16th Canadian Conference on Computational Geometry, 2004

Approximate Range Searching in Higher Dimension *

BernardChazelld

Abstract

Applying standad dimersionality reduction techniques,we

shav how to perform apprximaterangesearchig in higher
dimensiam while avoidingthecurseof dimensiomlity. Given
n pointsin aunit ballin R?, anappraimatehalfspae range
query counts(or repots) the pointsin a quey halfspae;

the qualifier “approximate” indicaesthat pointswithin dis-

tancee of the bourdary of the halfspacemight be misclas-
sified. Allowing erros nearthe bourdary hasa dranatic ef-

fect on the compexity of the problen. We give a solution
with O(d/e)? querytime anddn© ") storage For an ex-

actsolutionwith compaablequerytime, oneneedsoudly

Q(n?) storage In otherwords,an appraimateanswerto a
rangequerylowersthestoragaequilementrom exponential
to polynomial. We generalizeour solutionto polytope/ball
rangesearching

1 Introduction

A stapleof compuational geametry [1, 2], rangesearch-
ing is the prodem of prepocessinga set P of n points
in R¢ so that, given a region R (the range) chosenfrom

a predetemined class (eg, all d-dimersional boxes, sim-
plices, or halfsmces),the pointsof P N R canbe counted
or repoted quicdy. The caseof halfspacess notevor-

thy becase mary rang searchingprodems with “alge-
braic” rangescanberedicedto it throudh linearizdion-via-

lifting. The couwnting version can be solved in O(log n)

query time and O(n?/log®n) storage,while the report-
ing casecan be hardled in O(logn + k) quey time and
O(nl%/2Ipolylog(n)) storag, where k is the numker of

pointsto bereportel [1]. In both casesthe exponentialde-
pendng/ on d—the so-calledcurseof dimersionality—isa
shaw-stogperfor larged. Lower bourd work in a variety of

highly reasonale mockls suggestshatthe curseof dimen-
sionalityis inevitable [4, 5].

Inspiredby recentwork on apprximatenearesneightor
searching[8, 9, 7], we seekthe mildest relaxatio of the
prodem thatwill bre& the curseof dimersionality With-
outlossof geneality we assumehatall the pointsof P lie
in aunit ball of /4. Let S;, bea halfspace,with h dending
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its bounding hyperplane. Givene > 0, the fuzzybound-
ary of Sy, is the slabformed by all pointswithin distances
of h (Fig. 1). Approximatehalfspae range searchingefers
to countirg (or repoting) the pointsof P N S, makingal-
lowane for errorsregaiding the pointsin the fuzzy bound-
ary; in otherwords, the outpu shouldbe the size of a set
whosesymmetic differencawith P N S}, liesentirelyin the
fuzzyboundary

Approximate range searchingis relevart in situations
wherethe datais inherenly impreciseand points nearthe
bowndarycanna beclassifiedasbeinginsideor outsidewith
ary certainty In the caseof repating, of course pnecanal-
waysmove the boundaryby e to ensue thatthe outpu con-
tainseverypointof P N Sy, whichthenallows usto retrieve
theright pointsby filtering out the outsides.

Theorem 1 Approximatehalfspae range seaching canbe
solvedusing dn®E™") storage and O(d/e)* query time?
Anygivenqueryis answeed correctly with arbitrarily high
probability.

Our algoiithm beatsthe lower bourd for the exact ver-
sion of the prablem. Indeed, it is known thatin the arith-
meticmodelQ(n' ~C(1/d=") quey time is requred, if only
dn©("") storages available[4]. Ouralgorithmgereralizes
to rangedormedby polytopesbowundedby afixednumter of
hyperplaresandto (Euclidean) ball rangesearchig.

We alsopropcseanalternatve algotithm for apprximate
halfspae rangesearchingnith a querytime of O(d%~2 +
dn'/(+2)¢=2) and storageO(dne 2 + n'*t1/(+2))_and
a slightly different definition of appoximation Again, the
quer time is betterthanthe solutionfor the exactprablem,
sinceby [4] Q(n'~9(1)/4) quay timeis necessarwhenwe
have closeto O(n?) space.

