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Applying standard dimensionality reduction techniques,we
show how to performapproximaterangesearching in higher
dimension while avoidingthecurseof dimensionality. Given� points in aunit ball in ��� , anapproximatehalfspacerange
query counts(or reports) the points in a query halfspace;
thequalifier “approximate” indicatesthatpointswithin dis-
tance� of the boundary of the halfspacemight be misclas-
sified. Allowing errors neartheboundaryhasa dramatic ef-
fect on the complexity of the problem. We give a solution
with

�������� ����� querytime and
� � � !#"	$�%'& storage. For anex-

actsolutionwith comparablequerytime,oneneedsroughly()� � �*� storage. In otherwords,anapproximateanswerto a
rangequerylowersthestoragerequirementfromexponential
to polynomial. We generalizeour solutionto polytope/ball
rangesearching.
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A stapleof computational geometry [1, 2], rangesearch-
ing is the problem of preprocessinga set : of � points
in � � so that, given a region ; (the range) chosenfrom
a predetermined class (eg, all

�
-dimensional boxes, sim-

plices,or halfspaces),the pointsof :=<>; canbe counted
or reported quickly. The caseof halfspacesis notewor-
thy because many range searchingproblems with “alge-
braic” rangescanbereducedto it through linearization-via-
lifting. The counting version can be solved in

���@?BA�C � �
query time and

��� � � �D?BA�C � � � storage,while the report-
ing casecan be handled in

���@?BA�C �FEHG � query time and��� �JI �	K'�ML polylog
� � �M� storage, where G is the number of

pointsto bereported [1]. In bothcases,theexponentialde-
pendency on

�
—theso-calledcurseof dimensionality—isa

show-stopperfor large
�
. Lower bound work in a varietyof

highly reasonable models suggeststhat thecurseof dimen-
sionalityis inevitable [4, 5].

Inspiredby recentwork on approximatenearestneighbor
searching[8, 9, 7], we seekthe mildest relaxation of the
problem that will break the curseof dimensionality. With-
out lossof generality we assumethatall thepointsof : lie
in a unit ball of N7�� . Let OQP bea halfspace,with R denotingS
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its bounding hyperplane. Given �=XZY , the fuzzybound-
ary of OQP is theslabformedby all pointswithin distance�
of R (Fig. 1). Approximatehalfspacerange searchingrefers
to counting (or reporting) thepointsof :[<\O]P , makingal-
lowance for errorsregarding thepointsin the fuzzy bound-
ary; in otherwords, the output shouldbe the sizeof a set
whosesymmetric differencewith :^<_O P lies entirelyin the
fuzzyboundary.

Approximate range searchingis relevant in situations
wherethe datais inherently impreciseandpointsnearthe
boundarycannot beclassifiedasbeinginsideor outsidewith
any certainty. In thecaseof reporting, of course,onecanal-
waysmove theboundaryby � to ensure thattheoutput con-
tainseverypointof :^<`ODP , which thenallowsusto retrieve
theright pointsby filtering out theoutsiders.

Theorem 1 Approximatehalfspacerange searching canbe
solvedusing

� � �a!#"	$�%'& storage and
��b����� ��� � query time.1

Anygivenqueryis answeredcorrectlywith arbitrarily high
probability.

Our algorithm beatsthe lower bound for the exact ver-
sion of the problem. Indeed,it is known that in the arith-
meticmodel

()� �dc	e5� !.c Kf� "g%'& � query time is required, if only� �h� !#"	$�%'& storageis available[4]. Ouralgorithmgeneralizes
to rangesformedby polytopesboundedby afixednumberof
hyperplanesandto (Euclidean)ball rangesearching.

