share any vertex. Note that
two vertices are joined by an inner diagonal if and only if
they are estranged. Note also that under the standard po-
larity operation for polytopes, simple polytopes correspond
to simplicial polytopes, the vertices of a polytope correspond
to the facets of its polar, and estranged pairs of vertices in
a polytope correspond to estranged pairs of facets in its po-
lar. We use the notation DMAXVd (n) (resp. EMAXVd (n)) to
denote the class of d-polytopes that maximize, among the
d-polytopes with n vertices, the number of inner diagonals
(resp. estranged pairs of facets). The notations DMAXFd (n)
and EMAXFd (n) are defined similarly with respect to fixing
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the number of facets. The following two remarks are imme-
diate consequences of the basic definitions.

2.1. Remark. For each d-polytope P ,
P
i δi(P ) =

�
v(P )

2

�
,

with δ1(P ) + δd(P ) =
�
v(P )

2

�
when P is simplicial.

2.2. Remark. If a d-polytope P has at least one inner di-
agonal, then v(P ) ≥ d+ 2 and f(P ) ≥ 2d.

A d-polytope P is called a pyramid if there is a facet F
of P that contains all but one vertex of P . Each facet that
has this property is called a base of the pyramid and the
remaining vertex is called an apex. Note that for each choice
of d ≥ 3, v > d, and f > d, there is a d-pyramid that has
v vertices and there is a d-pyramid that has f facets. Note
also that when d ≥ 2 a d-pyramid has no estranged pair of
facets and also no estranged pair of vertices.

When Q is an (f − 1)-facet (d− 1)-polytope in Rd−1 and
F is a facet of Q, a wedge over Q with foot F is an f-facet
d-polytope W obtained from the product Q × [0, 1] by (in
effect) collapsing F × [0, 1] to F ×{ 0 }. We use the following
easily verified property of wedges.

2.3. Remark. If Q is a simple (d − 1)-polytope and W is
a wedge over Q with foot F , then W is simple and δd(W ) is
twice the number of inner diagonals of Q that miss F .

For other properties of polytopes, the reader is referred to
the books of Grünbaum [5] and Ziegler [15].

3 Inner diagonals of 3-polytopes

This section is concerned with the combinatorial structure
of 3-polytopes, or, in view of Steinitz’s theorem [12], [5],
with 3-connected planar graphs. We shall (mostly) continue
to use the geometric language since it is from a geometric
viewpoint that the inner diagonals are of special interest.

By adding edges between non-adjacent vertices on a facet
(and splitting the facet), we strictly increase the number of
inner diagonals.

3.1. Theorem. For each 3-polytope P with v vertices, δ3 ≤
(v2− 7v+ 12)/2, with equality if and only if P is simplicial.

A similar argument, and polarity, yields the following.

3.2. Theorem. For f ≥ 6, if P ∈ DMAXF3 (f) then P is
simple.

We now proceed to determine both the minimum and the
maximum number of inner diagonals for simple 3-polytopes
with a given number f ≥ 6 of facets. An essential notion is
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that of the p-vector (p3, p4, . . . ) of a 3-polytope P , where pi is
the number of i-gonal facets of P . The p-vector (p3, p4, . . . )
is also written as k

pk1
1 . . . k

pkm
m with 3 ≤ k1 < k2 < · · · <

km, where k1, . . . , km are the values of i for which pi >
0. We occasionally deviate slightly from this practice to
permit repetition among the ki or pki = 0. For reasons that
will immediately become apparent, we are interested in the
function

ϕ(P ) =
X

i

i2pi,

where (p3, p4, . . . ) is the p-vector of P .

3.3. Proposition. For each simple 3-polytope with f facets,
δ1 = 3f −6, δ2 = 1

2
ϕ−9f +18, and δ3 = 2f2−3f −2− 1

2
ϕ.