Approximaterangesearchig doesnot originatewith this
pape. AryaandMourt [3] gaveanalgoiithmfor theprodem
thatusesoptimal O(dn) storagebut providesa querytime
of O(logn + £~4), which is exponentialin d. Thereare
other differencesas well. For exanple, range queies are
assumedo be boundedregions, which rulesout halfspaces.
Theundelying techniqe is basedn spacepartitions,which
is quite orthogoral to our dimersionrediction appoach.

2 Approximate Halfspace Range Searching

We showv how to rediceappraimatehalfspaerang search-
ing to anapprximatevariart of ball range searchig in the

Thenotafon O(f) standsfor O(f polylog(f)).
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Hammingcuke. Initially, we malke the “homogeneais” as-
sumptiorthatthehyperplanedourdingthequeryhalfspces
passthrough the origin andthatall of then pointslie in the
Euclidea ball ||z]|» < 1. We relaxthehomaeneais condi-
tion laterby lifting to onedimersionhigher

2.1 The Homogeneous Case

Letwvy, betheunitvectornormalto h pointinginsideSy. Any
point p; in Sy, outsidethe fuzzy bourdary is at a distance
from h atleaste (Fig. 1). It follows thatthe anglebetween
Op; andvy, islessthanz /2 —e. (Weassumeéhroughott this
papetrthate is smallenoudp.) Similarly, for apoint p2 notin
Sy, andoutsidethe fuzzy bourdary, the ande betweenOp -
anduy, is greaterthann/2 + €. This providesa separation
criterionto distingush betweerpoints we mustinclude and
thosewe mustnot.

e €

guery halfspaceS;,

Figurel: Approximatehalfspaceange searchig.

Let S?-! dende the unit (d — 1)-spherein R¢ and let
sign(t) belif ¢ > 0 and—1 otherwise. Let z andy be
two vectos in R? andlet 0 < 0.,y < 7w betheanglebe-
tweenthem.We use&, , to dende theevent: sign(z - u) =
sign(y - u). If w is uniformly distributedover $¢-1, then
it is well known thatProb[E, 4] = 1 — 6, /7. It follows
that Prob[op, v, ] > 1/2 + e/m andProb[Eopy v ] <
1/2—¢/m.

Following Kleinbeg's appoach[8] to nearestneightor
searchingwe invoke VC-dimersiontheory[5, 10] to shav
the existenceof a small numker of unit vectas that canbe
usedto distinguishbetweerp; andp,. Let W, , denotethe
subsebf $4-1 for which&, , hapgns.Let R bethecollec-
tion of W, for all z,y € R¢. We considettherange space
(S%-1,R). EachrangeW, , is a Booleancombination of
four halfspacs; therefae the exporent of its (primal) shat-
ter function is 2d + 2. A finite subset4 of $?~! is saidto
be a y-appoximation for the rangespace(S 41, R) if, for
all R e R, ||[RNA|/|A| — u(R)| < 7. It follows from VC
dimensim theory[5] thatthe rangespace(S 1, R) admits
of an(e/(2m))-appoximationA of sizeO(de =2 log(de~1)).

Moreover, arancdbmly choserset A of thatsizeis goad with
high probability.

Thus, (W, op, NA[/|A| 2 t(We0p:) —€/(2m) > 1/2+
e/(2m). Similarly, [W,,, .op, N A|/|A| < 1/2 —€/(27). For
ary vectorz letz € {+1, -1}/l bedefinedasfollows: the
i-th coodinateof Z is sign(z-u;), whereu; is thei-th vecta
in A accordng to afixedordeing. Recallthat|W, , N A|
is the numbe of vectos v € A suchthatsign(z - u) =
sign(y-u). SO|\W, yNA| = |A|—du(Z,y) wheredg (-, ) is
theHammingdistance We thushave d g (vp,, op1) < (1/2—
e/(2m))|A| anddr (vk, 0p2) > (1/2 + ¢/(2m))|Al.

It immediatelyfollows that apprximate halfspacerange
searchig (underthehonogeneascondtion) reducego ap-
proximateball range seaching in the Hammingcube Pre-
pracessn points in {41, —1}/4! sothat, given ary 5, the
points in the Hammirg ball centerd at v, with diameer
|A|/2 canbe appoximately courted (or repated) quicky.
The term“apprakimately” mears thatall points within dis-
tance(1/2 — ¢/(2n))| A| mustbeincludedwhile all points
furtherthan(1/2 + ¢/(2x))|A| mustbeexcluded.

