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Smallest k point enclosing rectangle of arbitrary orientation

SandipDas

Abstract Given a setof n pointsin 2D, the problemof identi-
fying the smallestrectangleof arbitrary orientation,and contain-
ing exactly k(< n) pointsis studiedin this paper The worst
casetime and spacecompleities of the proposedalgorithm are
O(n’logn+nk(n—k)(n—k+logk)) andO(n) respectiely. The
algorithmis then usedto identify the smallestsquareof arbitrary
orientationcontainingk pointsin O(n*logn + nk(n — k)*logn)
time.

1 Introduction

Givena setS of n pointsin 2D, andaninteger k (< n),
we consicer the prodem of identifying the smallestrectan-
gle on the planewhich enclosesxactly £ points of S. A
restrictedvariationof this prodem hasalreadybeeninvesti-
gated wherethe desiredrectangles axis-parallel. The first
resulton this prodem appearedn [1] with time andspace
comgexities O(k?nlogn) and O(kn) respectiely. Both
time and spacecompleity resultsare finally improved to
(k?n + nlogn) and O(n) respectiely in [2]. In [6], it is
mentioredthatall theaforesaidalgorithmsareefficientwhen
k is small. It alsopropsesan efficient algorithm when k
is large (very closeto n). The time and spacecompexi-
ties of this algoithm are O(n + k(n — k)?) andO(n) re-
spectvely. In d (> 2) dimensioss, the algoithm proposed
in [6] runsin O(dn + dk(n — k)*(@=1) time usingO(dn)
space.In all thesevariatins, the pointsareassumedo be
in gener&position,i.e., no two pointslie on the samehori-
zontalor vettical line, andthe desiredrectandg is isothetic
andclosed(i.e., enclosedointsmaylie on the boundaryof
the rectande). A similar prablem is studiedin [5], where
n pointsare distributed on the plare, andthe propsedal-
gorithm identifies the smallestcircle containng exactly k&
pointsin O(nlogn + (n — k)3n¢) time for somee > 0.
The motivation of studyingall theseprodems comefrom
patternrecogition andfacility location whereessentiafea-
turesarerepreseted as a point set,andthe objectie is to
identify a precisecluster(region) contairing desirechunter
of features.

We considerthe genealized version of this prodem,
wherethe desiredrectanglemay be of arbitrary oriertation.
We assumehatthelinesjoining pairsof points have distinct
slopes.Our proposedalgorithmrunsin O(n 2logn + kn(n —
k)(n—k +logk)) timeandO(n) space Theproposedech-
nique can also identify the smallestk-enclosingsquareof
arbitray orientation in O(n?logn + kn(n — k)*logn) time
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and O(n?) space. The time compleity resultof identify-
ing smallestk-enclosingsquareis compaable with that of
identifying smallestk-endosingcircle propsedin [5].

2 Formulation

Let S = {p1,p2,-..,pn} bethesetof given points. The
objedive is to identify the smallestarearectande of arbi-
trary orientation which contairs exactly k£ points of S. A
rectamgle R is saidto be a k-rectande if it doesnot cortain
anotler rectande R’ containirg k£ points. Let the optimum
k-rectargle containa designatedubsetS’(C S) of k points.
In otherwords,this rectange encloseshe convex hull of S'.
Thus, eachsideof ak-rectande contairsamemkerof S, and
atleastoneof its edgeswill surelycontaintwo pointsof S.

Lemmal Letp;,p;, pm € S bethreepoints. Thenumbe of
k-redangleswith oneedge passingthroughbothp; andp;,
andits parallel edge passingthroughp,,,, maybe anythirg
fromOto k — 2.

We considereachpair of pointsp;,p; € S. Let L;; de-
notetheline passinghroughp; andp;. We explainthealgo-
rithm of identifying all thek-rectandes with p;, p; atbottan
bowndaryby sweepingaline L parallelto L ;; upwards. The
k-rectargles with top boundarycontairing p; andp; canbe
identifiedsimilarly.

Let p; be to the left of p; ontheline L;;. L; and L,
aretwo lines pergendicularon L;;, drawvn at p; andp; re-
spectively. This splits the half-pane above L;; into three
parts,say LEFT, MID and RIGHT. Following obser
vationlists the possiblesituationsthat maytake placewhen
a new poirt p,, is encounteredby the sweepline L. Let
Sr, Sr and Sy dende the setof pointsencounteredby L
in LEFT, RIGHT and MID respectiely up to andin-
cluding p,,. We assumehatp;,p; € Su. |A| denots the
cardirality of theset A.

