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Abstract

We inprove a nunber of existing al gorithns for determning the 1ocationof one or
nore undesirable facilities amdst aset P of n denand points, under various constraints
and distance functions. Wassune that the denand points reside within sone gi ven
bounded region R. Applying concepts and techni ques from(bnputational (eonetry,
ve provi de effici ent al gorithms for the fol | owi ng probl ens:

1. Brimberg Mehrez ’94: Locate k undesirable facilities wthin R under the con-
straints that the smallest distance between each denand point and the facilities
is greater than a given r, and the distance betveen any two facilities is greater
than a gi ven d. Uhder the L., (L) normve present efféient al gorithns for any
d under the L9 normve canlocate effti entl y two such facilities. Inall cases
suned to be an axis-parallel rectangle.

r Wesolowsky *94: Gven aset of vei ghted demand poi nts contai nedin
lel rectangul ar region (resp. circular region) R, and given a snaller

| rectangle (resp. circle) r, locate r within R such that the sumof
the denand points in r is mnimzed.

on

ns deal with wundesirable or obnoxious facilities [BKS1, BiS2, B

ilityis called undesirable or obnoxious if it nay pose a danger to the

ving near by, nay have an adverse effect on property val ues, or nay cause | over

life through pollution. Exanples of obnoxious facilities are nuclear pover plants,
rbage dunp sites, nega-airports, and chemcal plants.
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In this paper we consider a nunber of problens, all of which are concerned with locating
an undesirable facility (or a nunber of facilities)amdst denand points, under various dis-
tance functions and varying constraints. W survey previously known al gorithns for thes
problens, and propose nore effici ent al gorithns whi ch are based on concepts and techni
fromConputational Geonetry.

Problem 1: Maxmin mul ti -faci l 1 tyl ocati on. Intheir paper
using a naxmn criterion and rectangul ar distances”, Brinber
marmn nul tiple facilities location problem under the L
as follows. Gvenaset P = {p,...,p} of n points i
a distance r and another distance d, locate k un
that the snallest distance between each den
di stance between any pair of facilit
bound al gorithm and their al g
inthis paper runin tine @
al gorithns can be extended i
handl e di flerent separati oz
ve showthat for the |

Probl em 2:



there exist a set of ksite locations in Vwth pairwise distance at least &” If there is one
ve report the locations. The associated optimzation problemw 11 output the largest square
size 1 for which the ansver for the decision problemis “yes”. W will describe it tc
the end of this section.

W sol ve several variants of the decision problem Under the L, norm we fi
@nl ogn)-tine al gorithns for k=23, and then present a general schene for
of kthat allows us to obtain efftient algorithns that run in tine @
significantly inproving the @#*) (for any k > 1) solution proposed

Mhrez [ BM.
W also present an al gorithmthat locates two obnoxious facilities,
@nl ogn) tine. The space requi renents of our al gorithns are consi de
[BM. Specifically, the al gorithns in[BV require @1?) space, W

of our al gorithns vary between @n) and @nlogn).

k=2. 1t is well known that the conbinatorial conplexity of
nsquares is linear in n[PS]. In other words, the bounda
vertices and edges and can be conputed in tine @nl ogn

(see [M]). Thus the boundary of U(and therefore

@nlogn and space @n). 'The problemof locating tv

at least d under the L, norm boils down to find

Vwith largest and snallest a-coordinate, an

y-coordi nate. Since ve can choose these

is achievedin tine @n), by going o

Theorem2. 1 The two-fa
space.

k=3. A inthe previous c;

Cl ai m2. 2 If there
strains above, thi

of the bounda

Proof . Mss
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Figure 1: The extrenmal points of B

Thi s approach m ght nai vel ylead to a roughl y quadratic runtine, since ) mght i ntersect
the boundary of Vin @n) points, and we need to conpute for each vertex v€ Vthe region
V—@) and identify two locations init. However, we observe that if one of the other two
facilities u and v is located on a vertex of B=0(V—Q) NdY, thenit can be dragged to
an extrenal point of B nanely, the highest or lowest point in Blalternatively, leftnost or
rightnost point in B, while naintaining the distances between the three facilities gr
than d(see Figure 2). This is because the first chosen facility vis certainly wit
dfromthe dragged u and also the distance between y and v remains gre
to dsince we are working with L, (and, thus, there nust be sone directic
(al ternatively, left or right) for which the distance between u and v w
The above process can be perforned nore effei ently by preproce
the boundary of Vfor orthogonal range searching with the fr.
[BB, (HI, (3R]. Ior each boundary vertex v performa
size 2dcentered at v, and obtain the vertices of the boundar
as a collection of @logn canonical sets.
In addition we need to determne for each of the
vertices in B Ior this, we preprocess the horizont
of Utogether with the two horizontal (resp.
logarithme tine vertical (resp. horiz
and does not lie outside of R -
ve performan orthogonal ray
containing eto detect the e
W proceed by sol ving
logarithme tine. A d
canoni cal sets whe

y). The fart]



