
CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

The Strange Complexity of Constrained Delaunay Triangulation

Nicolas Grislain
École Normale Supérieure de Lyon

Lyon, France
ngrislai@ens-lyon.fr

Jonathan Richard Shewchuk
Computer Science Division

University of California at Berkeley
Berkeley, California, USA 94720

jrs@cs.berkeley.edu

Abstract

The problem of determining whether a polyhedron has a con-
strained Delaunay tetrahedralization is NP-complete. How-
ever, if no five vertices of the polyhedron lie on a common
sphere, the problem has a polynomial-time solution. Con-
strained Delaunay tetrahedralization has the unusual status
(for a small-dimensional problem) of being NP-hard only for
degenerate inputs.

1 Introduction

Suppose we wish to find a tetrahedralization T of a polyhe-
dron P . P is not necessarily convex, and is not necessarily
homeomorphic to a ball (i.e. it may have holes and handles,
and be of arbitrary genus). We use the most common defini-
tion of tetrahedralization, in which T is a simplicial complex
whose underlying space (the union of all the simplices in T )
is P , and the vertices of T are precisely the vertices of P ,
with no extra vertices permitted. Observe that a simpli-
cial complex T is not a tetrahedralization of P if T leaves
any portion of P uncovered. Unfortunately, many polyhedra
have no tetrahedralization [4], and Ruppert and Seidel [3]
show that it is NP-hard to determine whether a polyhedron
is tetrahedralizable.

A constrained Delaunay tetrahedralization (CDT) is a spe-
cific tetrahedralization of a polyhedron (or of a more general
input called a piecewise linear complex) that has several fa-
vorable properties, notably that it helps to control interpola-
tion error [8, 7] because it minimizes the radius of the largest
min-containment sphere of a tetrahedron [2] (compared to
all other constrained tetrahedralizations of the polyhedron),
and it is an ingredient that helps Delaunay refinement algo-
rithms to reliably generate good tetrahedral meshes [5]. A
polynomial-time algorithm exists to construct a CDT of a
polyhedron if one exists [6] (and therefore to check whether
a polyhedron has a CDT) in O(nvns) time, where nv is the
number of vertices of the polyhedron, and ns is the number
of simplices in its CDT. However, the algorithm is only guar-
anteed to work correctly if no five vertices of the polyhedron
lie on a common sphere.

For convenience, we say that a polyhedron is degenerate
if it has five (or more) vertices that lie on a common sphere

Supported in part by the National Science Foundation under
Awards ACI-9875170, CMS-9980063, CCR-0204377, and EIA-
9802069, and by a gift from the Okawa Foundation. This work
was done while the first author was visiting the University of Cal-
ifornia at Berkeley.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

P

t
v

Figure 1: A constrained Delaunay tetrahedron t inside a poly-
hedron P .

(with a warning that we are abusing the term). A nonde-
generate polyhedron has a unique CDT if it has a CDT at
all, whereas some degenerate polyhedra have many CDTs.
A degenerate polyhedron can be converted into a nonde-
generate polyhedron by an infinitesimal perturbation of its
vertices [1], but a perturbation might convert a polyhedron
with a CDT (or many CDTs) into a nondegenerate polyhe-
dron with no CDT. Similarly, an infinitesimal perturbation
might convert a tetrahedralizable polyhedron into a polyhe-
dron with no tetrahedralization at all.

This note shows that determining whether a degenerate
polyhedron has a CDT is NP-hard. (It is easy to show the
problem is in the class NP, so it is NP-complete.) This is an
odd result for a small-dimensional problem, because the ex-
istence and identity of the (unique) CDT of a nondegenerate
polyhedron is easily determined in polynomial time.

Note that the Ruppert–Seidel result [3] is not relevant to
CDTs; their construction cannot be embodied in constrained
Delaunay tetrahedra. Our construction is entirely different.