It follows from Proposition 3.3 that if we are restricted
to simple 3-polytopes with a given number f of facets, the
maximum (resp. minimum) number of inner diagonals is
obtained by minimizing (resp. maximizing) the quantity ϕ
over all sequences (p3, p4, ...) that have

P
i pi = f and are

realized as the p-vector of some simple 3-polytope. Easy
counting (using Euler’s theorem and the fact that 2δ1 = 3v)
shows that the equation,

3p3 + 2p4 + p5 = 12 +
X

i≥7

(i− 6)pi

is a necessary condition for such realizability. The quantity
p6 does not appear in this equation, and a theorem of Eber-
hard [3] asserts that for each sequence satisfying the equation
there is at least one value of p6 for which the sequence with
this p6 in place is indeed the p-vector of a simple 3-polytope.
(See Grünbaum [5] for a much simpler proof.) However, for
many choices of the reduced sequence (pi : 3 ≤ i 6= 6) it is
not known which values of p6 have the stated property.

We turn now to the problem of minimizing δ3 over all
simple 3-polytopes that have a given number f of facets.
This brings us back to the wedges mentioned in Remark 2.3,
for it will turn out that except for additional minimizers
when f is 7 or 8, the 3-dimensional wedges are precisely the
desired minimizers. We define an f-wedge as a 3-polytope
that is a wedge over an (f − 1)-gon K and has as its foot
some edge of K. Each f-wedge is a simple 3-polytope with
f facets, and for given f all f-wedges are combinatorially
equivalent. Figure 1 depicts a 6-wedge and its two inner
diagonals.

Figure 1: A 6-wedge and its two inner diagonals.

3.4. Lemma. An f-facet simple 3-polytope is an f-wedge iff
its p-vector is 324f−4(f−1)2. Each f-wedge W has ϕ(W ) =
2f2 + 12f − 44 and δ3(W ) = f2 − 9f + 20.

It follows from an observation of Steinitz [12] (see also [5],
p. 243) that for f ≥ 4, each simple 3-polytope P with f + 1
facets can (in combinatorial type) be obtained from some
simple 3-polytope Q with f facets by (in graph theoretic
terms) splitting a facet Y as follows. Two edges of Y are
split by adding a vertex in the middle, and the two new
vertices are joined by an edge. Let X and Z be the other
two facets effected by the split. If the numbers of vertices
of X, Y , and Z are respectively α, β, and γ ≤ α, and the
β-gon Y is split into a ξ-gon and an η-gon with η ≤ ξ, then
the above sort of transition from the simple 3-polytope Q to
the simple 3-polytope P is here called an (X,Y,Z)-splitting
of type (α : ξ, η : γ). Note that ξ + η = β + 4 ≥ 7. As can
be seen in Figure 2, an (f + 1)-wedge can be obtained from
an f-wedge by means of splittings of three different types:
(f−1 : 4, 4 : f−1), (f−1 : 4, 3 : f−1), and (f−1 : f, 3 : 3).
In each case the value of ϕ increases by 4f + 14.

Figure 2: A 7-wedge can be obtained from a 6-wedge by 3
types of split.

3.5. Lemma. Suppose that Q is a simple 3-polytope with f
facets, and P arises from Q by means of a splitting of type
t = (α : ξ, η : γ). Then ϕ(P )−ϕ(Q) ≤ 4f+14, with equality
if and only if

(a) X ∩ Y ∩ Z = ∅ 6= X ∩ Z, and t = (f − 1 : 4, 4 : f − 1);
or

(b) X ∩ Y ∩ Z 6= ∅, η = 3, and α+ ξ + γ = 2f + 2

In each case, equality implies that all vertices of Q belong to
X ∪ Y ∪ Z.

We have seen in Lemma 3.4 that an f-wedge P has ϕ(P ) =
2f2+12f−44 and is characterized among simple 3-polytopes
by having 324f−4(f − 1)2 as its p-vector. We have also seen
(in Figure 2) that for f ≥ 6 an (f+1)-wedge can be produced
from an f-wedge by means of splittings of three different
types: (f − 1 : 4, 4 : f − 1), (f − 1 : 4, 3 : f − 1) and
(f − 1 : f, 3 : 3).

Figure 3: The polytopes Tk obtained by truncating a tetra-
hedron at k − 4 of its vertices.