2.2 The General Case

To remove the hormogeneas cordition, we lift the prob

lem into R!, Map eachpointp = (p1,...,pq) top' =
(p1,...,p4,1) € R, Note that the new point setin

R Jies in a ball of radiusv/2. Given a quey halfs-
pace:qixzi + -+ - + qarq > qqt1, first we compute the dis-
tancefrom O to its bounding hyperplare. If it exceedsy/2,
thenall of the n points are on one side of the hyperplare
andwe returnthe exactanswer(either0 or n). Otherwise,
451 < 2Y°,¢;. We mapthe queryto a new halfsmcein

R gy + -+ 4 qarq — qar17441 > 0. Notethatthe
new querypasseshroughtheorigin. Moreover, (i) all poirt-

halfspa&e incidercerelationsarepreseved by the map;and
(ii) point-hypemplanedistancesarepreseredto within afac-
tor of v/2 becausef the upperbourd on q§+1. The prob

lemis now reducel to the honbgeneas caseafter suitable
rescaling

3 Approximate Ball Range Searching in the Ham-
ming Cube

We give two solutiors for appoximateball range searchig
in the k-dimensionaHammirg cube H *, wherek = |A| =
O(de=%1og(de~1)). Recallthatthe prablemis to prepocess
asetS of n pointssothat,givenary ¢ € H*, we canquicky
court (or repat) appraimately the pointsof .S within dis-
tancek/2to q.

3.1 A High-Storage Solution

We adaptto the prodem at handKushilevitz et al’'s solu-
tion to apprximatenearesheigtbor searchingn the Ham-
ming cube[9]. Fix two paramérsm andt¢ to be deter
minedlater Thesearchstructue S corsistsof m substre-
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turesTy, ..., Tm, all of themconstructedn the sameway
but indepedentlyof oneanotter. Fixi € {1,...,m}. The
substructee 7; is built by picking ¢t coordnatesof H* at
randan (out of k). Projecteachpoint z € H* ontothesub-
spacespannedy theset coodinates. The resultingvector
ti(z) € {0,1}! is calledthetraceof z. EachT; consistsof
atableof 2¢ entries,onefor eachtrace. Eachentry storesa
numter (for rangecountirg) or a pointerto a list of points
(for rangereportirg), to be specifiedbelon. The intuition
is that, aslong ast is large enoudy, sayt = O(s~2logn),
by a discreteanaloge of Johnsa andLindenstrasss theo-
rem,therandan projectiors preseve inter-paint distancesn
appr@riaterange within arelative errorof .

We saythata substructue 7; fails atqueryq € H* if there
existsp € S suchthateitherof thefollowing holds:

* du(p,q) < (1/2 —¢/(2m))k but du(t(p),t(q)) >
(1/2 —¢/(3m))t;
(

® du(p,q) > (1/2 + ¢/(2m))k but du(i(p), t(q)) <
(1/2+¢/(3m))t.

Lemm%Z The probability that 7; fails at ¢ is at most
—Q(e%t)

ne .

Let0 < ¢ < 1 beaconstanto be specifiedater We say
thatthestructue S fails at g if morethancm sub-stratures
T; fail atq.

Lemma3 For anyy > 0, if wesetm = (k + logy~1)/c
andt = O(¢~?In (2en/c)), thenS fails nowhee with prob-
ability atleast1 — ~.

The prods of Lemma2 andLemma3 follow from stan-
dardapplications of the Chernof bourds andcanbe found
in [9]. We thusomitthemhere.