2 Constrained Delaunay Tetrahedralizations

Let P be a polyhedron. Two points p and q are visible to
each other if the line segment pq lies in P . A tetrahedron t is
constrained Delaunay if all four vertices of t are vertices of P ,
the tetrahedron t lies entirely in P , and the circumsphere of t
(the unique sphere that passes through all four vertices of t)
encloses no vertex of P that is visible from any point in the
interior of t. (Any number of vertices is permitted on the
sphere, though.) Figure 1 depicts a constrained Delaunay
tetrahedron t. Although the circumsphere of t encloses a
vertex v, v is not visible from any point in the interior of t,
so t is constrained Delaunay.

A tetrahedralization T of P is a constrained Delaunay
tetrahedralization (CDT) of P if all the tetrahedra in T are

1



15th Canadian Conference on Computational Geometry, 2003

Figure 2: A bit (left), whose triangulation indicates a value of
true or false.

Figure 3: There are two configurations the S gate does not
allow: the inputs are true and the output false; or the inputs
are false and the output true.

constrained Delaunay. A set of five or more vertices lying on
a common sphere, with no vertex inside it, might admit sev-
eral different tetrahedralization, all composed of constrained
Delaunay tetrahedra.

3 The Reduction

Here we show how to embody simple circuits and gates in a
polyhedron P , so any satisfiability problem can be reduced
to finding a CDT. Let p(v1, v2, . . . , vn) be a predicate of
length m on n variables v1, v2, . . . , vn.

One basic component of our circuits is a bit, realized as
four coplanar vertices that lie on a common sphere, with
no other vertex of P inside or on the sphere. Because the
four vertices are coplanar, their convex hull is a quadrilateral
(which is not necessarily rectangular), depicted in Figure 2.
The interior of the quadrilateral lies in the interior of P .
Because the sphere neither touches nor encloses any other
vertex, in any CDT of P , the quadrilateral must be trian-
gulated in one of two ways, which we interpret as “true” or
“false.” The edge that divides a bit into two triangles is
called a diagonal.

In our construction, some bits represent variables, some
bits represent the values of subexpressions, and most bits are
simply used to propagate a signal (variable or subexpression)
from one place to another.

Gates are simulated by modular volumes that have bits
on their surfaces and can be tetrahedralized in several dif-
ferent ways. The surface triangulations, and therefore the
bits, must conform to the gate tetrahedralizations. Circuits
are built by gluing gates together along their bits. Unfor-
tunately, our gates are weak, because their outputs are not
fixed for all possible inputs. Sadly, we do not even know how
to build a proper wire that propagates both true and false
signals, but we will not need one.

We build a gate called an S gate, inspired by Schönhardt’s
untetrahedralizable polyhedron [4]. Place six vertices on a
common sphere so that their convex hull is, topologically,
a triangular prism. (None of its faces need be parallel,

Figure 4: A W gate does not allow the output to be false if the
input is true. Alternatively, by flipping the fixed diagonal, we
have a W gate that propagates false signals (but not necessarily
true signals).

though.) Let S be a sphere, and let p1, p2, and p3 be three
planes such that S ∩ p1, S ∩ p2, and S ∩ p3 are pairwise in-
tersecting circles, and p1 ∩ p2 ∩ p3 lies outside S or does not
exist. For each distinct i and j, S ∩ pi ∩ pj is two points,
yielding six points total. An S gate is the convex hull of
these six points, as illustrated in Figure 3.

An S gate has three quadrilateral faces, each of which
is a bit, and two triangular faces. Every S gate we use in
our circuit is included in the polyhedron P , so any tetra-
hedralization of P must cover each S gate. There are six
ways to tetrahedralize an S gate, and if no vertex lies inside
S, all these tetrahedralizations use only Delaunay tetrahe-
dra. There are two configurations of the three bits for which
there is no corresponding tetrahedralization. If we arbitrar-
ily treat two of the bits as inputs and one as an output, the
S gate enforces the following truth table.

S gate

Input 1 Input 2 Output

false false false
false true ?
true false ?
true true true

A second gate, called a W gate (for wire), is like an S
gate except that one input is fixed. A W gate has only two
bits; the third quadrilateral face is replaced by two triangu-
lar faces that meet at a diagonal reflex edge, as illustrated
in Figure 4. These two triangular faces lie in the boundary
of the polyhedron P , so they are fixed parts of any tetrahe-
dralization of P .