We alsoproposeanalternativealgorithm for approximate
halfspace rangesearchingwith a querytime of

��b��� �/� e � E� �ic K !jcgkl"g& � e �m� and storage
������ � � e � En�icgkic K !jc�kh"g& � —and

a slightly different definition of approximation. Again, the
query time is betterthanthesolutionfor theexactproblem,
sinceby [4]

()� � c	e5� !.c�& Kf�*� query time is necessarywhenwe
havecloseto

��� � � � space.
Approximaterangesearching doesnot originatewith this

paper. AryaandMount [3] gaveanalgorithmfor theproblem
that usesoptimal

����� � � storagebut providesa querytime
of
����?oApC �qE � e �*� , which is exponential in

�
. Thereare

other differencesas well. For example, range queries are
assumedto beboundedregions,which rulesout halfspaces.
Theunderlying techniqueis basedonspacepartitions,which
is quiteorthogonal to ourdimensionreductionapproach.

r �tsus�
10pv�8#wx���'y_z��|{ }~��s6���y��D� -�� y`�3y���
1p�u8 -|�
Weshow how to reduceapproximatehalfspacerangesearch-
ing to anapproximatevariant of ball range searching in the

1Thenotation ����j��� standsfor
�J�j�

polylog
�j�����

.
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Hamming� cube. Initially, we make the “homogeneous” as-
sumptionthatthehyperplanesboundingthequeryhalfspaces
passthrough theorigin andthatall of the � pointslie in the
Euclidean ball �	�d� �)��� . We relaxthehomogeneouscondi-
tion laterby lifting to onedimensionhigher.

r3�j+ � �|y�z�0�wx0 � y - yp0�4��������	y
Let �pP betheunit vectornormalto R pointinginside O�P . Any
point � c in OQP outsidethe fuzzy boundary is at a distance
from R at least � (Fig. 1). It follows that theanglebetween� � c and �pP is lessthan � ���d� � . (Weassumethroughout this
paperthat � is smallenough.) Similarly, for apoint � � not inOhP andoutsidethe fuzzy boundary, theangle between

� � �
and �pP is greaterthan � ��� E � . This providesa separation
criterionto distinguish betweenpoints we mustinclude and
thosewe mustnot.
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Figure1: Approximatehalfspacerange searching.

Let O�� elc denote the unit (
��� � )-spherein �]� and let���~ �� ��¡ � be � if

¡�¢ Y and
� � otherwise. Let � and £ be

two vectors in �¤� andlet Y �¦¥�§�¨ ©ª� � be the anglebe-
tweenthem.We use« §�¨ © to denote theevent: ���~ �� � �b¬/l��®���~ �� � £¯¬�3� . If  is uniformly distributedover O�� ehc , then
it is well known that °a± A�²l³ « §�¨ ©Q´ ® � � ¥7§�¨ © � � . It follows
that °a± A�²h³ « �3µm¶ ¨ ·'¸d´ X � ��� E � � � and °a± A�²l³ « �3µ % ¨ ·'¸D´_¹� ����� � � � .

Following Kleinberg’s approach[8] to nearestneighbor
searching, we invoke VC-dimension theory[5, 10] to show
the existenceof a small number of unit vectors that canbe
usedto distinguishbetween� c and � � . Let º §�¨ © denotethe
subsetof O�� ehc for which « §�¨ © happens.Let » bethecollec-
tion of º §�¨ © , for all �Q¼g£¯½_� � . We considertherange space� O�� elc ¼g»¯� . Eachrange º §�¨ © is a Booleancombination of
four halfspaces; therefore theexponentof its (primal) shat-
ter function is

��� E �
. A finite subset¾ of O�� ehc is saidto

be a ¿ -approximation for the rangespace
� O�� elc ¼�»¯� if, for

all ;À½�» , ÁoÁ ;^<x¾ÂÁ � Á ¾ÂÁ �ÄÃa� ;��ÅÁ � ¿ . It follows from VC
dimension theory[5] thattherangespace

� O�� elc ¼g»¯� admits
of an

� � ���Æ� �Q�g� -approximation¾ of size
����� � e � ?oApC5�Æ� � ehc �g� .

Moreover, a randomly chosenset ¾ of thatsizeis good with
highprobability.

