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Edge-tracing algorithm for Euclidean Voronoi diagram of 3D spheres

Deok-S@ Kim*

Abstract

Despite of mary important applicatiors in various disci-
plinesfrom sciencesand engneering Vororoi diagam for
spheresn a 3-dimersional Euclideandistancehasnot been
studiedasmuchasit deseres. In this paperwe presentan
edgetracingalgorithm to computethe EuclideanVororoi di-
agramof 3-dmensionakpheresn O(mn) in theworst-case,
wherem is the numter of edgesof Vorona diagamandn
is the nunber of spheres.As building blocksfor the algo-
rithm, we shav that Vororoi edges are conicsandthey can
be represetedin rationalquadatic Béziercurves. In addi-
tion, an appr@riate repiesentatiorof Vorona facesis also
presented

1 Introduction

Voromi diagramhasbeenone of the centraltopicsin com-
putatioral geonetryandknown for its diverseapplicatiosin
variows scientificandengneeringdisciplineq12, 15]. While
onefor ordinary point sethasbeenextensiely studiedand
its propertiesare well-known in 2 and higherdimensios,
Euclidean Vorona diagramfor sphersin 3D hasnot been
exploredasmuchasit deseres eventhoud it mayhave sig-
nificantimpads on diverse applicatiomsin both scienceand
engireering[1, 6,11, 16, 1§].

It is only very recentlythatthe fastandrobust construc-
tion of Vorona diagamfor circlesin a planebecane prac-
tical [7, 8]. To geta practicalalgorithm for the propsed
prodem, oftenreferedto asanadditively weightedvorona
diagran [12], we have noticedthat the idea proposedby
Luchinkov et al. is simpleyet powefful to getthe correct
Voromoi diagiam of spheresn 3D [10].

2 Terminologies

Let B= by, bo,---, b, bea setof gereratorswhereb; is a
threedimersionalspherichball. Henceb; = (¢;, ;) where
¢i = (x4,yi,2;) andr; dende the coodinateof centerand
the radiws of ball, respectiely. We assumethat no ball is
cometely contaired inside anotherball. Associatedwith
eachball b;, thereis aregion VR;, calledaVoronoi region for
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bi, whereVR; = {p | dist(p, ¢;) —r; < dist(p,cj) — 15,1 #
j}. ThenVD(B)={VR1, VR3, - -, VR, } is calledaVoronoi
diagram for setB. In this papertheordnary L » distancds
used.

Like anordnary Vorond diagam, someVororpi regions
corresponéhg to ballsontheboundaryof corvex hull of B is
unbounced. Otherregionsarebourdedby a setof bourdary
faces,calledVoronoi faces, wherea Vorori faceis definel
by two neighloring balls. Notethatafaceis alwaysa hype-
bolad.

A Vorona faceintersectsanotter faceto form a Voronoi
edge. WhenVorond edge intersecta Voronoi vertex is de-
fined. In this paper we assumehat the degree of a vertex
is alwaysfour. Hence thereis a sphergangemto four balls
centeed at the vertex andthis tangent sphere is saidto be
empty.

3 Computational primitives

3.1 Voronoi vertices

Given four geneator balls b;, i=1,23, and 4, an elegant
algoithm to compue the sphere(stanget to the balls is
preseted by Gavrilova [4]. She shaved that the tangent
spheesarecompuedby solvinga quadatic equationwhere
the equdion is obtainedby anexplicit formulation of equi-
distantpointsfrom four balls. Sheshavedthatthe solutions
consistof groypswith none,oneandtwo solutions.

3.2 Voronoi edges

Unlessit is a degeneratecase,an edgeis alwaysdefinedas
alocusof pointsequi-dstantfrom the surfacesof threesur
rounding balls. Then,Voronad edgeis the solutionof three
equdions andit canbe shavn that the Voronoi edgesare
plana andfurthemorethey areconics.Thisfactcanbealso
easily shavn that the edgeis a spline curve of Dupin cy-
clide[13, 14).

SinceVoromi edgesareconic,they canbe exactly repre-
sentedn aform of ratioral quadatic Béziercurve oncefive
paranetersas follows are known: two end points, tangent
vectas at both end points, and a point through which the
cune passe$3]. In ourproblem, two endpoints areVororoi
vettices. It turnsoutthatthetangem vecta ata\Vororoi ver-
tex is obtainedas a vecta equi-angularwith threevectors
startingfrom the vertex and endingat the centes of three
balls definirg the edge. The lastparametera passingpoirt,
canbefoundasfollows. Supmsethatwe definea plane P
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passingthrough the centes of threeballs. Then the inter
sectionof P with threeballs resultsinto threecircleson P.
Therebre, the passingpoint onthis planeis the centerpoint
of acircle tanget to thesethreecircles,andit is known that
this is Apollonius 10* Problemandits solution proessis
well-descritedin [8, 17].

