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Smallest
�

point enclosing rectangle of arbitrary orientation

SandipDas� ParthaP. Goswami� SubhasC. Nandy�

Abstract Given a setof � pointsin 2D, the problemof identi-
fying the smallestrectangleof arbitraryorientation,and contain-
ing exactly ���	�
��� points is studied in this paper. The worst
casetime and spacecomplexities of the proposedalgorithm are
 ����������������������������������� �!���"�#���$�%� and


 ���&� respectively. The
algorithmis thenusedto identify the smallestsquareof arbitrary
orientationcontaining � pointsin


 ��� � ���#�'�(�)�������*�+��� � �����'���
time.

, -�.0/21%354&6�7'/2893�.
Given a set : of ; points in 2D, andan integer <>=@?A;CB ,
we consider theproblem of identifying thesmallestrectan-
gle on the planewhich enclosesexactly < points of : . A
restrictedvariationof this problem hasalreadybeeninvesti-
gated, wherethedesiredrectangleis axis-parallel.Thefirst
resulton this problem appearedin [1] with time andspace
complexities D(=E<�F#;!GIH�JK;CB and D(=L<0;CB respectively. Both
time and spacecomplexity resultsare finally improved to
=L<�F2;NMO;!GPHKJ�;CB and D(=Q;CB respectively in [2]. In [6], it is
mentionedthatall theaforesaidalgorithmsareefficientwhen
< is small. It alsoproposesan efficient algorithm when <
is large (very closeto ; ). The time and spacecomplexi-
ties of this algorithm are D(=Q;)MO<!=R;>ST<�BUFVB and D(=Q;CB re-
spectively. In W ( XZY�B dimensions, the algorithm proposed
in [6] runsin D(=QW�;[MTW0<!=R;)S\<�BUF^]P_#`!a@bcB time using D(=QW�;CB
space.In all thesevariations, the pointsareassumedto be
in general position,i.e., no two pointslie on thesamehori-
zontalor vertical line, andthedesiredrectangle is isothetic
andclosed(i.e., enclosedpointsmaylie on theboundaryof
the rectangle). A similar problem is studiedin [5], where
; pointsaredistributedon the plane, and the proposedal-
gorithm identifies the smallestcircle containing exactly <
points in D(=Q;!GIH�J�;dMe=Q;fSg<�Bih^;Cj@B time for some klXnm .
The motivation of studyingall theseproblems comefrom
patternrecognition andfacility location, whereessentialfea-
turesarerepresented asa point set,andthe objective is to
identify aprecisecluster(region) containing desirednumber
of features.

We consider the generalized version of this problem,
wherethedesiredrectanglemaybeof arbitrary orientation.
Weassumethatthelinesjoining pairsof pointshavedistinct
slopes.Ourproposedalgorithmrunsin D(=Q;oF#GIH�J�;pM+<q;r=R;sS
<�B^=R;sSt<uM[GIH�J$<�BiB timeand D(=R;CB space.Theproposedtech-
nique can also identify the smallest < -enclosingsquareof
arbitrary orientation in D(=Q;rF^GPHKJ�;tMl<q;r=R;[Sv<�BcF^GIH�JK;CB time
w
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and D(=R;CFVB space. The time complexity result of identify-
ing smallest< -enclosingsquareis comparablewith that of
identifying smallest< -enclosingcircleproposedin [5].
z {0301@|}6�~9�$/2893�.
Let :��n�i� aV� � FK�^�^�#�2� �&�&� be the setof given points. The
objective is to identify the smallestarearectangle of arbi-
trary orientation which contains exactly < points of : . A
rectangle � is saidto bea k-rectangle if it doesnot contain
another rectangle ��� containing < points. Let the optimum
k-rectanglecontainadesignatedsubset:u�E=c�T:rB of < points.
In otherwords,this rectangle enclosestheconvex hull of :p� .
Thus,eachsideof ak-rectangle containsamemberof : , and
at leastoneof its edgeswill surelycontaintwo pointsof : .

Lemma 1 Let �&� � �q� � ���g��: bethreepoints.Thenumber of
< -rectangleswith oneedge passingthroughboth � � and � � ,
and its parallel edge passingthrough � � , maybeanything
from0 to <�S�Y .

