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Edge-tracing algorithm for Euclidean Voronoi diagram of 3D spheres
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Despiteof many important applications in various disci-
plinesfrom sciencesandengineering, Voronoi diagram for
spheresin a 3-dimensionalEuclideandistancehasnot been
studiedasmuchasit deserves. In this paper, we presentan
edge-tracingalgorithm to computetheEuclideanVoronoi di-
agramof 3-dimensionalspheresin O(��� ) in theworst-case,
where � is thenumber of edgesof Voronoi diagramand �
is the number of spheres.As building blocksfor the algo-
rithm, we show that Voronoi edges areconicsandthey can
berepresented in rationalquadratic Béziercurves. In addi-
tion, an appropriaterepresentationof Voronoi facesis also
presented.
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Voronoi diagramhasbeenoneof thecentraltopicsin com-
putational geometryandknown for its diverseapplicationsin
variousscientificandengineeringdisciplines[12, 15]. While
onefor ordinary point sethasbeenextensively studiedand
its propertiesare well-known in 2 and higherdimensions,
Euclidean Voronoi diagramfor spheres in 3D hasnot been
exploredasmuchasit deserveseventhough it mayhavesig-
nificant impacts on diverseapplications in bothscienceand
engineering[1, 6, 11, 16, 18].

It is only very recentlythat the fastandrobust construc-
tion of Voronoi diagramfor circlesin a planebecame prac-
tical [7, 8]. To get a practicalalgorithm for the proposed
problem,oftenreferredto asanadditively weightedVoronoi
diagram [12], we have noticed that the idea proposedby
Luchinikov et al. is simpleyet powerful to get the correct
Voronoi diagramof spheresin 3D [10].
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Let B= ,.- , ,�/ , 0.010 , ,�2 be a set of generatorswhere ,�3 is a
threedimensionalspherical ball. Hence,,436587:9.3<;'=13?> where
9�3@5A7CB�3<;'D43�;FEG3?> and =H3 denote the coordinateof centerand
the radius of ball, respectively. We assumethat no ball is
completely contained insideanotherball. Associatedwith
eachball , 3 , thereis aregionVR 3 , calledaVoronoi region for
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,	3 , whereVR 3L5NM'O(P�QSR�T1U�7VOW;F9�3X>*YZ=G3\[]QSR�T1U�7VOW;F9F^G>*YZ=	^S;'R`_5a*b
. Then,VD(B)= M VR - , VR / , 0.0.0 , VR 2 b is calledaVoronoi

diagram for setB. In this paper, theordinary cd/ distanceis
used.

Like anordinary Voronoi diagram,someVoronoi regions
corresponding to ballsontheboundaryof convex hull of B is
unbounded.Otherregionsareboundedby a setof boundary
faces,calledVoronoi faces, wherea Voronoi faceis defined
by two neighboringballs.Notethata faceis alwaysahyper-
boloid.

A Voronoi faceintersectsanother faceto form a Voronoi
edge. WhenVoronoi edges intersect,a Voronoi vertex is de-
fined. In this paper, we assumethat the degreeof a vertex
is alwaysfour. Hence,thereis a spheretangent to four balls
centered at the vertex andthis tangent sphere is said to be
empty.
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Given four generator balls ,�3 , R =1,2,3, and 4, an elegant
algorithm to compute the sphere(s)tangent to the balls is
presented by Gavrilova [4]. Sheshowed that the tangent
spheresarecomputedby solvingaquadraticequationwhere
theequation is obtainedby anexplicit formulationof equi-
distantpointsfrom four balls.Sheshowedthatthesolutions
consistsof groupswith none,oneandtwo solutions.
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Unlessit is a degeneratecase,anedgeis alwaysdefinedas
a locusof pointsequi-distantfrom thesurfacesof threesur-
roundingballs. Then,Voronoi edgeis the solutionof three
equations and it can be shown that the Voronoi edgesare
planar andfurthermorethey areconics.This factcanbealso
easily shown that the edgeis a spline curve of Dupin cy-
clide [13, 14].

SinceVoronoi edgesareconic,they canbeexactly repre-
sentedin a form of rational quadratic Béziercurve oncefive
parametersas follows areknown: two endpoints, tangent
vectors at both end points, and a point through which the
curvepasses[3]. In ourproblem, two endpointsareVoronoi
vertices.It turnsout thatthetangent vector at aVoronoi ver-
tex is obtainedasa vector equi-angularwith threevectors
startingfrom the vertex andendingat the centers of three
ballsdefining theedge.Thelastparameter, a passingpoint,
canbefoundasfollows. Supposethatwe definea plane q

176



CCCG 2004, Montreal, Quebec, August 9–11, 2004

passingr through the centers of threeballs. Then, the inter-
sectionof q with threeballsresultsinto threecircleson q .
Therefore,thepassingpoint on this planeis thecenterpoint
of a circle tangent to thesethreecircles,andit is known that
this is Apollonius 10s:t Problemandits solutionprocessis
well-describedin [8, 17].
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Whenanedgeis eithercircularor elliptic, wemayruninto a
difficult situationcalledBig Brothers case.Supposea small
ball is locatedin-between larger ones. If the centerpoint
of the small ball is locatedon the line passingthrough the
centersof two big-brothers, then the edgeis circular. If
the centerof small ball is a little bit off the line, then the
edgebecomes now elliptic. This caserequires a little more
considerationfor theconstruction of Voronoi diagramandis
categorizedinto two sub-casesasedge-connectedandedge-
disconnected.

