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Decomposing Polygons Into Diameter Bounded Components
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Abstract

A decomposition of a polygon P is a set of polygons
whose geometric union is exactly P . We consider the
problem of decomposing a polygon, which may contain
holes, using subpolygons that have a bounded diame-
ter. We show that this problem is NP-complete via a
reduction from Planar 3, 4SAT .

1 Introduction

Polygon decomposition problems arise in applications
where objects represented by polygons need to be sub-
divided for the sake of tractability. Many variations of
decomposition problems have recieved attention in the
literature. The reader is directed towards [5] for a syn-
opsis of recent polygon decomposition results. Of par-
ticular interest are those results concerning the decom-
position of non-simple polygons. The problem of min-
imally decomposing a polygon that may contain holes
has proven to be difficult, and is typically NP-hard.

Bounding box heuristics are commonly used in object
intersection algorithms. It has been shown that these al-
gorithms have better performance guarantees when the
bounding boxes have similar sizes [6]. This result moti-
vates Damian-Iordache [3] to explore the idea of restrict-
ing the diameter of the components in the decomposi-
tion of a polygon. Damian-Iordache is able to develop
a polynomial time algorithm for partitioning a simple
polygon into the minimum number of components that
have a maximum diameter of α. Here α is a fixed real
number that is part of the input to the partioning algo-
rithm. The problem of decomposing a polygon, which
may have holes, with the minimum number of diameter
bounded components is conjectured to be NP-hard [3].
We confirm this conjecture by reducing Planar 3, 4SAT
to the corresponding covering and partitioning decision
problems.

2 Definitions

A polygon may or may not contain holes, which are non-
overlapping simple polygons that are completely inside
the polygon. The interiors of the holes are considered to
be removed from the polygon that contains the holes.
A polygon is simple if it does not contain holes and
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only adjacent edges intersect. A decomposition of a
polygon P is a set of polygons whose union is exactly
P . A covering of a polygon is a decomposition where
the subpolygons are allowed to overlap. In a partition
of a polygon, the subpolygons in the decomposition do
not overlap. We insist that all decompositions are free
of Steiner points, which means that subpolygons may
only use vertices from P , where P is the polygon being
covered.

We define the diameter of a polygon P to be the side
length of the orthogonal bounding square for P 1. A
polygon is said to be α-boundable if its diameter is less
than or equal to α. A decomposition is called an α-
decomposition if every member of the decomposition is
α-boundable. The Minimum α-cover problem seeks to
find a covering of minimum cardinality such that each
member of the covering is α-boundable. The decision
version of this problem, which we call Decide α-cover,
asks whether or not there exists a set of k or less α-
boundable polygons that cover P . The Minimum α-
partition and Decide α-partition problems are defined
analogously for partitions.

3 Decomposing Non-Simple Polygons

As with many decomposition problems on polygons with
holes, Decide α-cover and Decide α-partition are NP-
complete. We begin with the covering version of the
problem.

Theorem 1 Decide α-cover is NP-complete for non-
simple polygons.

Proof. Decide α-cover is in NP since we can “guess” a
set of k α-boundable subpolygons and verify that they
cover P .

We now proceed to reduce Planar 3, 4SAT [4] to
Decide α-cover. Planar 3, 4SAT is very similar to
Planar 3SAT . In the Planar 3SAT problem we want
to decide if a given boolean function φ is satisfiable. The
problem stipulates that φ is in conjunctive normal form
with exactly 3 literals per clause. The set of literals
found in φ is referred to as U and the set of clauses is
C. Another restriction is placed on φ in this problem:
the graph G = (V,E) is planar, where V = U ∪ C and

1The definition of diameter used herein is different then the
one used in [3]. As we shall see in Section 4, we can use either
definition of diameter in the NP-completeness proof without loss
of correctness.
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Figure 1: The variable polygon
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(b)(a)

Figure 2: Representing truth assignments (a) True (b)
False

E = {(u, c)|u ∈ U, c ∈ C, u or ū is a literal in c}. In the
Planar 3, 4SAT problem there is one more restrcition
that is imposed: all variables appear at most 4 times
negated or unnegated within φ. The Planar 3, 4SAT
problem was shown to be NP-complete in [4].

In our reduction, various polygon components will be
constructed in a manner that is similar to that presented
in [1, 2]. These polygons will have a direct correspon-
dance to the components of the graph G that is de-
scribed above. The polygons will be joined together to
form one large polygon P that will have a minimum
α-covering of size k iff φ is satisfiable. The value of k
will be determined during the construction of P . For
the remainder of this discussion we will fix α at 3 for
reasons that will become apparent.

Variable Polygons: The polygon used to represent
a variable, called the variable polygon, is given in Fig-
ure 1. Recall that we have fixed α at 3. This polygon
can be minimally covered by 8 polygons in exactly 2
ways (Figure 2). One of the coverings will represent the
variable being set to true and the other will represent
false. Wires will attach to variable polygons at 1 of the
4 labeled terminals.