We considereachpair of points � � � � � ��: . Let � �9� de-
notetheline passingthrough � � and� � . Weexplainthealgo-
rithm of identifying all thek-rectangleswith � � , � � atbottom
boundaryby sweepinga line � parallelto ����� upwards.The
k-rectangles with top boundarycontaining ��� and ��� canbe
identifiedsimilarly.

Let �&� be to the left of ��� on the line ���9� . � a and � F
aretwo lines perpendicularon ����� , drawn at �5� and ��� re-
spectively. This splits the half-plane above � �9� into three
parts,say ���p��� , ����� and ���$����� . Following obser-
vationlists thepossiblesituationsthatmaytake placewhen
a new point � � is encounteredby the sweepline � . Let
:!� , :!  and :¢¡ denote the setof pointsencounteredby �
in ���p��� , ���$����� and ����� respectively up to and in-
cluding � � . We assumethat � � � � � �T:£¡ . ¤ ¥s¤ denotes the
cardinality of theset ¥ .

Observation 1 (a) If ¤ :¦�r¤�M§¤ :C¡N¤$M§¤ :! ¨¤o©ª< thenno k-
rectangle will bereported.

(b) If ¤ :C¡N¤*�«< and � � �¬���$� , then only one k-
rectangle will be reportedwith � � at its top boundary, its
bottom boundary is the line segment ­ �®� � �q�°¯ , its left and
right boundariesaredefinedbylines � a and � F respectively.
Here, oneneednothaveto consider anypoint above�o� , and
hence thesweepof � stops.

(c) If ¤ : ¡ ¤¨©±< and �5�n�²����� , then ³}´	;r=�¤ : � ¤ � <µS¤ : ¡ ¤ � ¤ :   ¤ B�M²¶ k-rectangleswill be generatedwith �C� at
topboundary and � � � � � at bottomboundary.

(d) If ¤ :C¡�¤®©·< and � � �\���p��� , thenif the rectangle
with onesidealignedwith � ��� andtheline segment­ � � � � � ¯
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asdiagonal contain more than < points thenno k-rectangle
will begeneratedwith � � at its topboundaryand =�� � � � � B at
its bottom boundary. Moreover, in the further sweepif an-
otherpoint ��¸ appears whoseprojectionon �¹��� is to theleft
of thatof �5� , thenalsonok-rectanglewill begeneratedwith
��¸ at its topboundaryand =��®� � �q�#B at its bottomboundary.

(e) If ¤ : ¡ ¤µ©º< and �5�»�¼���½��� , then if the rect-
anglewith onesidealignedwith � ��� and the line segment
­ � � � � � ¯ as diagonal contain ¾0=@?±<�B points then ³µ´E;r=E<µS
¾ � ¤ :!�£¿�:£¡�¤�S�¾ � ¤ :£ �¤ B¨MÀ¶ k-rectangles will be generated
with � � at topand � � � � � at bottomboundary.