Let S be a sphere, and let p1 and p2 be two planes such
that S∩p1 and S∩p2 are intersecting circles. A W gate has
six vertices, of which two are S ∩ p1 ∩ p2, two more lie on
S ∩ p1, and two more lie on S ∩ p2. We have some flexibility
in choosing the latter four, and we select them so that they
are not coplanar and the W gate has one reflex edge.

If the non-coplanarity of these four vertices makes circuit
layout inconvenient, we can instead construct a W gate by
attaching to an S gate an anchor: a tetrahedron whose apex
vertex lies on the circumsphere S and is placed so that it
cannot see any vertex outside the anchor, as Figure 5 illus-
trates.

There are two types of W gates, determined by the choice
of reflex edge. One type of W gate always has a true output
if the input is true. However, if the input is false, the output
may be either true or false. The complementary type of W
gate propagates false signals from input to output, but may

2



CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

Figure 5: An alternative W gate formed by pasting an anchor
(shaded) onto an S gate. The anchor forces one of the quadri-
lateral faces to be triangulated along a fixed diagonal. The apex
of the anchor, like the other vertices, lies on the circumsphere
S. The apex cannot see any vertex of the gate other than the
vertices of the anchor.

Figure 6: A half-not gate (left) fashioned from three W gates
(right).

or may not propagate true signals. By chaining W gates
together, we build wires that propagate true signals (or false
signals, but not both) from one place to another.

W gates are quite flexible in shape, so chains of W gates
can easily run signals along circuitous paths through three-
dimensional space. This flexibility makes it easy to simulate
a half-not gate (which maps a true to a false and a false to
a “don’t care,” or vice versa) by rotating the diagonals as
needed. Figure 6 depicts one way to fashion a half-not gate
from three W gates.

Our most powerful gate, called a G gate, is illustrated
in Figure 7. Let S be a sphere, and let p1, p2, and p3 be
three planes such that S∩p1, S∩p2, and S∩p3 are pairwise
intersecting circles, and furthermore there is one point where
all three planes and S intersect. The seven vertices of a G
gate are the point S∩p1 ∩p2 ∩p3, one additional point from
each of S ∩ p1 ∩ p2, S ∩ p2 ∩ p3, and S ∩ p3 ∩ p1, and one
additional point chosen (with some flexibility) from each of
the circles S ∩ p1, S ∩ p2, and S ∩ p3.

A G gate, like an S gate, has three bits. It has four trian-
gular faces, which all lie in the boundary of P . As Figure 7
shows, a G gate is not convex, and its three bits are not all
interchangeable. In the figure, the two bits y and z behave
symmetrically, but the privileged bit x is different. There
are five ways to tetrahedralize an S gate, and if no vertex
lies inside S, all five tetrahedralizations use only Delaunay
tetrahedra. In any bit, we are free to decide which diag-
onal represents “true” (because we can always interpose a
half-not gate between two other gates if necessary to make
them speak the same language), so we interpret the G gate
as follows.

If we treat x as the input, and y and z as outputs, then
the G gate serves as a splitter: if x is true, then both y
and z must also be true. If x is false, then y and z may
each independently take on any value. By reversing our

x

z

y

Figure 7: A G gate forces y and z to be true if x is true, and
forces x to be false if y or z if false.

interpretation of the diagonals, we may instead use a G gate
so that it duplicates and propagates false signals, but not
necessarily true signals.

If we treat y and z as inputs, and x as the output, then the
G gate serves as a half-and gate with the following truth
table.

half-and gate

Input y Input z Output x

false false false
false true false
true false false
true true ?

By reversing our interpretation of the diagonals, we have a
half-or gate: if either y or z is true, then x must be true. If
both y and z are false, then x may be either true or false.