Wire Polygons: The truth value of a variable will
be “transmitted” from a variable polygon to a clause
polygon using a sequence of one or more wire polygons,
or simply wires (Figure 3). Wire polygons can be at-
tached to variable polygons, other wires, and clause
polygons. A sequence of wires connecting a variable
polygon to a clause polygon will represent an edge from
G. Wires need to be slimmed down near the terminals of
variable polygons so they can attach properly (Figure
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(a) (b)

Figure 3: (a) A wire polygon (b) 2 wire polygons that
are connected

(b)(a)

Figure 4: (a) A variable polygon set to true with out-
going wires orientated in the unegated position (b) A
vairable polygon set to true with outgoing wires orien-
tated in the negated position

4). The orientation of the attachment will determine
whether the variable is to be negated in the connect-
ing clause. Figure 4(a) shows a variable polygon that
has been set to true. The covering subpolygons within
the variable polygon that overlap with terminals have
been shaded in. Notice that these shaded subpolygons
can extend over the tip of the outgoing wires. This is
because the outgoing wires are all in the unegated ori-
entation. This is not the case in Figure 4(b), where the
outgoing wires are in the negated position. Here the
shaded polygons cannot extend over the tip of the wires
since we have set α to 3. This illustrates how truth
values travel along wires. Wires that carry true will
have the top portion covered by a subpolygon from a
variable polygon. When a wire is connected to another
wire the truth value will propagate to the next wire.
Thus wires that carry true will have the “advantage” of
being coverable by one less polygon. Clause polygons
will be constructed in a way that exploits this. For a
wire to connect a variable polygon to a clause polygon
it may have to be bent, shifted, or offset (Figure 5). A
wire may need to be bent or shifted in order to avoid
other components, and it may need to be offset if the
clause it is connecting to is 1 unit too close to the wire.
If we use one of components from Figure 5 then k must
be updated accordingly. If we use an offset component,
for example, then we must increase k by 4. The remain-
ing segment of a wire carrying false will be covered by
a clause polygon.

Clause Polygons: The clause polygon is shown in
Figure 6(a). A clause polygon has 3 terminals where in-
coming wires will be attached. Since each clause has 3
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Figure 5: (a) Bending a wire (b) Shifting a wire (c)
Offsetting a wire

(g)(f)(e)

(c) (d)(b)
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Figure 6: (a) The clause polygon (The symetric cases
are not shown). (b) false, false, false (c) true, false, false
(d) true, true, false (e) true, true, true (f) true, false,
true (g) false, true, false

literals, each clause polygon will have 3 incoming wires.
The size of the minimum covering for some clause poly-
gon will depend on the wires that are attached to it
(Figure 6). If 1 or more of the incoming wires is car-
rying true then the clause polygon will require 3 poly-
gons to cover it. If all incoming wires are carrying false
then the polygon will require 4 polygons to be covered.
When calculating k, each clause polygon will contribute
3 polygons.
Figure 7 shows the complete polygon P for the boolean

expression φ = (x1∨x2∨x3). To calculate k, each com-
ponent must be accounted for. The 3 variable polygons
contribute a total of 8 × 3 = 24 polygons, the 6 wires
contribute 6, and the clause polygon adds 3. Thus we
have k = 24 + 6 + 3 = 33. The minimum covering has
cardinality 33 and this covering corresponds to a sat-
isfying assignment for φ. We still must show that for
an arbitrary instance of Planar 3, 4SAT , P will have a
minimum covering of size k if and only if φ is satisfiable.

Suppose that P has a minimum covering M of size k,
where k is the value that was calculated during the con-

x2

x3x1

Figure 7: The polygon for the boolean expression φ =
(x1 ∨ x2 ∨ x3)

struction of P . Consider the truth assignment associ-
ated with the minimum covering M . Variable polygons
can only be minimally covered 2 ways, which ensures
that each variable has a truth value. The value of k can
be expressed as 8v + 1w + 3c, where v is the number
of variable polygons, w is the number of wire polygons,
and c is the number of clause polygons. Since variable
polygons can only be minimally covered 2 ways using
8 polygons we know that 8v of the polygons in M are
used for covering variable polygons. A sequence of l
wires will need l subpolygons to cover them regardless
of the truth value that is being transmitted. If they are
transmitting true, then they will need l subpolygons to
cover the remaining portion of the wires that were not
covered by the variable polygon attached to the wire. If
the wires are transmitting false then l subpolygons will
be necessary to cover all but the last unit of the last
wire in the sequence. Thus we know that at least w of
the polygons in M must be covering wire polygons. The
remaining 3c polygons in M are used for covering clause
polygons. Recall that a clause polygon needs at least 3
polygons to cover it. Since there are c clause polygons
and only 3c polygons left in M , we know that each of
the clause polygons was covered using 3 polygons. This
corresponds to each clause being satisfied, and hence φ
is satisfiable.

Assume that φ is satisfiable under some truth assign-
ment T . We will show how to cover P with k polygons
using T . First we cover the variable polygons with 8
polygons each according to T . Use w polygons to cover
the wires, which may leave the tips of some wires uncov-
ered. These tips will be within clause polygons. Since
we know that T satisfies φ, every clause will have at
least 1 incoming wire that does not have an uncovered
tip. Since this is the case, each clause polygon can be
covered with 3 polygons. Thus our covering has size
8c + w + 3c = k. �

Note that the above proof also works for the parti-
tioning problem.

Theorem 2 Decide α-partition is NP-complete for
non-simple polygons.
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4 Conclusion

We have shown that Decide α-cover and Decide α-
partition are NP-complete when considered on polygons
with holes. These results can be extended in two ways.
Consider these problems when the diameter of a poly-
gon is computed as the diameter of the smallest circle
that covers the polygon. Theorems 1 and 2 can be re-
peated for this problem if we fix α to be the diameter of
the smallest bounding circle for a box whose sides are
3 units long2. Also, the polygon constructed in the re-
duction is orthogonal, and hence we can say that these
problems are NP-complete for orthogonal polygons that
may contain orthogonal holes. The time complexity of
Minimum α-covering is still unknown for simple poly-
gons.
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