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Abstract

Findingoptimalpathsn nonhomaeneosterrainsis aclass
of prodemthatpresentstselfin mary situations.Oneof the
best-krown versiors is the so-calledWeightedRegion Prob-
lem (WRP) [2],[3].,[4].[5], basedon a modé of spacewith

regions of constantwveight. Herethis versionis genealized
usinglinear functions definedto coincidewith the weights
assignedat the verticesof a patctwork of triangles,anda
methodis propsedof appoximatingthe optimal pathby a
polygonalcune in O(n?) time. Experimentsshaw that, de-
spite its appaent compleity, this kind of problemcan be
solved by method similar to thoseusedfor the WRP andat
a compuational costof O(n?) in practicefor modelswith

morethan4000regions.

1 Introduction

Let us considera two-dimensionalspacedomainconsisting
of a triangdar grid where, at vertex V;, thereis a known
weight(wy; > 0). Within eachtriangularregion.R ;, alinear
interpdating weightfunction w g;(z,y) canbe definedand
this piecavise-linearfunction canbeusedoverthedomainas
anapprximationto thesampledveightfundion (Figurel).

An optimalpathbetweertwo pointsof this spacewill bea
sequene of, in principle, tangentcatenaryarcsandstraight
segmeris. In regionswith aweightgradent,thesolutionwill
contain catenaryarcs and, occasioally, straightsgments
along the boundary In regions of constantweight (three
verticeswith equalweight), the respectire segmen will be
straight. The path may crossall regions more than once.
However, given theexcepional conditionsunde whichmul-
tiple crossing canoccur it canbe assumedhatthe number
of suchcrossingsill belimited in afairly regulartriangular
patchvwork. Then if the patchvork hasn regions, the num-
berof segmentsof the optimal pathcanbe corsideredto be
O(n)t.

Themocel canbe extendedto caseswith discontinuties,
takingarbitrawy linearfunctionsfor theweightoneachpatch.
This malkesit possibleto consiaer the WRP asa particular
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IMitchell and Papalimitrou [4] calaulated the numberof segmentsof
the optimal pathin WRPto be O(n?), basedon a paradoxcal example In
the context of our work, the grid obeys the needto interpolate the weight
function and we undestandthat Delaunay trianguldion meetsthe above-
mentianed condtions of regularity, exceptin very exceptional casesthat
couldbeavoided by introducing someaddtiona samplingpoints
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Figurel: Optimal pathwith weightdefinedby a piecavise-
linearfunction

casewith a consegentiallossof contindty of the slopeat
breakpoints

2 Approximation of the optimal path by a polygonal
curve

The principal difficulty in idertifying a comgete solutionin
thismocel (asfor the WRP), is to determinghe sequencef
patclesthroudh which the solutionpassesBut to reachthis
poirt, thewhole domain needgo be explored, runnng tests
ataheary compuationalcost. The WRP hasthe advantage
of the optimd pathbeinga polygonal curve with sggments
wholly contaired in the regions (provided they arecorvex)
andof theeaseof evaluatian of thecost.In the presehcase,
calculatirg the costof crossinga particdar patchinvolves
first determiring the catenay parametes of eachsegmert.
Mattersare further complicded by possiblepatchre-enty
afterexit.

Unde thesecircunstancesthe questionis whetherthe
catenay arcscanbe substitutedby straightsegmerts, that
is, whetheran apprximatepolygonalsolutionwith vertices
on the bowundariesis acceptable If so, this new prodem is
similarto the WRP andcanbedealtwith usingsimilartech-
nigques.

Let us focuson a catenaryarc of the optimd path con-
tainedin atrianguar region whoseendpoints Py andP; lie
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onits bourdary This arcwill be the optimal pathbetween
thetwo points, thatis, the pathminimizing the functional

C= /S w(z(s), y(s))ds 1)

whenw(z,y) is alinearfunction. It is well known that (1)
hasandherpossiblesolution(Goldschmidt’s solution), con-
sisting of two straightsegmerts leadingfrom eachpoint to
theline w(z,y) = 0 anda segmentof zerocostalongthis
line [1],[6]. Consequetty, thearcwill eitherbe betterthan
Goldschnidt’s solutionor the resultof anoptimizationwith
constraits whete one of the boundariesobstruted Gold-
schmidts solution. This meanghatit will betanget to one
of theendpoirts of the catenay.

Let us suppsenow the following strateyy to replacethe
catenanarcby straightsegmerts: a) if the catenaryis better
thana Goldschmid solution,replacet by thesegment Py Py,
b) if not,replaceit by two segmerns P, Q andP; Q tangat to
its endpoirts (Figure 2).