In theedge-connectedcase,it is not necessaryto treatthe
situationin any specialway but will be automatically han-
dled via the edge-tracing algorithm. However, if it is an
edge-disconnectedcase,theedgegraphof thewholeVoronoi
diagram is not a singlegraphbut forms a forestandthere-
fore specialcareshouldbeprovidedto handlethesituation.
In our experience,it is better to construct an edgegraph
for largerballsfirst andthenanother edgegraph for smaller
balls.
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Two topologically neighboring balls , 3 and , ^ define a
Voronoi facedefinedas P O`Y}9 3 P�Y~= 3 5�P O`Y}9 ^ P?Y}= ^ . Hence,a
Voronoi faceis ahyperboloid andits implicit equationcanbe
easilyobtained. Theprincipal usesof Voronoi facesarethe
computationsof volumesandboundaryareasof Voronoi re-
gions,andperhapsits visualization. Insteadof rationalpara-
metricrepresentation,we ratherusethefollowing approach
for the representationof Voronoi faces. Suppose that two
balls aretransformedso that the centerof larger ball is lo-
catedat the origin and the centerof smallerball is on the
positive Z-axis. Then, theVoronoi facebetweentheballs is
alwaysasingle-valuedfunctionw.r.t. X andY. Theboundary
of the face,which areVoronoi edgesin a rationalquadratic
Béziercurveform, canbealsotransformed.If Voronoi faces
arerepresentedin this way, bothevaluationof a point on the
faceandtestingif a point is onthefacearemuchsimpler.

Shown in Figure1 is an example similar to the onepre-
sentedin [10]. TheVoronoi edgesandfacesarerepresented
in rationalquadraticBéziercurvesandimplicit surfaces.

� ����+ $�� ��
��p
4 � +��p)!+*��
< �.x*&

Thebasicideaof theedge-tracingalgorithmis quitesimple
asfollows. Thealgorithm first locatesa trueVoronoi vertex

Figure1: Voronoi region of yellow ball around which there
are14ballswith threedifferent radii.

��� bycomputinganemptytangentspheredefinedby fourap-
propriatenearbyballs.Providedthat �g� hasbeenfound, four
edges � � , ��- , �H/ , and ��� emanating from ��� can be easily
identifiedandpushedinto a stackcalledEdge-stack.Hence,
thoseedgeshave � � astheir startingvertices.After popping
anedgefrom thestack,thealgorithmcomputestheendver-
tex of the edge. Note that a vertex canbe found by com-
puting a tangentspherefrom eachof ��Yw� ballsplus three
ballswhichdefinethepoppededgeandtestingif thetangent
sphere is empty. If an empty tangentsphereis found, the
centerof the sphere becomesthe endvertex of the popped
edge.

Oncetheendvertex of currently poppededgeis found, it
is alsopossibleto definethreemore edges emanatingfrom
this new vertex. Hence,threeedgesarecreatedandthenew
vertex is usedasthestartingvertex of threenew-bornedges.
Note that theseedgesarealsopushedinto Edge-stack. By
following thisprocessuntil Edge-stackis empty, thecompu-
tationof Voronoi diagramof aconnectedgraph is completed.

Note that the number of edges� is O(� / ) in the worst-
caseandO(� ) ontheaverage,where� is thenumberof balls.
Even though theideais simple,designing a correct andeffi-
cientalgorithm is notsoeasyatall. Hence,weelaboratethe
detailsof thealgorithmstepby stepasfollows.
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The initialization processcomputesa tangentspherefrom
eachcombinationof four ballsandtestsif thetangent sphere
is emptyor not. SincethereareO(�\� ) number of four-ball
combinations,thebrute-forcetestof theemptinessfor each
tangent spherecan be as high as O(��� ) in the worst-case.
However, thecomputationof theinitial vertex ��� canbedone
ratherfastin general sincewe locateonly onesuchtangent
sphere. In addition, it canbeacceleratedto O( � ) on theav-
erageif theballsareclassifiedandlinkedto anappropriate
bucketsasa preprocessing.Note that this preprocessingto
arrangetheballs in a bucket cantake only O(� ) andwill be
usedto speed-up the performancefor otheroperationsin a
laterstageaswell.
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Computing an end vertex of popped edgeis equivalent to
finding an end-ball associatedwith the endvertex. Hence,
we compute a tangentspherefrom eachball in theball set.
After a tangentsphereis computed, its emptinessis tested
against all otherballs exceptfour balls defined the tangent
sphere.