W al so consider the at nost 8 extrene points that were conputed on the boundary of Q.
Theor em?2. 3 Thethree-facilitylocation probl emcan be sol ved in@nl ogn) tine and @nl ogn)
space.
k>4, Inthis case we clai mthat

Le mma 2. 4 At least one of the sites is a verter of R-U
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Fi gure 2: The novenent of the squares

Foof. Let us consider the rectilinear free space V=R-/ Asune that there is aninitial
positioning for klocations such that none of themis on a vertex of V. Qur approach i
nove the facilities, nmaintaining the >ddistance requirenent, such that at least o
will be on a vertex. Iknote the facilities by F={f,..., f}. About each fac
an axis-parallel square ¢ with side size d(f being the square’s center).
initial positioning the squares do not intersect. W push all the
as possible, so that they still do not intersect, and their
motion. If at sone point during this stage, one of tl
then we are done. A the end of this stage, tl
of the boundary of V (if there are se
Next we push themas nuch down as



and not letting the facilities to penetrate into Unor leave B and stopping if at sone point
a facility passes through a vertex of V. A the end of this stage, the bottomnmost facility
Ji must lie on a horizontal edge of the boundary of V(and if there are several bottomo
facilities f is the leftnost anong then). See H gure2.
Assumng we have not stopped with a facility on a vertex, then we know that
since otherwise the corresponding facility lies on a vertex and we woul d have s
now check whether we can slide the square ¢ to the left, under the sane |
that its center f coincides with a vertex of V. If we can, then we are
ve proceed as follows. (bnsider the south west quarter plane defir
the bottomedge of ¢ and the line through the left edge of ¢.
least one square that is fully contained in this quadrant
square zbl ocking ¢ frombel ow, and there exists ¢
if e=ythen this square is such a square. (& he
¢, then xis such a square. And if ado
is necessarily bel owthe bottom
is fully containedin the above
contained in this quadra:
and repeat the whol
fear that tl
onlyle

«



2.1 The optimizatian sclam

In order to find the 1argest value r for which there still exists a solution to the kfacility
location probl em(keeping dfixed), we enploy the techni que of Federickson and Johnson
[FJ], as has been done before (see, e.g., [(AS] and nany others). Fachpair p,p of denand
points determnes eight critical values, four for each dinension. Wlist the critical value
the @ difference d;, between p andp: (i) &/2, (ii) d, (iii) (d—d 2, and (iv) (d—d,)
addi tion, each demand point pdetermmnes four critical values; the two horizonte
betveen pand t he boundary of Fand the tvo vertical distances between pand tl
of R
W can represent all these distances as a constant collection of sorted m
performa binary search on these val ues using the decision al gorithn
vas shown in [FJ], the above schene adds a mul tiplicative @log
tine of the decision al gorithm

3 NMNnsumcoverage

Let Pbe a set of npoints within an axis-parallel rectangle R Let
rectangle whichis snaller than R(both in width and in hei g}
within Rsuch that the total nunber of points lyingin ri
(bnsider the optinal location of r If the bottom
B and does not lie on the bottomedge of B then
these condi tions does hol d, without changing the
bel owand cl osed fromabove).
Bel owwe showhowto find the optinal 1ocat
on the bottomedge of For on an horizont al
to the above observation, this location
and by dits height. The solution
The segnent that consisting of
of length ¢ centered at the p
Initially the treeis er
starting with the lowe
the upper side of
the total weight
the el enent a
snal ler b

the



Wnowstart novi ng the sl ab upwards until the first of the follow ngevents occurs: either
the (i) upper or (ii) lover side of the slab hits a point of F or the upper side of the slab
hits the topof B A event (i) we insert into Tthe segnent corresponding to the point of
just encountered, updating the weights in the nodes on the paths to the root. A eve
ve delete the point and update the weights accordingly. Fvent (iii) terminate
W choose the event where the mninal weight was achieved at the root to be
determmnes the location of r. (early handling an event of type (i) or (i
tine. Thus we obtain the follow ng theorem

3.1 A lovea baudd

W obtain an {nlogn lover bound for the above mnsumcoverage prob
1-di nensional case. Bespanyatnikhet al. [BKS2] obtained an X nlogr
the follow ng problem ( ven npositive real nunbers and a nunber ~,
there exi st two consecutive nunbers in the sequence @, ..., q, obtainec
nunbers, such that their difference is greater than o Our reduct
be the segnent [a,q,), and let rbe a segnent of length v FEv
a 1-dinensional point with weight 1. If we can place rwithir

the points lyingin ris 0, then two such nunbers exist.

pair. Thus we concl ude that

Theorem3. 1 Givenaset Pof npoints wthir
axis-paral l el rectangle r uhich is snaller thar
O(nlogn tine, such that the total nunber of p
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