(f) Resultssimilar to (d) and(e) holds if ¤ :�¡�¤�©�< , � � �
�������[� .
Á Â�~ Ã�301c8 /^Ä�|
Let Å*=Q�+B denotethe arrangementof the setof lines �Æ�
�^ÇK="� � B � ´+�È¶ � Y �#�^�#�°� ;¦� , where ÇK=�� � B is the dual (line) of
the point � � ��: [3]. The vertices in ÅÉ=Q�)B are denoted
by ��ÊK��� � ´ÌË�ÎÍ � ´>�Ï¶ � Y �#�^�^�°� ; � ÍÀ�Ï¶ � Y �^�#�^�°� ;¦� , where
Ê���� is the dual of the line �¨�9� . We considereachvertex
Ê����Ì�ZÅÉ=Q�)B , and compute the k-rectangles in the primal
planewith �5� and ��� at its bottomboundary (i.e., all the <
points inside the rectangle are above � ��� ). Our algorithm
doesnot storethe entirearrangementin the memory. The
verticesof ÅÉ=L�+B areconsideredby sweepinga vertical line
from left to right through thearrangementÅ*=Q�+B . In order to
analyzethecombinatorialcomplexity of k-rectangles on the
floor, we needthefollowing definition:
Definition 1 [3] A point Ð in thedualplaneis at level Ñ�=Qm(?
Ñ(?f;CB if thereareexactly Ñ linesin � thatlie strictly below
Ð . The Ñ -th levelof ÅÉ=Q�)B is theclosureof a setof points on
thelinesof � whichareexactlyat level Ñ in ÅÉ=Q�)B .
During the sweepof the vertical line through ÅÉ=L�+B , the
sweepline statusis maintained asan array Ò of size ; . It
contains the lines of � in the order in which they intersect
the sweepline in its current position, from bottom to top.
EachelementÒ*­ Ó£¯ (representing a line Ç ) is attachedwith
an id of thecorrespondingpoint in : . Ò is initialized with
the lines of � in increasingorderof the ordinatesof their
intersections with theline Ôn�ZS�Õ . Thesweepprocessis
guided by anevent-queueÖ , maintainedusingmin-heap.It
storesthe ÊK�9���[Å*=Q�+B if Ç#� and Ç2� areconsecutive entriesin
thearray Ò andintersectat Êq�9� to theright of thesweepline.
Duringthesweep,thenext eventpoint Ê&�9� isobtainedfrom Ö
in D(=RGPHKJ$;CB time. Theupdating of Ö needsanother D(=RGPHKJ$;CB
time. Theprocessingof Êq�9� includesswappingof thelines ÇK�
and Ç � in thearray Ò , andreporting all k-rectangleswith � �
and� � at its bottomboundary.
Remark 1 If Ò*­ Ó£¯C�lÇ#� and Ò}­ Ó�MT¶^¯!�lÇ2� , thenthepoints
in the primal planecorresponding to all the line stored at
Ò*­ ×!¯ � ×)�Ø¶ � Y �^�#�^�°� Ó[S\¶ areabovetheline � ��� .
Lemma 2 While processingÊ���� at level Ñ (say) of ÅÉ=L�+B ,
(i) if Ñf©Ù< , thenno k-rectangle with �¢� and ��� at its bot-
tomboundarywill begenerated,and(ii) if ÑNÚ²< , thenthe
number of reportedk-rectangleswith � � and � � at bottom
boundary is at most <!=Q;}S><�B .

While processingthe vertex Ê ��� �¼Å*=Q�+B , the upward
sweepof � in theprimalplanefor scanning thepointsabove
theline �o�9� in increasingorder of their distancefrom ���9� is
equivalentto observing theelementsÒ}­ ×!¯ , ×d�ØÓNS\¶ � Ó)SY �#�^�#�2� ¶ .

Let Û ¡ be the number of pointsin : ¡ that areencoun-
teredby � up to thecurrent instantof time. It is maintained
usinganintegervariable. Thepointsin : � and :   thatare
encounteredduringtheupwardsweepof � , arestoredin two
link-lists � � and �   . At aninstantof time, � � storesatmost
<�S½Û®¡ pointsin :C� closestto � a in increasingorderof their
distancefrom � a ; �!  alsostoresat most <*SdÛ�¡ pointsin
:!  closestto � F in increasingorderof their distancefrom
� F . Initially, �C�t�ÌÜ , �! >��Ü and Û�¡Ù�ÌY , andtheupward
sweepof � starts. For the first <tSg¶ encounteredpoints,
no k-rectangle will bereported. For eachof them,if it is in
MID then Û�¡ is incremented. If it is in LEFT or RIGHT it
is accumulatedin �C� or �£  respectively in unorderedman-
ner. When the < -th point is encountered,the reporting of
k-rectangles starts. We now arrange the elements in � � in
increasingorderof theirdistancesfrom � a . Thisneedscopy-
ing theelementsin a temporary array, thensortingthearray
andfinally copying thesortedarrayin � � . Theelementsin
�!  arealsoarrangedin similar manner.