Thus, Á º ·f¸�¨ Ç µ ¶ <�¾ÈÁ � Á ¾ÈÁ ¢ÉÃa� º ·f¸�¨ Ç µ ¶ � � � ���~� �Q�¤X � ��� E� ���~� �Q� . Similarly, Á º ·f¸�¨ Ç µ % <Ê¾ÈÁ � Á ¾ÈÁ ¹n� ���t� � ���~� �Q� . For
any vector � let Ë�Ä½>Ì E � ¼ � ��Í Î Ï Î bedefinedasfollows: the� -thcoordinateof Ë� is ���~ |� � ��¬BDÐÆ� , wherehÐ is the � -thvector
in ¾ according to a fixedordering. Recall that Á º §�¨ © <�¾ÈÁ
is the number of vectors Ñ½Ò¾ suchthat ���~ |� � �Ä¬�3�_®���~ �� � £i¬o3� . So Á º §�¨ © <�¾ÂÁp®HÁ ¾ÂÁ ���pÓÂ� Ë�D¼'Ë£�� where

�|ÓÂ� ¬B¼Å¬9� is
theHammingdistance.Wethushave

�5ÓÈ�.Ô��P�¼ ÔÕ � c � ¹ � � ���a�� ���~� �Q�g��Á ¾ÂÁ and
�|ÓÂ�jÔ ��P�¼ ÔÕ � � �JX � � ��� E � �6�Æ� �Q�M�ÅÁ ¾ÈÁ .

It immediatelyfollows that approximatehalfspacerange
searching (underthehomogeneouscondition) reducesto ap-
proximateball range searching in theHammingcube: Pre-
process� points in Ì E � ¼ � ��Í Î Ï Î so that, given any

Ô ��P , the
points in the Hamming ball centered at

Ô �5P with diameterÁ ¾ÈÁ ��� canbe approximatelycounted (or reported) quickly.
The term“approximately” means thatall points within dis-
tance

� � ���È� � �6�Æ� �Q�g�ÅÁ ¾ÈÁ mustbe includedwhile all points
furtherthan

� � ��� E � ���Æ� �Q�g��Á ¾ÂÁ mustbeexcluded.

r3�#r � �|y_Ö�y - y�
1��{Q�����	y
To remove the homogeneous condition, we lift the prob-
lem into ��� kic . Map eachpoint �×® � � c ¼ÅØ�ØÅØ/¼Æ� � � to �5Ù�®� � c ¼�ØÅØÅØ�¼�� � ¼ � ��½Ú�d� kDc . Note that the new point set in� � kic lies in a ball of radius Û � . Given a query halfs-
pace: Ü c � c E ¬�¬Å¬ E Ü � � � ¢ Ü � kDc , first we compute thedis-
tancefrom

�
to its boundinghyperplane. If it exceeds Û � ,

thenall of the � points are on oneside of the hyperplane
andwe returnthe exact answer(either Y or � ). Otherwise,Ü7�� kDc � ��Ý Ð Ü7�Ð . We mapthe queryto a new halfspacein� � kic : Ü c � c E ¬�¬Å¬ E Ü � � � � Ü � kic � � kic ¢ Y . Note that the
new querypassesthroughtheorigin. Moreover, (i) all point-
halfspace incidencerelationsarepreservedby themap;and
(ii) point-hyperplanedistancesarepreservedto within a fac-
tor of Û � becauseof the upperbound on Ü��� kic . The prob-
lem is now reduced to the homogeneous caseafter suitable
rescaling.

Þ �tsus�
10pv�8#wx���'yªß���{à{t�d� -|� yá�3y���
1p�u8 -|� 8 - �Å��yâz��6w�ãw¯8 -�� ��4u��y
We give two solutions for approximateball range searching
in the G -dimensionalHamming cube äªå , where G ®æÁ ¾ÈÁ6®����� � e � ?BA�C3��� � elc �g� . Recallthattheproblemis to preprocess
aset O of � pointssothat,given any Üç½ÊäÉå , wecanquickly
count (or report) approximately the pointsof O within dis-
tanceG ��� to Ü .
Þ3�j+ �Àz�8 � �|ãM�3�	0�
�� � y¯�l0u{#4��/890 -
We adaptto the problem at handKushilevitz et al.’s solu-
tion to approximatenearestneighbor searchingin theHam-
ming cube[9]. Fix two parameters è and