Big Brothers Problem

Whenanedgeis eithercircularor elliptic, we mayruninto a
difficult situationcalledBig Brothes case.Suppose small
ball is locatedin-betwesn larger ones. If the centerpoint

of the small ball is locatedon the line passingthrough the
centersof two big-hrothers, then the edgeis circular If

the centerof small ball is a little bit off the line, thenthe
edgebecoms now elliptic. This caserequires a little more
consideationfor theconstructia of Voronad diagamandis

catgyarizedinto two sub-caseasedge-canectecandedge-
disconrected.

In theedge-onnectectase|t is notnecessaryo treatthe
situationin ary specialway but will be automatically han-
dled via the edgetracing algoithm. However, if it is an
edgedisconnetedcasetheedgegraphof thewholeVorona
diagran is not a single graphbut forms a forestandthere-
fore specialcareshouldbe providedto handlethe situation.
In our experience,it is betterto constrit an edgegraph
for largerballsfirst andthenanotter edgegragh for smaller
balls.

3.3 Voronoi faces

Two topologdcally neighlworing balls b; and b; define a
Vororoi facedefinedas|p—c¢;| —r; = |p—c¢;| —r;. Hencea
Voromi faceis ahyperbdoid andits implicit equatiorcanbe
easilyobtained The prindpal usesof Vorona facesarethe
computationsof volumesandboundaryareasof Vororoi re-
gions,andpertapsits visualization Insteadof rationalpara-
metricrepresetation, we ratherusethe following apprach
for the representationof Vororoi faces. Suppae that two
balls aretransfamed so that the centerof larger ball is lo-
catedat the origin andthe centerof smallerball is on the
positive Z-axis. Then the Vororoi facebetweerthe ballsis
alwaysasingle-waluedfunctionw.r.t. X andY. Theboundary
of theface,which are Voromi edgesn arationalquadatic
Béziercurve form, canbealsotransfomed.If Voronoi faces
arerepresetedin this way, bothevaluationof a point onthe
faceandtestingif a pointis onthefacearemuchsimpler

Shawn in Figurel is an exanple similar to the one pre-
sentedn [10]. TheVorona edgesandfacesarerepiesented
in rationalquadatic Béziercunesandimplicit surfaces.

4 Edge-tracing algorithm

The basicideaof the edgetracingalgorithmis quite simple
asfollows. Thealgoithm first locatesa true VVoronoi vertex

Figurel: Vorona region of yellow ball arourd which there
arel4 ballswith threedifferent radii.

v by compuing anemptytangenspheredefinedby four ap-
propriatenearbyballs. Providedthatv hasbeenfound, four
edgs eg, €1, e2, and es emanatig from v canbe easily
identifiedandpushednto a stackcalledEdgestack.Hence,
thoseedgeshave vy astheir startingvertices.After poping
anedgefrom the stack,the algorithmcomputesthe endver
tex of the edge. Note that a vertex can be found by com-
puting a tangentspherefrom eachof n — 3 balls plusthree
ballswhich definethe popededgeandtestingif thetangent
sphee is empty If an emptytangentsphereis found, the
centerof the sphee beconesthe endvertex of the popped
edge

Oncetheendvertex of currently poppededgeis found, it
is alsopossibleto definethreemore edges emanatingrom
this new vertex. Hence threeedgesarecreatedandthe new
veltex is usedasthe startingvertex of threenew-bornedges.
Note that theseedgesare also pushednto Edgestack. By
following this processuntil Edge-stackis empty the compu
tationof Vorona diagramof aconnetedgraph is completed

Note that the number of edgesm is O(n?2) in the worst-
caseandO(n) ontheaverag, wheren is thenumterof balls.
Even thowgh theideais simple,designimy a corred¢ andeffi-
cientalgoithm is notsoeasyatall. Hence we elaboratehe
detailsof thealgorithmstepby stepasfollows.

4.1 |Initialization

The initialization processcomputesa tangentspherefrom
eachcombinationof four ballsandtestsif thetangehsphere
is emptyor not. Sincethereare O(n*) numter of four-ball
combnations,the brute-forcetestof the emptinesdor each
tanget spherecan be as high as O(n°) in the worst-case.
However, thecompuationof theinitial vertex vy canbedore
ratherfastin gereral sincewe locateonly onesuchtangent
sphee. In addition it canbe acceleratedo O(1) on the av-
erageif the balls are classifiedandlinkedto an appopriate
bucketsasa prepocessing.Note that this prepocessingo
arramgetheballsin a bucket cantake only O(n) andwill be
usedto speeddp the perfamancefor otheropeationsin a
laterstageaswell.
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4.2 End vertex computation

Compuing an end vertex of popped edgeis equivalentto
finding an end-tall associatedvith the endvertex. Hence,
we compue a tangentspherefrom eachball in the ball set.
After a tangentsphereis compued, its emptinesss tested
agairst all otherballs exceptfour balls definal the tangen
sphere.