For 5 ≤ f ≤ 8, the Tf of Figure 3 is a simple 3-polytope
that has f facets and arises from truncating a tetrahedron
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at f − 4 of its vertices. Note that T5 and T6 are wedges
but T7 and T8 are not. The following is proved by inductive
application of Lemma 3.5.

3.6. Theorem. If f ≥ 4 and P is a simple 3-polytope with f
facets, then ϕ(P ) ≤ 2f2+12f−44, and δ3(P ) ≥ f2−9f+20.
Equalities hold if and only if P is an f-wedge or f is 7 or 8
and P = Tf .

We turn now to the problem of maximizing the number of
inner diagonals in the class of all simple 3-polytopes having
a given number f of facets. The following characterization
was suggested by the results of a computer search using an
algorithm of Avis [1]. The proof is based on solving a certain
class of linear programs over p-vectors, and showing that the
solutions are realizable as simple polytopes. For f ≥ 14 the
maximizers turn out to be polytopes whose existence was
established by Grünbaum and Motzkin [6]. For f < 14, the
maximizers are those shown in Figure 4, along with the cube
and the dodecahedron.

3.7. Theorem. For simple 3-polytopes with f facets, the
maximum number of inner diagonals and the unique associ-
ated p-vector are as follows:

f δ3 p-vector

6 ≤ f ≤ 10 2f2 − 20f + 52 412−f52f−12

11 73 42586

13 128 4151062

f = 12, 14 ≤ f 2f2 − 21f + 64 5126f−12

f = 10

f = 9

f = 11
f = 13

f = 8f = 7

Figure 4: Simple 3-polytopes maximizing the number of in-
ner diagonals for given f .

4 Higher-dimensional polytopes

A polytope is called 2-neighborly if each pair of its vertices
defines an edge. Consideration of wedges, pyramids and (2-
neighborly) cyclic polytopes yields:

4.1. Proposition. For each n > d ≥ 4, there exists
a simplicial (resp. simple) d-polytope P with v(P ) = n
(resp. f(P ) = n) and δd(P ) = 0.

Let P = convX be a d-polytope. Let X′ = (X \ {x0}) ∪
{x′0}, where x′0 is a point of Rd such that the half-open seg-
ment ]x0, x

′
0] does not intersect any hyperplane determined

by points of X. If x0 is in the interior of P ′, P ′ = convX′

is said to be obtained from P by pulling x0. If x′0 is in the
interior of P , P ′ is said to be obtained from P by pushing
x0. Initially we will consider some consequences of pulling;
we return to pushing below.

It is shown in [4] and [5] that if convX′ is obtained from
convX by pulling, then for 0 ≤ r ≤ d − 1, the r-faces of
convX′ are precisely the sets of the following two sorts:
an r-face of convX that misses x0; a pyramid of the form
conv(B ∪ {x′0}), where B is an (r − 1)-face of a facet F
of convX such that x0 ∈ F \ B. Let ρ(s, t, P ) denote the
dimension of the carrier of [s, t] in polytope P .

4.2. Lemma. Suppose that x0 belongs to the vertex set X
of a d-polytope P ⊂ R

d, and that P ′ is obtained from P by
pulling x0 to a new position x′0. Then the following state-
ments are true.

(a) If ρ(s, t, P ) ∈ { 1, d } then ρ(s′, t′, P ′) = ρ(s, t, P ).

(b) If 1 < ρ(s, t, P ) < d, K is the carrier of [s, t], and
x0 ∈ K \ { s, t } then ρ(s, t, P ′) > ρ(s, t, P ).

4.3. Proposition. If d ≥ 2 and P ∈ DMAXVd (v) then each
facet of P is 2-neighborly.

We now argue that the v-vertex d-polytopes maximizing
the number of inner diagonals are all simplicial. Let pk(P )
denote the number of 2-faces of P with k-vertices. For a
v-vertex d-polytope P , define the functions g1(P ) and g2(P )
as follows:

g1(P ) = v − (d+ 1)

g2(P ) = δ1(P )−
"
dv −

 
d+ 1

2

!#
+
X
k>3

(k − 3)pk(P ) .