Figure2: Stratgiesto apprximatecatenaryarcs.

In both casesa ratio canbe calculatedbetweenthe path
costsin orderto find outtherelative error The choiceof co-
ordinateaxesis immateral, asit is thechdce of scale given
thelinearity of the weightfunction. Henceit is sufficient to
analyzetheratio functionsfor a simpleproblem with weight
function w(z,y) = y, startpoirt locatedat (0,1) andend
pointatary P(z,y), with x > 0 andy < 1.

1.5y
] Goldschmidls
lirnit

0.5 ¥ limit of

calenaries

o 05 1 15

Figure 3: Restricteddomain for theratio analysis

In casea) (Figure 3) a ratio function R(a, z) canbe cal-
culatedfor ary point P of a catenaryarc of parametera
startingat (0,1) andendingat the point wherethe catenay
and Goldschmid solutiors have equalcost(Goldscimidt’s
limit). Thisfunction hasa maximnum R = 1.055 (Figure4).
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Figure4: Ratiobetweerthe costsof pathsin casea).

Proceeihg as above, we canobtaina ratio R*(a, z) in
caseb) for ary point P of a catenay arc of paraneter a
endirg at the ervelop of the family of catenariestartingat
(0,7 (limit of catenaries).The maximumof the fundion is
R* = 1.058 (Figureb).
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Figure5: Ratiobetweerthe costof pathsin caseb).

It follows thatwe canconstrct a polygonalwith vertices
ontheregion bourdariesanda cost

CRSCC(1+B)

wheres < 0.08 andC. is therealcost.

Furthemore, the size of the grid will influerce the value
of 8, sincewith smallertrianguar regionswewill have small
catenaies,within Goldschmid slimit, thatwill bebetterap-
praximatedby meansof straightsegments. Consequatly,
it is reasonale to reformulatethe original prodem asfind-
ing theoptimalpolygonalpathacrossatrianguar patchwork
with verticeslying on theregion boundariesandwith a cost
expresseds
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CR = Zkak

k=1

wherewy, is the averag of the weightsat the ends of the
sgmer andL; is the sggmeri length, as resultsfrom (1)
following this path.

3 Algorithm

The chosenmethal, like appr@achesadoped by otherau-
thors, is basedon a discretizatio of the edges of the trian-
gularpatche andintroducesa certainnumber of new points
(Steinerpoints)on theseedges.With this discretizationwe
have agraphG in whicheacharcis assigne@weightthatis
theaverageof theendpoirt weights(Figure6). Theproblem
cannow be solved using Dijkstra’s algorithmor ary of its
variarts. Without lossof geneality, the origind startpoint
(s) andend point (e) canbe assumedo be vertices of the
original patchvork and,therefae, nodesof thegraph If this
were not the case,it would suffice to subdvide the region
containng the startandendpointsinto anothe three.

Figure6: Subgaphconneting verticesandSteinermpointsin
apatch

Thealgoiithm beginsby identifying afirst apprximation
to the optimal paththatis accuate enoudn to deternined a
sequene of crossedpatche and boundaries. To this end,
Steinerpoints areintroducedandthe graphG is built. The
optimal pathz’ (s, e) in G is an apgoximatian of the opti-
mal polygonalpathr (s, €) in P, wheretheverticesmatchthe
graphnodes. A straightfowardway to introducethe Steiner
pointsis to divide the bourdariesat reguar intervas into a
given numter of segments. This methodcan be improved
by settinga quartity AL suchthateachof the subdvisions
comesascloseaspossibleto, without exceeding, this quan-
tity or, alternatvely by settingthe maximum differenceAw
betweenweightsof neighloring points. Theaccurag of the
chosensystemwill depernl on the maximum valuesof the
two parametes.

Whenthe appoximationr’ (s, e) to the optimal pathis
found, the algoiithm entersa refinenentphasean which the
prodemis constrénedto thesub-dmainof P formedby the
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crossegpatchs. At this stage consideationis givento sub-
dividing theremainirg patchesandincreasinghe numter of
Steinerpointsonthem,with theeffect of bothimproving the
positionof boundarycrossingpointsandsmoothirg therep-
resentatio of catenay arcs.Theseproceduresareappliedit-
eratvely with theaim of redwcing total pathcost. This does
not necessarilyneanthat the solutionobtainedis closerto
theoptimum. Thiswill dependntheaccurag of thesearch
processn thefirst phasethatis, thenumberof Steinerpoints
used.If the sequene of patchexrosseds determine cor-
rectly in the first phase thenthe secondohasedoesindeal
producea better(andsmoothey solution

Clearly, thegreatethenunberof Steinempoints,themore
precisetheappgoximatian will be,while executiontime will
increae at the same. Therebre, a ratio betweenthe num
berof Steinerpoirts, the error estimate andthe time taken
to solve the prodem shouldbe established.The reasonig
usedby Lanthier[3] to justify his appoximatepathsearch
algoithm in weightedregions is usedhereto highlight the
similarities and differencesbetweenthis appoachand the
WRP.