Let � be the point facedby the sweepline, which corre-
spondsto Ò*­ ×!¯ (thesweepline statusarray). ¤ ����¤ , ¤ �! ¨¤ and
Û®¡ indicatesthenumberof pointsin therespectivesetsprior
to theinsertionof � in itsappropriateset.Thefollowingthree
casesneedto beconsidered.Ý �µÞ�ß�à¨á : If ¤ �£��¤�M�Û®¡º�¼< , thenthe point farthest
from � a is deletedfrom �C� . Note that, � is not insertedin
�!� just now; it will be insertedin the next step. Next, we
executethefollowing stepsto reportthek-rectangles.â Performalinearscanto identify the =E<uS>¤ ���¦¤°S}Û¦¡*B -th
element in �C  (from left).â Next scan�£� from its theleftmostelementand �¦  from
the =E<µSg¤ �!��¤�S\Û¦¡}B -th elementonwards in orderedman-
neruntil (i) theproper positionof � in �o� is reachedor (ii)
endof �C  is reached. At eachmove, a k-rectangle is re-
ported. Its bottomandtop sidespassthrough =�� � � � � B and�
respectively; left andright sidesareboundedby therespec-
tiveelements in � � and �   .â In case(i), � is insertedin �®� at its proper position. In
case(ii), the scanningin � � proceeds further to insert � in
� � at its properposition.Ý �µã}ä#åµæ�á : Similar to theearliercase.Ý �µç²ä2è : We increment Û�¡ .
If Û¦¡¬�²< , a k-rectangle is reportedwith bottomboundary
equal to theline segment ="�C� � �q��B and� at topboundary, and
thesweepof � stops(by Observation 1(b)).
Otherwise,if ¤ � � ¤�MsÛ ¡ ��<CMµ¶ , thenthepointfarthestfrom
� a is deletedfrom � � . Similarly, if ¤ �   ¤°MNÛ ¡ �Ì<�M\¶ , the
point farthestfrom � F is deletedfrom �   .
Next, k-rectangles are reportedas statedfor �§�e���p��� .
Herethequestionof inserting� in any setdoes notarise.
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At theé endof processingall verticesin ÅÉ=L�+B , thedesired
k-rectangle with smallestareais reported.
Theorem3 Givena 2D floor containing ; points,thenum-
berof k-rectangleson thefloor is D(=Q;C<!=R;tS><�B2F#B .
Theorem4 The time and spacecomplexities of our algo-
rithm are D(=R;CF#GIH�JK;�MN;C<!=Q;êS)<�B^=R;ÉS+< M)GIH�J$<�BiB and D(=Q;CB
respectively.

ë ì |É�q~�~ í�î°/ <0ï í0.q7�~93qî^8".qÃ[î2ð&6��K1	í
A squarecontaining < pointsis calledask-square if its size
is smallestamongall squares containing the sameset of
points. We classifythe k-squareswith respectto the num-
berof points ñ presenton its boundary. For ñt�gY , theonly
possibilityof a k-square is thatthetwo points will lie at two
end-pointsof oneof its diagonals.For ñµ��ò , thefollowing
casesmayarise:
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Figure1: Different casesof k-square with ñ(�Tò
Case(i): Two pointson onesideof thek-square andthe

otherpoint on its parallelside (Figure 1(a)-(c)). In Figure
1(a),a k point enclosingsquare is shown wheretheprojec-
tion of �£ó on ��ô2õ lies outside ­ �!ô � �5õ%¯ . It is not a k-square
since its size can be reduced by rotating it around ��ó as
shown usingdottedline. But if �®ô and�!ó formsthediagonal
of thesquare(Figure1(b)), its areacannot bereduced,and
henceit is k-square. Suchinstancesareidentifiedwhile find-
ing thek-squareswith ñt�²Y . In Figure 1(c), theprojection
of � ó on � ô2õ lies inside ­ � ô � � õ ¯ . This is surelya candidate
k-square. If we translateit alongtheline joining ="� ô � � õ B , it
remainsak-square of samesizeuntil it hits a point at oneof
its verticalboundaries,or any oneof � ô , � õ becomesacorner
point.

Case(ii): Two points on oneside,theotherpoint on one
of its adjacent side(seeFigure 1(d)-(f)). In eachcase,the
sizecanbereducedkeepingthesamesetof points inside,as
shown usingdottedline.