The naive algorithmdesignfor the above takesO(� / ) in
the worst-case. However, it can be improved by a more
careful designas follows. Given the surrounding balls for
a poppededge,we first compute a tangent sphere� 3 with an
arbitrary candidateball. Then,we selectanothercandidate
ball ,F^ from the candidateball setandconstructa tangent
sphere��^ with ,F^ andthreesurroundingballs. If ,�^ intersects
��3 , the current �%3 is replaced by ��^ . If not, we choosethe
tangent spherebetween�63 and ��^ which is closerto thestart
vertex of popped edgein their angular distances.To locate
it, we defineanangulardistance.Supposeanangledefined
among thestartvertex, thecenterof oneof thesurrounding
balls, andthe endvertex. Then,given the start vertex and
threesurroundingballs, theendvertex is determinedby the
oneproducingtheminimumsuchangle.Sinceall ballsin the
candidatesetis scannedonly once,thisprocessruns in O(� )
in thebothworstandaveragecasesandfindsthecorrect end
vertex.
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Supposethat a new vertex for an edgeis computed. If the
vertex is not previously computed, thenwe cansafelyuse
thenew vertex to completetheedge.However, if it already
exists,thenwe ratherusetheexistingvertex to completethe
definitionof theedgesincetheexistingvertex alreadyhasas-
sociatedtopology informationpartially determined. Hence,
it is necessaryto checkif thenew vertex is onealreadycom-
putedor not.

For theefficient searchfor a vertex, we deviseda tableof
verticesalreadycomputedandnamedit Vertex Index Dictio-
nary(VIDIC). An entryin thedictionaryconsistsof indices
to four ballsdefinedthevertex andapointer to thedefinition
of vertex. Hence,the searchfor an existing vertex canbe
done. Note that thenumberof entriesin thedictionary can
beasmany asthenumberof edges of Voronoi diagramand
therefore is O(� / ) in theworst-case.However, if anappro-
priateorderingamongtheentriesis used,abinary searchcan
bedoneto take O(���4�\� ) in the worst case.In addition, we
wantto mentionherethathashingis alsopossiblein thisdic-
tionarysothatthesearchcanbedonein O( � ) ontheaverage.
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Shown in Figure 2.a is the EuclideanVoronoi diagramof
proteins in PDB with entry code1BH8 which consistsof
1,074 atoms(680 C’s, 181N’s, 203O’s, and10 S’s). Once

theVoronoi diagram is computed,aball-and-stickmodel and
theconvex-hull of all atomscanbecomputedin alineartime
of faces(Figure 2.b andc). Protein1BH8 consistsof two
groups of smallerproteins and shown in Figure 2.d is the
surfaceseparatingtwo groupsin theprotein. Note that this
separating surfaceis a subsetof Voronoi facesandcanbe
detectedin the linear time of the number of Voronoi faces.
It turnsout that the interactions betweenproteinsis impor-
tant[2].

Given an initial vertex to startwith, the presentedalgo-
rithm runs in O(�i� ) in theworst-case.Notethat � is O(� / )
in theworst-case.For eachedge, it is necessaryto do O(� )
scanthrough all candidateballs onceto compute a tangent
sphere corresponding to eachcandidateball. Whena vertex
is found, it is alsonecessaryto checkif it existsin VIDIC or
notanda binary searchtakesO(���S�\� ) in theworst-case.

While thenumbersof vertices,edges,andfacesareO(� / )
in theworst-case,theiraveragenumbers areknown aslinear
to thenumberof balls. In addition,if wedeviseanappropri-
atebucket, computing theendvertex cantake only O( � ) on
theaverage. Searching for a vertex in VIDIC canalsobere-
duced to O( � ) on theaverageif appropriatehashingis used.
NotethatallocatinganappropriatebucketschemetakesO(� )
in theworstandtheaveragecase.
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Voronoi diagram for spheresin 3-dimensionalspacein Eu-
clideandistancehasmany applications from various disci-
plinesof sciencesandengineering. While the Voronoi dia-
gramof spherescanbeso important, the algorithm hasnot
beenstudiedasmuchasit deserves.

In thispaper, wehavepresentedanedge-tracingalgorithm
to compute the 3-dimensionalEulcideanVoronoi diagram
of spheresin O(�i� ) in theworst-case,givenan initial ver-
tex to startwith, where � and � are the number of edges
andspheres,respectively. Note that this initialization takes
O(�W� ) in theworst-case.However, thealgorithmcanrun in
O(� ) on the average if appropriatebucket andhashing are
used. It is alsoshown in this paperthat the Voronoi edges
areconicsandcanbe representedconveniently in rational
quadraticBéziercurves. Therepresentationof hyperboloidal
Voronoi facesarealsopresentedastheimplicit surfacewith
boundarycurvesin a parametric form.

However, the implementation of the proposedalgorithm
coping with the exact computationstill remains as a chal-
lenge.
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Figure2: 1BH8consistintof 1,074atoms(680C’s,181N’s,203O’s,and10S’s) obtainedfrom PDB.
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