¡
to be deter-

minedlater. Thesearchstructure é consistsof è substruc-
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tures ê c ¼ÅØÅØ�ØÅ¼'ê�ë , all of themconstructedin the sameway
but independentlyof oneanother. Fix � ½ªÌ � ¼ÅØ�ØÅØ/¼Mè Í . The
substructure ê�Ð is built by picking

¡
coordinatesof äÉå at

random (out of G ). Projecteachpoint ��½\äâå ontothesub-
spacespannedby these

¡
coordinates.The resultingvector¡ Ð � �5�ì½ªÌmY6¼ ��Í í is calledthe traceof � . Each ê5Ð consistsof

a tableof
� í

entries,onefor eachtrace.Eachentrystoresa
number (for rangecounting) or a pointerto a list of points
(for rangereporting), to be specifiedbelow. The intuition
is that,aslong as

¡
is large enough, say

¡ ®¦î � � e � ?BA�C � � ,
by a discreteanalogue of Johnson andLindenstrauss’s theo-
rem,therandom projectionspreserveinter-point distancesin
appropriaterange within a relativeerrorof � .

Wesaythatasubstructure ê Ð fails atquery Üç½Êä>å if there
exists �Ê½�O suchthateitherof thefollowing holds:ï � Ó � �Q¼'Ü�� ¹ � � ���_� � ���~� �Q�g� G but

� Ó �@¡/� �5�/¼ ¡/� Ü��M�=X� � ����� � ����ð �Q�g� ¡ ;ï � Ó � �Q¼'Ü��nX � � ��� E � ���~� �Q�g� G but
� Ó �@¡/� �5�/¼ ¡/� Ü��M� ¹� � ��� E � ����ð �Q�g� ¡ .

Lemma 2 The probability that ê Ð fails at Ü is at most�hñpe5òh!#"g% í & .
Let Y ¹[óì¹H� bea constantto bespecifiedlater. We say

thatthestructure é fails at Ü if morethan ó è sub-structuresê Ð fail at Ü .
Lemma 3 For any ¿[XHY , if we set èô® � GõE ?oApC ¿ ehc � � ó
and

¡ ® ��� � e � ?Böì�Æ� ñm� � ó ��� , thené fails nowherewith prob-
ability at least � � ¿ .

Theproofs of Lemma2 andLemma3 follow from stan-
dardapplications of theChernoff bounds andcanbe found
in [9]. We thusomit themhere.

Lemma3 impliesthat,with highprobability, for any queryÜ÷½ôä\å and any �ø½øO , there are at least
� � � ó ��è

substructures êuÐ that provide the following guarantees: (i)
if
� Ó � �Q¼'Ü�� ¹ � � ����� � ���~� �Q�M� G then

� Ó �@¡/� �3�	¼ ¡/� Ü��g� �� � ���>� � �6��ð �Q�M� ¡ ; (ii) if
� Ó � �i¼MÜ��ùX � � ��� E � ���~� �Q�M� G

then
� Ó ��¡/� �3�	¼ ¡/� Ü��g� ¢ú� � ��� E � ���Æð �Q�g� ¡ . In the prepro-

cessingstage,for eachentry
¡ Ð � �3� in the table associated

with ê Ð , we store the number of points �û½ùO such that��ÓÈ��¡ Ð � �5�	¼ ¡ Ð � �5�M� � � � ���x� � ���Æð �Q�g� ¡ (for range reporting,
westoreapointer to alist of suchpoints). To answeraqueryÜ , we pick onesubstructure ê Ð ½né uniformly at random.
We compute

¡ Ð � Ü�� anduseit to index the tableof ê Ð . We
output the answerstoredat that entry. By Lemma3, with
probability at least � � ó , the substructure ê Ð doesnot fail
at Ü , and so we get a correct answerfor approximate ball
rangequeries.It is easyto seethat thestoragerequirement
is
���� �QGÂE è � í � (for reporting, the last termis è � í � ), and

thequerytime
��õ� G � ( E output sizefor reporting). In view

of Lemma3 andthereductionshown in thelastsection,this
provesTheorem1.