Proposition 1 A segment of the optimal path s; within a
patch R; is approximated by another s’ , the ends of which
are neighboring points of the subdivision, such that

where wg; is the maximum value of the weight function in
R;.

Lemma?2 If 7 (s, e) isan optimal pathin P, there exists an
approximate path 7’ (s, €),in G such that

C (r") < C(7) + 2mwmax AL

where C'(7')is the cost of the approximate path, C'(w) the
cost of the optimal path, misthe number of segmentsin each,
and wy,ax 1S the maximum value of the weight function in the
domain.

Theorem 3 There is an approximation 7/(s, e) to the opti-
mal path 7 (s, e) of straight segments such that

C (") < C (1) + 2wmax Le

where L. isthe length of the longest boundary of any patch.
Moreover, the computational cost of this approximation is
O(n?), where nisthe number of triangular patches.

4 Experimental results

To validate our proposal,a protaypewasdevelopedto check
theeffed of thealgorithm parametes (thenumberof Steiner
points andthe level of refinenent of the solution)on accu-
ragy andcompuationtime. As, to thebestof ourknowledge,

2We omit the detals of the demonstrtions dueto spaceconstaintson
this versin
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thereareno similar appr@ches the resultswerecompared
with thoseof atraditioral rastermethal usinga fine rectan-
gulargrid.

All the testswerebasedon a map of a geogaphica ter
rain over which a variablenunber of pointswerechoserto
measurepn a scaleof 1 to 10, the costof travel asaffected
by relief, vegetationandotherfactors.A Delauray triangu-
lation wassetup over the samplepoints,andterrainmocels
were geneatedwith 120, 480, 108Q 1920, 300 and4320
triangdar patches,assigningthe calculatedweightsto the
vertices. Problens weresetup for eachterrainmodé with
start and end points situatedat the outer regions to assure
thatthe terrainwas crossedn the path. The pathswerefi-
nally checledfor validity (orthagonality) aganst contairsof
thecostsurfacegereratedonrastermodels.Theconclusios
presentedbelon aretakenfrom the meanvaluesof costand
execution time measurean eachmodé with arangeof pa-
rametervalues.

Accuracy of the paths. Theevolution of the calculated
pathcostasa fundion of the numker of Steinerpoints was
asympttic, reachinga limit value at 20 points and more.
With respectto the refinenent of the trajectoryby succes-
sive subdvision of the patche crossedn theinitial solution
theimprovenentin theapproaimatecostwaslessthanmight

beexpected Theindicatiors arethat,apat from excegional

casesthe utility of the refinement phaseis to improve the
form of the pathratherthanto bring abou an effective re-

ductionin cost, and a single level of refinemeh therebre

appeas to be sufficient.

Computation times. Computation times increased
quadatically with the numter of Steinerpoints (andsowith
the total numker of nodesin the gragh) in all models. The
increasewasslightly more marked in the refinement phase
where the effect of prdiferating Steinerpoints combined
with the subdvision of patcles. A more detailedanalysis,
with the modelof 4320 patchesrevealedthatthe computa-
tion timein thefirst phasevasO(n?), whereast wascloser
to O(n2log(n)) with threelevelsof subdvision. This canbe
explained by the factthatthe nunberof nodes in the graph
grows quickly at three subdvisions and is neaty O(n?),
whereaghe numter of edgesdoesnotreachO(n?).

Comparing our model with the WRP model. While
expeiimentationproceededwith the propased model, tests
were also carried out on modelswith patchesof constan
weight (averaged over eachpatch). The resultsrevealedin
somecasesotablediscrepaniesin thetrajectoy of the op-
timal pathsandtheir costsin geneal, the experimentsindi-
catethat the discrepanies are larger in mockls with sharp
changsof weightandfewer patchesThisis easyto under
standin termsof inadeqateinterpolation, sinceboth meth-
odsmustgive corvergert resultsasthenumbe of patchesn-
creasesThis tendecy suppaets the hypothesisthat,in some

realapplicdions,thepropasedmodelrequresfewer patches
thanthe WRR andthatthis compensatesor its greatercom-
plexity.

5 Conclusions

In this paperwe have proposeda gereralization of the
WeightedRegion Problem This new point of view, it is
hoped, will contibute to solving somereal practicalprob-
lemsand, at the sametime, openup alternatve lines of re-
searchn thisfield.
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