We wish to convince the reader (without a fully rigor-
ous proof) that it is straightforward to piece gates together
by gluing their quadrilateral faces (bits) together, so that
they can emulate arbitrary logic circuits and so that all the
tetrahedralizations of each gate enumerated above, and no
others, are constrained Delaunay. One way to safely route
circuits is to divide space into a grid of cubes, as illustrated
in Figure 8. Each gate can be laid out so its vertices lie
on, or close to, the corners of one or two cubes, and so the
circumsphere of each gate encloses no vertex. Therefore, for
each gate, all of the tetrahedralizations enumerated above
consist of constrained Delaunay tetrahedra, so any of these
tetrahedralizations may be part of the CDT of P if they can
be made compatible with the tetrahedralizations of the ad-
joining gates. Conversely, because the circumsphere of each
gate touches no other vertex than the vertices of the gate,
these tetrahedralizations are the only constrained Delaunay
tetrahedralizations possible. A tetrahedron that intersects
the interiors of two different gates is not constrained Delau-
nay, because its circumsphere must enclose a vertex of the
bit shared by the two gates. We conclude that in any CDT of
P , every gate is tetrahedralized by one of the configurations
illustrated in Figures 3, 4, and 7.

Observe that the circumspheres of two gates meeting at
a bit b determine the plane p in which b lies, because p
contains the circle where the circumspheres intersect. Hence,
the choice of circumspheres for the gates uniquely determines
the positions of most of the gate vertices. (This is one reason
why W gates with anchors are easier to lay out than the
six-vertex W gates.) Some of the circumspheres must be
perturbed slightly so they are not perfectly aligned with the
grid, because we want every gate vertex to be a vertex of P .
However, the perturbation must satisfy some constraints:

3



15th Canadian Conference on Computational Geometry, 2003

Figure 8: An illustration of how gates can be laid out so that
each gate’s circumsphere does not enclose vertices of other
gates that are visible from the gate’s interior. (The third di-
mension is used as well, for flexible routing and for G gates.)

wherever an S gate or G gate meets wires, there are some
vertices where three or four circumspheres must meet.

Also observe that gates can be made arbitrarily small,
and wires can be made arbitrarily long and thin, so wires
can effectively be treated as one-dimensional objects for the
purpose of circuit layout. Figure 8 illustrates several long
wires. Although their circumspheres are large enough to
enclose other gates, here is where the “constrained” part of
constrained Delaunay comes into play: no vertex enclosed
in a gate’s circumsphere is visible from the interior of the
gate, so any valid tetrahedralization of a gate is constrained
Delaunay.

A complete formal proof of the reduction of satisfiability
to constrained Delaunay tetrahedralization would include a
precise mechanical procedure for laying out a circuit for any
predicate. As a start, we suggest assigning each S gate and
G gate a unique positive index i, and positioning the gates
at integral coordinates on the moment curve (i, i2, i3). This
positioning simplifies the routing of wires between gates be-
cause any two distinct line segments with their endpoints
on the moment curve do not intersect, except perhaps at a
shared endpoint. Thus, if the wires are made thin enough
and the gates small enough, routing is a simple matter of
locally attaching three wires to each S gate and each G gate
so the three wires do not interfere with each other, and their
bits are correctly oriented where a wire meets a gate. These
local connections can be made with a constant number of
W gates, so a predicate of complexity m can be represented
by a polyhedron P of complexity O(m) whose CDT, if one
exists, is also of complexity O(m). We hope the reader is
convinced that this can always be accomplished, because a
fully rigorous treatment would be tedious and unenlighten-
ing for reader and authors alike.

Because the gates and wires are so poor at signal prop-
agation, we need one more idea to embody a circuit in a
tetrahedralization. Every value that must be known or com-
puted to evaluate the predicate p, including every variable
and every subexpression, is represented by two different sig-
nals in the polyhedron P . Let s be either the value of a
variable vi, or the value of some subexpression of p (possi-
bly p itself). Then st is a signal that is true if s is true, and

is indeterminate (can be false, but is not guaranteed to be
false) if s is false. Likewise, sf is a signal that is false if s
is false, and can be true (but is not guaranteed to be) if s
is true. The signal st is propagated to any subexpression
that depends on it via W gates oriented to propagate true
inputs. Likewise, sf is propagated via W gates oriented to
propagate false inputs. Wherever it is needed, we use a G
gate as a splitter to duplicate the signal st, and likewise we
use a complementary G gate to duplicate sf .