We remarkthat the above algorithm, after somesuitable
modification, alsoworkswheneachquery is theintersection

of a setof halfspaces. Thedefinition for fuzzy boundaryis
thengeneralized in the obvious way. As long as the num-
berof halfspacesis constant,the time andspaceboundsof
Theorem1 remainthesame.

Another problem we cansolve is approximateball range
searching in Euclidean space. Given a ball ü � Ü|¼gý�� in � �
with center Ü andradius ý , approximateball range search-
ing includesall points insidethe smallerball ü � Ü|¼gý � � ���
while excludesall pointsoutsidethelargerball ü � Ü|¼Mý E_� ��� ,
for some parameter � ® � � ý�� . Points in the annulusü � Ü|¼gý Ex� ���Mþ�ü � Ü|¼Mý � � ��� maybemisclassified.In theHam-
mingcube,thetechniquedescribedin thissectionsolvesap-
proximateball rangesearching for � ®Àî � ý�� . On theother
hand, in sucha solutionthewidth of theannulus (thefuzzy
region) grows with ý . When ý is large, it might be too big
to provide an estimationof the true answer. We give an-
othersolutionin which � is boundedeven when ý is large.
Moreover, it works in Euclideanspace. The idea is to re-
duceapproximateball rangesearching in �t� to approximate
halfspace range searchingin �]� kic via linearization. In this
solution � ® � ý E � � � ý . Thus � ® ��� � � when ý\® ()� � � .
Thetime andspaceboundsareessentiallythesameasthose
of approximatehalfspacerangesearching,andin particular,
the boundsof Theorem 1 apply to approximateball range
searching aswell. We omit thedetailsin this version.

Þ3�#r �Àÿ�0��]ãM�l�f0|
1� � yÊ�l0u{#4��	8à0 -
The storageachieved in the previous sectionis polynomial
in � but with anexponentof

��� � e � � . We proposedanother
solutionthatusesroughly quadratic spaceandstill provides
sublinear query time. For this purpose,however, we need
to relaxthemeaning of approximationfurther. If

��� � Ü�� de-
notesthe number of pointsof O in the Hamming ball cen-
teredat Ü of radius ý , thenwe output a number

�
suchthat� � ��� � � !jc	e5�a!#"g&@& åÅKM� � Ü�� � � � � � E � � � !jcgkh� !o"g&@& å/K'� � Ü�� ,

for any fixed
� X Y . In section3.6 of [6], it is shown that

computing sucha number
�

canbereducedto the
� � E ��� -

PLEB problem (standsfor “Point Locationin Equal Balls”)
with a multiplicative overheadof

� e�� ?oApC � � in both query
time andstorage.The

� � E ��� -PLEB problem is definedas
follows [6, 7]: given a set : of � points in the Hamming
cube äÄå anda fixed ý � G , preprocess: suchthat,given
any query ÜÈ½`äFå ,
ï if thereexists a point �n½×: suchthat

�uÓÂ� �i¼MÜ�� � ý ,
thenanswer“yes” andreturna point � Ù�½á: suchthat� Ó � ��ÙÆ¼MÜ�� � � � E ���1ý .ï if
��ÓÈ� �Q¼MÜ���X � � E ����ý for any �_½Ê: thenanswer“no”.

ï otherwiseansweranything (either“yes” or “no”).

It is shown in [7] that
� � E ��� -PLEBin theHammingcubeä\å canbe solved with query time

��� G|�¤c K !jc�kh"g& � andstor-
age

� G|�\E[�Dcgkic K !.c�kl"M& � . Thereforeapproximateball range
searching canbe solved with query time

��õ�Æ� �ic K !jc�kh"g& � e �m�
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and	 storage
��õ�Æ� � � e � Eõ�ic�kic K !jcgkl"g& � , following theabovere-

ductionand G ® ����� � e � ?BA�C5��� � ehc �M� . This leadsto analgo-
rithm for approximatehalfspacerangesearchingwith query
time

����Æ� �Å� e � E � �ic K !jcgkl"g& � e �m� and storage
����Æ� � � e � E� cgkic K !jcgkl"g& � , asclaimedin theintroduction.
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