Obsewation 1 (a) If |Si| + [Sm| + |[Sr| < k thennok-
rectande will bereported.

(b) If |Smu| = k andp,, € MID, thenonly onek-
rectande will be reportedwith p,, at its top boundary; its
bottan bowndary is the line segmen [p;,p;], its left and
right bourdariesare defiredbylines L, and L, respectively
Here, oneneedhothaveto conside anypoint abovep ,,,, and
hene thesweepof L stops.

(©) If |Sy| < kandp,, € MID, thenmin(|SL|,k —
|Sul,|Skr|) + 1 k-rectargleswill be geneatedwith p,, at
top boundhry andp;, p; at bottombourdary.

(d) If |Sm| < k andp,, € LEFT, thenif therectande
with onesidealignedwith L;; andtheline sgment]p,, , p;]
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asdiagonal contan more than k points thenno k-rectande
will begeneatedwith p,, atits topboundaryand(p;, p;) at
its bottam bowundary Moreover, in the further sweepif an-
otherpointp, appers whoseprojectionon L;; is to theleft
ofthatof p,,, thenalsonok-rectanglewill begeneatedwith
p¢ atits topbowndaryand (p;, p;) atits bottomboundry.

(e)If |Sy| < kandp,, € LEFT, thenif the rect-
anglewith one side alignedwith L;; andthe line segmen
[pm,p;] asdiagonal containr(< k) pointsthenmin(k —
r,|SLUSM| — r,|Sgr|) + 1 k-rectandes will be generated
with p,,, attop andp;, p; at bottombourdary.

(f) Resultssimilar to (d) and(e) holdsiif | S| < k, pm €
RIGHT.

3 Algorithm

Let A(H) denotethe arrangmentof the setof lines H =

{l(p;),i = 1,2,...,n}, wherel(p;) is the dual (line) of
the point p; € S [3]. The vetticesin A(H) are derpted
by {vij,i # j,i = 1,2,...,n,j = 1,2,...,n}, where
v;; is the dual of the line L;;. We considereachvertex

vi; € A(H), and compte the k-rectandes in the primal

planewith p; andp; atits bottombourdary (i.e., all the &

pointsinside the rectande are above L;;). Our algaithm

doesnot storethe entire arragementin the memoy. The
verticesof A(H) areconsideredy sweepinga verticd line

from left to right throudh thearrangmentA(H). In orderto

analyzethe combiratorialcomgexity of k-rectangls onthe
floor, we needthefollowing definitiorn

Definition 1 [3] A pointg in thedualplaneis atlevel§ (0 <
0 < n) if thereareexadly 6 linesin H thatlie strictly below
g. Thed-th level of A(H) is theclosureof a setof points on

thelinesof H whichareexactlyatlevel  in A(H).
During the sweepof the vertical line throgh A(H), the

sweepline statusis maintainel asan array B of sizen. It

contairs the lines of H in the order in which they intersect
the sweepline in its current position, from bottan to top.

EachelementB]a] (represeting a line £) is attachedwith

anid of the correspadingpointin S. B is initialized with

the lines of H in increasingorder of the ordnatesof their
intersectios with theline X = —oco. Thesweepprocesss

guided by anevent-queue, maintaired usingmin-heap. It

storeshev;; € A(H) if £; and{; areconsecutie entriesin

thearray B andintersecttv;; to theright of thesweegline.

Duringthesweepthenext event pointwv ;; is obtainedrom @

in O(logn) time. Theupdaing of Q) needsandher O(logn)

time. Theprocessingf v;; includesswappingof thelines?;

and/; in thearray B, andrepoting all k-rectargleswith p;

andp; atits bottombourdary.

Remark 1 If Bla] = ¢; andBla + 1] = £;, thenthepoints
in the primal plane corresporling to all the line stored at

B[3],8=1,2,...,a — 1 areabovetheline L;;.