The predicate p is embodied in a polyhedron P as follows.
Each input variable vi is represented by a bit bi somewhere
in the interior of P . Out of each bit bi, we run two wires—
one from each side of the bit. One wire propagates vt

i by
means of W gates oriented to propagate true inputs, and
one propagates vf

i by complementary W gates.

To implement a not gate, pass a copy of a signal st

through a half-not gate to yield sf , and pass a copy of
sf through a complementary half-not gate to yield st.

To implement an and gate that computes x = y ∧ z, pass
copies of yt and zt into an S gate to yield xt, so that xt

must be true if both y and z are true, and xt can be false
otherwise. Pass copies of yf and zf into a half-and gate
configured so its output xf must be false if either y or z is
false, and xf can be true otherwise. Similarly, an or gate
may be constructed from an S gate and a half-or gate, or
equally well by De Morgan’s law from an and gate and three
not gates.

At the end of the circuit, the signals pt and pf represent
the predicate p. The signal pf must be false if p is false, so we
attach pf to one final anchor (recall Figure 5) set to enforce
the true state. Hence, if pf is false, the tetrahedralization
cannot be completed. In any CDT of the polyhedron P , the
bits bi correspond to a truth assignment to the variables vi

for which p(v1, v2, . . . , vn) is true.

Conversely, if p has a satisfying assignment, we construct
a CDT of P as follows. Triangulate each bit bi to match the
value of vi in the satisfying assignment. For each signal s,
triangulate every bit that represents either st or sf to match
the value of s. Then tetrahedralize each gate in a manner
conforming to its bits.

We have thus reduced the problem of circuit satisfiability
to determining whether a polyhedron P has a constrained
Delaunay tetrahedralization.

4 Conclusion

One unfortunate property of our construction is that P is
not a simple polyhedron; rather, it has a large genus. Al-
though the separate wires play an essential part in the proof,
the holes between them do not. Perhaps we could augment
P to yield a simple polyhedron by affixing additional vol-
ume to the triangular faces of the gates, or by some other
method, but it remains an open problem. Nevertheless, our
construction as it stands is sufficient to end any hope for
a polynomial-time algorithm that constructs a CDT of any
piecewise linear complex that has one.

It is interesting to speculate on whether there are any
natural problems in two-dimensional geometry that are NP-
hard in “degenerate” cases, but solvable in polynomial time
otherwise.

4



CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

References

[1] Herbert Edelsbrunner and Ernst Peter Mücke. Simula-
tion of Simplicity: A Technique to Cope with Degenerate
Cases in Geometric Algorithms. ACM Transactions on
Graphics 9(1):66–104, 1990.

[2] V. T. Rajan. Optimality of the Delaunay Triangulation
in R

d. Proceedings of the Seventh Annual Symposium
on Computational Geometry, pages 357–363, 1991.

[3] Jim Ruppert and Raimund Seidel. On the Difficulty
of Triangulating Three-Dimensional Nonconvex Polyhe-
dra. Discrete & Computational Geometry 7(3):227–253,
1992.

[4] E. Schönhardt. Über die Zerlegung von Dreieckspolyedern
in Tetraeder. Mathematische Annalen 98:309–312, 1928.

[5] Jonathan Richard Shewchuk. Mesh Generation for Do-
mains with Small Angles. Proceedings of the Sixteenth
Annual Symposium on Computational Geometry (Hong
Kong), pages 1–10. Association for Computing Machin-
ery, June 2000.

[6] . Sweep Algorithms for Constructing Higher-
Dimensional Constrained Delaunay Triangulations. Pro-
ceedings of the Sixteenth Annual Symposium on Com-
putational Geometry (Hong Kong), pages 350–359. As-
sociation for Computing Machinery, June 2000.

[7] . What Is a Good Linear Element? Interpolation,
Conditioning, and Quality Measures. Eleventh Interna-
tional Meshing Roundtable (Ithaca, New York), pages
115–126. Sandia National Laboratories, September 2002.

[8] Shayne Waldron. The Error in Linear Interpolation at
the Vertices of a Simplex. SIAM Journal on Numerical
Analysis 35(3):1191–1200, 1998.

5