A v-vertex stacked d-polytope is either a d-simplex or is
obtained recursively from a (v − 1)-vertex stacked polytope
by erecting a pyramid over one of the facets. Barnette’s
Lower Bound Theorem [2] says that for each j with 1 ≤ j ≤
d−1, each v-vertex simplicial d-polytope has at least as many
j-faces as a v-vertex stacked d-polytope, and that within the
class of simplicial polytopes, this bound is attained (when
d ≥ 4) only by the stacked polytopes. The Lower Bound
Theorem can be recursively reduced to the case j = 1 (see [8],
Sec. 5 for details); hence for simplicial d-polytopes with d ≥
4 the Lower Bound Theorem is equivalent to the statements

g2(P ) ≥ 0, and (L1)

g2(P ) = 0 iff P is stacked . (L2)

The statement (L1) was proved for rational (not necessar-
ily simplicial) polytopes by Stanley [11]. Kalai [8] gener-
alized this to all polytopes by using notions of rigidity of
graphs, in particular a theorem of Whitely [14]. In order to
generalize statement (L2) to not necessarily simplicial poly-
topes, we need the following theorem of Kalai [9]. Let P/F
denote the quotient polytope of P with respect to F , i.e.,
a polytope whose face lattice is isomorphic to the interval
{G | F ⊆ G ⊆ P } of the face lattice of P (see Ziegler [15],
p. 57).
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4.4. Theorem (Kalai). For any d-polytope P and any
face F of P , g2(P ) ≥ g2(F ) + g1(F )g1(P/F ) + g2(P/F ) .

The following is a consequence of this theorem.

4.5. Proposition. For d ≥ 4, if P is a d-polytope with 2-
neighborly facets, then g2(P ) = 0 if and only if P is stacked.

Putting together Propositions 4.3 and 4.5, we have

4.6. Theorem. For a v-vertex d-polytope P ,

δd(P ) ≤
 
v

2

!
− dv +

 
d+ 1

2

!
.

For d ≥ 4 this maximum is attained by the stacked polytopes
and only by them.

We now consider maximizing the number of inner diago-
nals among polytopes with a fixed number of facets.

4.7. Theorem. Within the class of d-polytopes that have a
given number f ≥ 2d of facets, the maximum possible number
of inner diagonals is attained by certain simple d-polytopes.

For d ≥ 4 we do not know whether “by certain” in Theo-
rem 4.7 can be replaced by “only by certain.” We can how-
ever make a few observations about the d-polytopes that
maximize the number of inner diagonals among those with
a fixed number of facets. The following is proved using a
perturbation argument similar to Lemma 4.2.

4.8. Proposition. If P ∈ EMAXVd (n) then each facet of P
that is not a simplex must intersect every other facet of P .

Let dist(s, t, P ) (the distance from s to t) denote the length
(number of edges) of the shortest path from s to t in the
graph defined by vertices and edges of polytope P . The
diameter of a polytope P with vertex set X is defined as the
maximum over all {x, y } ⊂ X of dist(x, y,P ). The following
can be proved using the notion of pushing a vertex.

4.9. Theorem. If P ∈ EMAXVd (n) then P is simplicial or
P has diameter at most 4.

In contrast to the situation (Theorem 4.6) when the number
of vertices is fixed, we do not know (for d ≥ 4) what is
the maximum number of inner diagonals when the number
of facets is fixed. The present note was motivated by the
following conjecture of von Stengel [13], which arose from
his study of the Nash equilibrium points of bimatrix games.

4.10. Conjecture (von Stengel). Within the class of all
simple d-polytopes having 2d facets, the maximum number of
inner diagonals is the 2d−1 attained by a d-cube.

There are two relevant 3-polytopes: the 3-cube with 4 inner
diagonals and the 5-wedge with 2. Grünbaum and Sreedha-
ran [7] provided (in dual form) a catalog of the 37 different
combinatorial types of simple 4-polytopes with 8 facets. Of
these, six have no inner diagonals and only the 4-cube has
as many as 8. Hence Conjecture 4.10 holds (even with “at-
tained” replaced by “attained only”) for d ≤ 4. However,
the conjecture remains open for all d ≥ 5.
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