Lemma 2 While processingu;; at level 8 (say)of A(H),

(i) if & < k, thenno k-rectande with p; andp; at its bot-
tomboundarywill be geneiated, and (ii) if 8 > k, thenthe
numter of reportedk-redangleswith p; and p; at bottan
bourdaryis at mostk(n — k).

While processingthe vertex v;; € A(H), the upward
sweepof L in theprimal planefor scanniig the pointsabove
theline L;; in increasingorder of their distancefrom L ;; is
equialentto obsening theelementsB[3], 5 = a — 1,a —
2,...,1.

Let x s bethe numkber of pointsin S, thatareencan-
teredby L upto thecurren instantof time. It is maintaine
usinganintegervariable. The pointsin Sy andSg thatare
encainteredduringtheupwardsweepof L, arestoredn two
link-lists T, andT's. At aninstantof time, T, storesat most
k—x pointsin Sy, closesto L; inincreasingorderof their
distancefrom L, ; Tg alsostoresat mostk — xas pointsin
Sg closestto L, in increasingorderof their distancefrom
Ls. Initially, Ty, = ¢, Tr = ¢ andxy = 2, andtheupward
sweepof L starts. For the first kK — 1 encouteredpoints,
no k-rectargle will berepated. For eachof them,if it isin
MID theny s is incremetted. If it is in LEFT or RIGHT it
is accunulatedin T, or Ty respectiely in unoideredman-
ner Whenthe k-th point is encoutered, the repating of
k-rectargles starts. We now arrarge the elemets in 7', in
increasingorderof theirdistance$rom L ;. Thisneedsopy-
ing theelementsn atemporay array thensortingthearray
andfinally copying the sortedarrayin T',. Theelementsn
Tg arealsoarran@din similar manrer.

Let p be the point facedby the sweepline, which corre-
spordsto B[3] (thesweepline statusarray) |T';|, |Tr| and
x m indicateghenumber of pointsin therespectie setsprior
totheinsertionof p in its apprgriateset. Thefollowing three
casesieedto becorsidered.

p € LEFT: If |Tr| + xm = k, thenthe poirt farthest
from L, is deletedfrom T;,. Notethat, p is notinsertedin
Ty, just now; it will beinsertedin the next step. Next, we
executethefollowing stepsto reportthe k-rectargles

e Performalinearscantoidentify the (k — |T'.| — xar)-th
elemenin Tg (from left).

o Next scanT’, from its theleftmaost elementandT'g from
the (k — |TL| — xa)-th elementonwards in orderedman-
neruntil (i) the proper positionof p in Ty, is reachedor (ii)
endof Tg is reached At eachmove, a k-rectangg is re-
ported. Its bottomandtop sidespassthrough (p;, p;) andp
respectiely; left andright sidesarebowndedby therespec-
tiveelememsin T, andTg.

e In case(i), p is insertedin T, atits proger position. In
case(ii), the scanningn T, proceels furtherto insertp in
Ty, atits properposition.

p € RIGHT: Similarto theearliercase.

p € MID: Weincremem x ars.

If xar = k, ak-rectargle is repatedwith bottombourdary
equa to theline segment (p;, p;) andp attop bourdary, and
thesweepof L stops(by Obsenation 1(b)).

Otherwisejf |T|+xm = k+1, thenthepointfarthesfrom
L, is deletedromT'y,. Similarly, if |Tg| + xa = k + 1, the
point farthesfrom L, is deletedrom T'g.

Next, k-rectargles are reportedas statedfor p € LEFT.
Herethe questiorof insertingp in ary setdoes notarise.
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At theendof processingall verticesin A(H), thedesired
k-rectande with smallestareais repoted.
Theorem 3 Givena 2D floor contairing n. points,the num-
ber of k-rectarglesonthefloor is O(nk(n — k)?).