Case(iii): No two points on sameside(seeFigure1(g)-
(h)). Theoneshown in Figure 1(g)canbereducedasshown
usingdottedline. But thesquare in Figure1(h) is ak-square
sinceit cannotbereducedfurther.

For ñê�Tö , let thepoints appearing ontheboundaryof the
squareare �£ô � �&õ � �&ó and � _ . Considering general position
assumption, thepossiblesubcasesare
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Figure2: Different casesof k-square with ñê�Tö
Case(i): Two points on onesideandtwo otherpointson

its two adjacentsidesrespectively. Translatingthe square
asshown in Figure2(a), this casecanbe reducedto a case
wheretwo pointsareon two mutuallyparallelsidesrespec-
tively. This casedoesnot yield a k-square sincesizeof this
square cansurelybereducedwith thesamesetof pointsin-
sidethesquare.

Case(ii): Two pointsononeside,onepointonits parallel
side, and the fourth point is on one of the two remaining
sides.This casecanalsobereducedto a casewith ñ*�Oò as
shown usingdottedline in Figure2(b), andcanbetackledas
describedearlier. If thepoint �¦õ is at thecorner, thenit is a
candidatefor k-square (seeFigure1(h)).

Case(iii): Twopointsononeside,andtwootherpointson
its parallelside. This violatesthe general positionassump-
tion, i.e., lines joining pairsof points do not have distinct
slope.However, ouralgorithm cantacklethis situation.

Case(iv): Two pointsononeside,andtwootherpointson
oneof its adjacent sides.This casecanbereducedto a case
with two pointsononeside,andnoothersidecontaining any
point (seeFigure2(c)).

Case(v): No two points lie onthesamesideof thesquare.
This situationis shown in Figure 2(d). Following lemma
saysthat for a given set of four points, at most 2 suchk-
squaresarepossible.

Lemma 5 Givenfour points � ô � � õ � � ó � � _ �d: , thenumber
of square whoseeach of thefour sidescontains oneof these
four points is at most2.

Proof. Let the lines which form the required squareare
Ç ô , Ç õ , Ç ó and Ç _ , where Ç#� passthrough the point �¢� , ´*�÷ ��øV��ù'� W . The gradient of the lines Ç ô and Ç ó be ú andthe
gradient of the lines ÇKõ and Ç _ be S aû . Let ¥ , ÒZü and �
denote respectively the point of intersectionof ( Ç�ô and ÇVõ ),
( Ç�õ and ÇVó ), ( Ç�ó and Ç _ ) and( Ç _ and ÇVô ) respectively. Equat-
ing the lengths¥�Ò , ¥�� , we geta quadratic equation of ú .
Hencetheresultfollows. ý

For ñT�¼Y , we consider eachpair of points � � � � � �Ø: ,
and test whether the squarewith ­ � � � � � ¯ as diagonal con-
tains exactly < points or not using the methodof simplex
range searching. If yes, we compare its areawith the ex-
isting optimum. The k-squares with ñþ�ÿò and ñþ�Ùö are
identifiedusingthemethod for identifying k-rectangleswith
minor modificationasdescribedbelow.

As in theearlierproblem,we considertheverticesof the
arrangement ÅÉ=L�+B . At eachvertex (representing a line �½�9� ),
the upward (resp. downward) sweepof a line � parallel
to � �9� is alsoperformedasearlierandusingthe samedata
structure. Weexecute thefollowing two procedures:thefirst

118



CCCG 2004, Montreal, Quebec, August 9–11, 2004

one� identifies the smallestk-square with both � � � � � at its
bottomboundary, andthesecondoneidentifiesthesmallest
k-squarewith either�!� or ��� atits bottom boundary, andeach
of theotherthreesidescontains a pointof : .

ProcedureA: Let thelengthof theline segment ­ ��� � �q�2¯5�l¾ .
Initially, we considerthe ¾��t¾ squarewith onesidealigned
with the line segment ­ � � � � � ¯ . Usingsimplex range search-
ing, we count thenumber of pointsinsidethat square.If it
exceeds < , thenthis procedureterminateswithout reporting
any k-square. Otherwise,thefollowing stepsareexecuted.