The naive algorithmdesignfor the above takesO(n 2) in
the worst-case. However, it can be improved by a more
carefu designasfollows. Given the surronding balls for
apoppededge we first compue a tanget spherel’; with an
arbitray canddateball. Then,we selectanothercandidae
ball b; from the candidite ball setand constructa tange
spherel’; with b; andthreesurrouringballs. If b ; intersects
T;, the current T; is replacel by T;. If not, we chaosethe
tangem spherebetweerll’; andT; whichis closerto thestart
vertex of popped edgein their angular distances.To locate
it, we defineanangulardistance.Suppseanangledefined
amory the startvertex, the centerof oneof the surrounding
balls, andthe endvertex. Then,giventhe startvertex and
threesurraundingballs, the endvertex is deternined by the
oneproducingtheminimumsuchangle.Sinceall ballsin the
candidtesetis scanneanly once this processrunsin O(n)
in thebothworstandaverag caseandfindsthecorred end
vertex.

4.3 Topologies for vertices and edges

Suppaethata new vertex for an edgeis computed. If the
vertex is not previously compued, thenwe can safely use
the new vertex to completethe edge.However, if it already
exists,thenwe ratherusethe existing vertex to comgetethe
definitionof theedgesincetheexisting vertex alreadyhasas-
sociatedopolagy informationpartially determired. Hence,
it is necessaryo checkif thenew vertex is onealreadycom-
putedor not.

For the efficient searchfor a vertex, we deviseda tableof
verticesalreadycomputedandnanedit Vertex Index Dictio-
nary (VIDIC). An entryin thedictionaryconsistf indices
to four ballsdefinedthe vertex anda pointerto thedefinition
of vertex. Hence,the searchfor an existing vertex canbe
done Note thatthe nunber of entriesin the dictional can
be asmary asthe nunberof edge of Vorona diagmamand
therefae is O(n?) in the worst-case However, if anappo-
priateorderingamagtheentriess used abinary searckcan
be doneto take O(log n) in the worstcase. In addtion, we
wantto mentionherethathashings alsopossiblan thisdic-
tionarysothatthesearctcanbedorein O(1) ontheaverage.

5 Implementation and discussions on time complex-
ity

Shown in Figure 2.ais the Euclidean Voronoi diagramof
proteirs in PDB with entry code 1BH8 which consistsof
1,07 atoms(680 C's, 181N'’s, 203 0’s,and10 S’s). Once
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theVoromi diagram is compued,aball-andstickmodel and
thecornvex-hull of all atomscanbecompuedin alineartime
of faces(Figure 2.b andc). Protein1BH8 consistsof two
groups of smallerproteirs and shavn in Figure 2.d is the
surfaceseparatingwo groupsin the pratein. Note that this
separatig surfaceis a subsetof Vororoi facesand canbe
detectedn the lineartime of the numbe of Vorona faces.
It turnsout thatthe interactiors betweernproteinsis impor-
tant[2].

Given an initial vertex to startwith, the presentedalgo-
rithm runsin O(mn) in theworst-caseNotethatm is O(n 2)
in the worst-case For eachedg, it is necessaryo do O(n)
scanthrough all candidhte balls onceto compte a tangent
sphee correspondig to eachcandichteball. Whena vertex
is found it is alsonecessaryo checkif it existsin VIDIC or
notandabinary searchakesO(logn) in theworst-case.

While thenumtersof vettices,edgesandfacesareO(n 2)
in theworst-casetheir average numbes areknown aslinear
to thenumter of balls. In addition,if we deviseanappragri-
atebucket, compuing the endvertex cantake only O(1) on
theaverage Searchig for avertex in VIDIC canalsobere-
ducal to O(1) ontheaveragyeif appopriatehashings used.
Notethatallocatirg anapprgriatebucketschemeakesO(n)
in theworstandthe averagecase.

6 Conclusions

Voromoi diagam for spheesin 3-dimensionalspacein Eu-
clideandistancehasmary apgicationsfrom various disci-
plinesof sciencesaandengireering. While the Vororoi dia-
gramof spheresanbe soimpartant, the algoithm hasnot
beenstudiedasmuchasit deseres.

In this papeywe have presentednedge-tracingalgorithm
to compue the 3-dimensional EulcideanVororoi diagran
of spheresn O(mn) in the worst-casegivenaninitial ver-
tex to startwith, wherem andn arethe nunber of edges
andspheresrespectiely. Note thatthis initialization takes
O(n’) in theworst-case However, the algorithmcanrunin
O(n) on the average if apprgriate bucket and hashig are
used. It is alsoshawn in this paperthatthe Vorona edges
are conicsand can be representedcorveniently in rational
quadatic Béziercurves. Therepresentatiorof hyperboladal
Voromi facesarealsopresetedastheimplicit surfacewith
boundarycunesin a paraméric form.

However, the implemenation of the proppsedalgoritim
copirg with the exact computation still remairs asa chal-
lenge
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Figure2: 1BH8 consistintof 1,074atoms(680C’s, 181N’s,2030’s,and10 S’s) obtairedfrom PDB.
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