Theorem4 The time and spacecompleities of our algo-
rithm are O(n?logn + nk(n — k)(n — k + logk)) andO(n)
respectively

4 Smallest k-enclosing square

A squarecontainirg k£ pointsis calledask-squae if its size
is smallestamongall squaes containirg the sameset of
points. We classifythe k-squares with respecto the num-
berof points 5y presenbnits bourdary Forn = 2, theonly
possibility of ak-squae is thatthetwo points will lie attwo
end-intsof oneof its diagmals. For n = 3, thefollowing
casesnayarise:
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Figurel: Differert case®f k-squae withn = 3

Case(i): Two pointson onesideof the k-squaie andthe
otherpoint on its parallelside (Figure 1(a){c)). In Figure
1(a),ak pointenclosingsquae is shavn wherethe projec-
tion of p. on L,y lies outside[p,, py]. It is not a k-squae
sinceits size can be redued by rotating it arownd p. as
shavn usingdottedline. But if p, andp. formsthediagoral
of the squargFigure1(h)), its areacannotberediwced,and
hencsit is k-squae. Suchinstancesreidentifiedwhile find-
ing the k-squaieswith n = 2. In Figure 1(c), the prgection
of p. on L, liesinside[p,, pp]. Thisis surelya candidée
k-squae. If we translatet alongtheline joining (pq, ps), it
remainsa k-squae of samesizeuntil it hits a poirt atoneof
its verticalbourdariesor ary oneof p,, p, becanesacorner
point.

Case(ii): Two points on oneside,the otherpoint onone
of its adjacen side (seeFigure 1(d)-(f)). In eachcase,the
sizecanberedwedkeepingthe samesetof pointsinside,as
shavn usingdottedline.

Case(iii): No two points on sameside (seeFigure 1(g)-
(h)). Theoneshawn in Figure 1(g) canberedwcedasshavn
usingdottedline. But thesquaein Figurel(h)is ak-squae
sinceit cannotbereducedurther.

For nn = 4, let the points appeaing ontheboundaryof the
squareare p,, py, p. andpy. Considerig geneal position
assumptionthe possiblesubcaseare
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Figure2: Different caseof k-squarewithn = 4

Case(i): Two points ononesideandtwo otherpointson
its two adjacentsidesrespectiely. Translatingthe square
asshavn in Figure2(a), this casecanberedwedto a case
wheretwo pointsareon two mutually parallelsidesrespec-
tively. This casedoesnotyield a k-squae sincesizeof this
squae cansurelybereduedwith the samesetof pointsin-
sidethesquare.

Case(ii): Two pointsononeside,onepointonits parallel
side, andthe fourth point is on one of the two remainirg
sides.This casecanalsobereducedo acasewith n = 3 as
shavn usingdottedline in Figure2(b), andcanbetackledas
descrited earlier If the pointp, is atthe corner thenit is a
canddatefor k-squae (seeFigurel1(h)).

Case(iii): Two pointsononeside,andtwo otherpointson
its parallelside. This violatesthe gereral positionassump-
tion, i.e., linesjoining pairs of poirts do not have distinct
slope.However, our algoithm cantacklethis situation.

Case(iv): Two pointsononeside,andtwo otherpointson
oneof its adjacensides.This casecanbereducedo a case
with two points ononeside,andno othersidecontainirg ary
poirt (seeFigure2(c)).

Case(v): Notwo poirtslie onthesamesideof thesquae.
This situationis shavn in Figure 2(d). Following lemma
saysthat for a given setof four points, at most2 suchk-
squaesarepossible.

Lemma5 Givenfour pointsp,, py, e, Pa € S, thenumber
of squae whoseead of the four sidescontairs oneof these
four points is at most2.

Proof. Let the lines which form the requiled squareare
Lo, Uy, L. and l,, wherel; passthrough the poirt p;, i =
a,b,c,d. The gradien of thelines/¢, and/. be i andthe
gradent of thelinesZ, and£,4 be—%. Let A, B C andD
dende respectrely the poirt of intersectionof (¢, and/),
4y and{,), (¢, and{y) and(£4 and{,) respectrely. Equat-
ing thelengthsAB, AD, we geta quadatic equatio of .
Hencetheresultfollows. O

Forn = 2, we consicr eachpair of pointsp;,p; € S,
and test whetter the squarewith [p;, p;] as diagoral con-
tains exactly k points or not usingthe methodof simplex
range searching If yes we compae its areawith the ex-
isting optimum The k-squaes with n = 3 andn = 4 are
identifiedusingthe metha for identifying k-rectandeswith
minar modfication asdescribedelow.