Step A1 Our upward sweepproceeds,and the points in
LEFT andRIGHT thatencounteredby thesweepline � are
accumulated in �¢� and �£  . For the points in MID, Û�¡ is
incremented.Sweepcontinuesuntill it hitsapoint � � whose
distancefrom ����� is greaterthanor equal to ¾ .

StepA2 Now, themedianfindalgorithm is invokedfor the
pointsin � � to collectonly < points (if available)which are
closestto � a . They arealsoorderly storedin � � . Similarly,
among thepointsin �   only < pointsarestoredin increasing
orderfrom � F .

Step A3 Upward sweepcontinuesandfor eachencoun-
teredpoint � � , wetesttheexistanceof ak-squarewith � � � � �
at bottomand� � at top boundaryasfollows. Sweeptermi-
natesassoonasak-square is found.â Let thedistanceof � � from � �9� beequalto

�
. We se-

quentially walk from left to right along ��� . For eachel-
ement �n�¼�£� (corresponding to a point �¦ôe� :!� ) we
choose a point Ü on � ��� suchthat the lengthof the inter-
val ­ � � Ü�¯��

� ÚZ­ � � ���2¯ andthe
�
�
�

squarewith =��£� � ����B
at its bottom boundary, �¢� at topboundary, and� ô at its left
boundarycontainsexactly < points.

Beforedescribing ProcedureB, weneedthefollowing im-
portant observation.
Observation 2 Let � be the optimumk-square containing
onedesignated point of : in each of its boundaries. If we
rotateeach edge by the sameanglekeepingthe designated
point on its boundary, it becomesa rectangle. We con-
tinuerotationtill oneof its boundarieshit another point in-
side/outsidethe square. Thus,we havea k-rectangle or a
kM 1-rectanglewhoseonesidecontains two pointsof : and
each of the other threesidescontains exactly onepoint of
: . In other words, this k-rectangle or <êMØ¶ -rectangle, on
rotation,producesthedesired(optimum) k-square.

Procedure B:
Step B1: Considereachpair of points ="�®� � �q�#B andiden-

tify all k-rectangles with ="� � � � � B at onesides.For eachsuch
rectangle � , execute thefollowing steps:

StepB2: Let theotherthreesidesof � contain��ô � �&õ � �&ó
respectively. We consider two quadruples �i� � , �5ô � �5õ � �&ó^�
and �i� � � �5ô � �5õ � �&ó2� . For eachquadruple, we compute the
smallestvalidsquarewith thosefourpointsat its four bound-
ariesrespectively usingLemma5.

StepB3: Next, weusesimplex rangesearchingtechnique
to testwhetherit is ak-square or not. If yes, it is acandidate
for theoptimum k-square.

Theorem6 The smallest k-square can be identified in
D(=R;£F#GPHKJK;ÉMd;C<!=R;µS�<�BcF#GIH�JK;CB timeusing D(=R;¢F�B space.

Proof. Throughout theanalysis,weusethefactthatthesim-
plex rangecounting querycanbeperformedin D(=QGIH�J�;CB time
using D(=R; F B time andspace[4].

For ñ«� Y , we considerall possiblepair of points
=��&� � �q��B��²: , andperform simplex rangesearching to test
whether the squarewith ="�C� � �q��B asdiagonal is a k-square.
ThisneedsD(=R;¢F#GIH�JK;CB time.

Using almost similar argument of proving Theorem 4,
the worst casetime required of executing Procedure A is
D(=R;£F#GPHKJK;ÉMd;C<!=R;µS�<�B2=R;tS><�M>GPHKJq<�B@B .

In Procedure B, all the k-rectangles andkM 1-rectangles
are considered. Eachof them gives birth to two squares.
For eachsquare, the simplex range counting query is to be
invoked. As the total number of possiblek-rectangles is
D(=R;C<£=R;�Sd<�BcFVB (seeTheorem3), thetotal time requiredfor
execution of Procedure B for all the verticesof ÅÉ=Q�+B is is
D(=R;C<£=R;tS�<�BcF2GPHKJ�;CB . ý
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