Lemma3impliesthat,with high probability, for any query
g € H*¥ andary p € S, thereare at least (1 — ¢)m
substructees 7; that provide the following guararees: (i)
if du(p,q) < (1/2 — &/(2m)k then dy (t(p), 1(q) <
(1/2 — ¢/(3m)t; (i) if du(p,q) > (1/2 + €/(2m))k
thendg (¢(p),t(q)) > (1/2 + ¢/(3x))t. In the prepo-
cessingstage,for eachentry ¢;(z) in the table associated
with 7;, we storethe numkber of pointsp € S suchthat
du(ti(z),t:(p)) < (1/2 — ¢/(3m))t (for range repoting,
we storea poirterto alist of suchpoints). To answeraquery
g, we pick one substructte 7; € S uniformly at randam.
We compute ¢;(¢) anduseit to index the tableof 7;. We
outpu the answerstoredat that entry, By Lemma3, with
prokability at leastl — ¢, the substructug 7; doesnot fail
at ¢, and so we get a correct answerfor approximate ball
rangequeries.lt is easyto seethatthe storagerequilement
is O(nk + m2t) (for repoting, the lasttermis m2'n), and
the querytime O(k) (+ outpu sizefor repating). In view
of Lemma3 andtherediction shavn in thelastsection this
provesTheaem1.

We remarkthat the above algoiithm, after somesuitable
modification, alsoworkswheneachquey is theintersection
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of a setof halfspaes. The definitionfor fuzzy boundaryis
thengeneralizd in the obvious way. As long asthe num
ber of halfspacess constantthe time and spacebounds of
Theaem1 remainthesame.

Another prodem we cansolwe is appraimateball range
searchig in Euclidea space. Given a ball B(g,r) in R?
with centerq andradiusr, apprximate ball range search-
ing includes all points insidethe smallerball B(q,r — s¢)
while excludesall pointsoutsidethelargerball B(g, r + s¢),
for some paraneters = s(r). Pointsin the anndus
B(q,r+se)\B(g, — se) maybemisclassifiedIn theHam-
ming cube thetechnquedescribedn this sectionsolvesap-
proximateball rangesearchig for s = ©(r). Ontheother
hand in sucha solutionthe width of the annuls (thefuzzy
region) grows with ». Whenr is large, it might be too big
to provide an estimationof the true answer We give an-
othersolutionin which s is boundedevenwhenr is large.
Moreover, it worksin Euclideanspace. The ideais to re-
duceappraimateball rangesearchig in R¢ to appraimate
halfsp@e range searchingn R4+! via linearization. In this
solutions = (r 4+ 1)/r. Thuss = O(1) whenr = Q(1).
Thetime andspacébourds areessentialljthe sameasthose
of approxmatehalfspaceangesearchingandin particular
the bownds of Theoem 1 apply to appoximateball range
searchig aswell. We omit thedetailsin this version

3.2 A Low-Storage Solution

The storageachieved in the previous sectionis polynomial
in n but with anexponentof O(s ~2). We propsedanotter
solutionthatusesrouchly quadatic spaceandstill provides
sublinar querytime. For this purpose, however, we need
to relaxthe meaniny of appraximationfurther If N,.(q) de-
notesthe numter of pointsof .S in the Hammirg ball cen-
teredat ¢ of radiusr, thenwe outpu anumker N suchthat
(I = )Na—o@E)r/2(@) < N < (1 + &) Natoe)r/2(a),
for ary fixeda > 0. In section3.6 of [6], it is shawvn that
computing sucha numter N canberedu@dto the (1 + ¢)-
PLEB proldlem (standdfor “Point Locationin Equal Balls”)
with a multiplicative overheadof o =3 log® n in both quey
time andstorage.The (1 + ¢)-PLEB proldem is definedas
follows [6, 7]: given a set P of n pointsin the Hammirg
cubeH* andafixedr < k, prepocessP suchthat, given
ary queryq € H*,

o if thereexistsa point p € P suchthatdg(p,q) < r,
thenanswer‘yes” andreturna pointp’ € P suchthat
du(p',q) < (1 +e)r.

e if du(p,q) > (1+¢)rforary p € P thenanswerno”.

e othemwise answerarything (either‘yes” or “no”).

It is shavnin [7] that(1 + ¢)-PLEBin theHammingcube
H* canbe solved with quey time O(kn'/(1*+)) andstor
age(kn + n't1/(+9)). Therfore appraimate ball range
searchig canbe solved with quey time O(dn!/(1+2)¢=2)
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andstorage) (dne 2 +n!*1/(1+) following theabove re-
ductionandk = O(de 2log(de1)). Thisleadsto analgo-
rithm for appraiimate halfspcerangesearchingwith query
time O(d?c=2 + dn'/(+9)¢=2) and storag@ O(dne=2 +
n!'+1/(1+)) "asclaimedin theintroduction.
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