As in the earlierprablem, we considerthe verticesof the
arrargemen A(H). At eachvertex (represeting aline L ;;),
the upward (resp. downward) sweepof a line L parallel
to L;; is alsoperfomedas earlierandusingthe samedata
structue. We execute thefollowing two proceduresthefirst
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one identifiesthe smallestk-square with both p;, p; atits
bottomboundary andthe secondoneidentifiesthe smallest
k-squae with eitherp; or p; atits bottan boundary andeach
of the otherthreesidescontairs a pointof .S.

ProcedureA: Letthelengthof theline segment]p;, p;] = r.
Initially, we considerther x r squarewith onesidealigned
with theline segment [p;, p;]. Using simplex range search-
ing, we court the numker of pointsinsidethat square.If it
exceed k, thenthis procedureterminateswithout repoting
ary k-squae. Otherwisethefollowing stepsareexecuted.

Step A1 Our upward sweepproceeds,and the pointsin
LEFT andRIGHT thatencaunteredby the sweepline L are
accumlatedin T, andTg. For the pointsin MID, x s is
incremated. Sweepcontinues untill it hitsapointp,,, whose
distancefrom L;; is greatetthanor equato r.

StepA2 Now, themedianfind algorithm is invokedfor the
pointsin T, to collectonly k points (if available)whichare
closestto L;. They arealsoordety storedin T'r. Similarly,
amorg thepointsin T'g only k pointsarestoredn increasing
orderfrom L.

Step A3 Upward sweepcontiruesandfor eachencoun-
teredpointp,,, wetesttheexistanceof ak-squaewith p;, p;
atbottomandp,, attop bourdaryasfollows. Sweeptermi-
natesassoonasak-squaeis found.

o Let the distanceof p,, from L;; be equalto h. We se-
quertially walk from left to right alongT'. For eachel-
ementr € T, (correspondig to a point p, € Sr) we
chome a poirt ¢ on L;; suchthatthe length of the inter
val [r,¢] = h > [m, p;] andthe h x h squarewith (p;, p;)
atits bottan bourdary, p,,, attopboundary andp,, atits left
bourdarycontainsexactly & poirts.

Beforedescriling Proceduve B, we needthefollowing im-

portan obseration.
Obserwation 2 Let R be the optimumk-squae contairing
onedesigna&ed point of S in ead of its bourdaries. If we
rotate each edee by the sameangle keepingthe desigrated
point on its boundary, it becomesa rectangle We con-
tinuerotationtill oneof its boundarieshit anaher pointin-
side/outsidethe squae. Thus,we havea k-rectargle or a
k+1-rectangle whoseonesidecontairs two pointsof S and
ead of the other three sidescontairs exactly one point of
S. In otherwords, this k-rectargle or k£ + 1-rectargle, on
rotation,produceghedesied (optimun) k-square.

Procedure B:

StepB1: Considereachpair of points(p;, p;) andiden-
tify all k-rectandes with (p;, p;) atonesides.For eachsuch
rectande R, execue thefollowing steps:

StepB2: Let the otherthreesidesof R containp,, ps, pe
respectrely. We conside two quaduples{p;, pa,Ps,Dc}
and {p;, pa, s, pc}. For eachquaduple, we compue the
smallestvalid squarawith thosefour points atits four bourd-
ariesrespectrely usingLemmab.

StepB3: Next, we usesimplex rangesearchingechrnque
to testwhetherit is ak-squae or not. If yes it is acandidde
for theoptimum k-squae.

Theorem6 The smallest k-squaie can be identified in
O(n?logn + nk(n — k)%logn) timeusingO(n?) space

Proof. Throwghou theanalysiswe usethefactthatthesim-
plex range countirg querycanbeperformedin O(logn) time
usingO(n?) time andspacq4].

For n = 2, we considerall possiblepair of points
(pi,p;) € S, andperfam simplex rangesearchig to test
whethe the squarewith (p;,p;) asdiagmal is a k-squae.
This needs0(n?logn) time.

Using almost similar argument of proving Theoem 4,
the worst casetime required of executing Procedire A is
O(nlogn + nk(n — k)(n — k + logk)).

In Procedire B, all the k-rectandes and k+1-ectangles
are considered Eachof them gives birth to two squares.
For eachsquare the simplex range countirg quey is to be
invoked. As the total numter of possiblek-rectargles is
O(nk(n — k)?) (seeTheorem3), thetotal time required for
execution of Procedre B for all the vetticesof A(H) is is
O(nk(n — k)?logn). O
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