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Degree-Bounded Minimum Spanning Trees*

RajaJothif

Abstract

Given n pointsin the Euclideanplane the degree-6-MST
prodem asksfor a spanningtree of minimum weight in
which the degree of eachnodeis at mostd. It is shavn in
this pape that, for ary setof pointsin the Euclideanplane,
theratio of a degree4-MST to a minimum spanniig treeis
atmost(v/2 + 2)/3.

1 Introduction

Thedegreed-MST prodemis agenealizationof theHamil-
tonianpathproblem, which is NP-hard[5]. The Euclidean
versionof the prodemin 2 is NP-hardfor § = 3 andit is
conjectuedthatit remairs NP-hardfor § = 4 aswell. The
proddemis polynamial-timesolvablewhend = 5. In thispa-
per, we shav that,for ary arbitray collectionof pointsin the
plane therealwaysexistsa degree-4spannilg treeof weight
atmost1.1381, (v/2+2)/3 to beexact,timestheweightof a
minimum spanniig tree(MST). In particular we presentan
improvedanalysisof Chans degree-4MST algorithm([4].

Previous results. Arora [1] and Mitchell [9] presented
PTASs for TSPin Euclideanmetric, for fixed dimensioss.
Unfortunately neitheralgorithm extends to find degree-3or
degree-4trees.Recently Arora andChang[3] have devised
a quasi-mlynomial-time appraimation schemeor the Eu-
clideandegreed spanningtree prodem in ®¢. As of now,
thereis no PTAS for finding spanniig treesof degree 3 or
412].

For poirts in the plane,Khuller et al [8] shaved how to
find degree-3anddegree4 spaning treeswhoseweightsare
at most 1.5 and 1.25 times the weight of an MST, respec-
tively. The degree 4 ratio wasimprovedto 1.175 by Jothi
andRaghaactari [6]. In anindependentandparellelwork,
Chan[4] improved theratio for degree-4spanningireesto
1.143. He alsoimproved the ratio for degree-3 spanting
treesto 1.402, for points in the plane,usingan elegant re-
cursve algorithm.

In this pape, we presentanimproved analysis of Chans
degree-4MST algorithm [4] therebyshaving that,for anar
bitrary collectionof pointsin the plane therealwaysexistsa
degree-4spaning treeof weightatmost1.1381, (v/2+2)/3
to be exact, timesthe weight of a minimum spannig tree
(MST). Thedifficultiesin improving Chans ratio wasover
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come by using a more careful chaging schemecompe-
mentedby a new savzingsanalysis.In addition, we shawv our
ratio is tight and cannotbe improved unlessa more global
appoachis consideed,insteadof justlocal charges.

We first shawv that the angle enclosedbetweenary two
sidesof a triangle canbe usedto bound the weight on the
third sidein a precisemanrer. Of course,thethird sidecan
beexpressedxactlyusingtrigonometry but thisformulation
is unsuitabledueto its nonlinear nature. Our methodpro-
videsa linear apprximation We thenshov thattwo MST
edge intersectingat an acuteangleforce edgeweight con-
straintson eachother andthis playsanimportarn rolein the
improvedanalysis.

2 Degree-4 spanning trees

Let |uv| be the Euclidea distancebetweenu andv. Let
ZABC dendetheangleformedat B betweend B and BC.
We startwith a minimum spanningree (MST) of graph G
roated at oneof its leaf nodes.Our algoithm deceaseghe
degreeof high-degreenodesby local changesrowndit. Let
z be achild of v in atreeT. Nodez is definedto be a
biological child of v if x is achild of v in theoriginal MST,
elseit is afosterchild.

We first note someinterestinggeonetric properties, in-
cluding that of MSTsin ®<. Due to lack of space mary
proofs areomitted(see[ 7] for thefull pape}.

Lemmal Let AB and BC beedgesmeetingat B. Letx =
|AB|, y = |AC|, z = |BC| and§; = ZABC < 60°. Let
z >y > z. Then,for afixedd;, z — y is minimumwhen
T =y.

The following lemmaproves an upperbourd on the in-
creasen weightwhena nodes degreeis decrasedin the
usualway, in termsof theangleenclsed.

Lemma?2 ([4, 6]) Let AB and BC be two edges incident
onpointB. Let|AB| < |BC| andlet§ = ZABC. Then
|AC| < F(0)|AB| +|BC|,wher F(0) = /2(1 — cos§) —

1=2sinf -1

Thislemmaprovidesa betterboundfor theincreasen the
weightof thetreethanjust the triangleinequdity. It canbe
verified that|AC| < F(0)|AB| + |BC| < |AB| + |BC|.
We now prove thatMST edgeghatintersectata node, atan
acuteande, force edge-weght constrainton eachother
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Lemma3 Let AB and BC be two edgsthat intersectat
point B in an MSTof setof pointsin %¢. Letd = ZABC. If
0 < 90° then,

|BC|
2cosf

Corollary 4 Let AB and BC be edgesmeetingat B, and
let AB bean MSTedge and BC bea nonMSTedg. Let
0 =Z/ABC. If 8 < 90° then |BC| > 2|AB| cos¥.

2|BC|cosf < |AB| <

Lemma5 LetV bea degree5 nodein an MSTT of a set
of pointsin ®2. Let P beits parentand 4, B,C, and D
be its children Let the degree of V' be deceasedfrom 5
to 4 by replacirg BV by AB, whee |AV| < |BV|. Let
ZAV B = 6. Letk of thechildrenof V beat a distanceof
|AV'| or morefromV. Thentheincreasein theweightof the
treeis at most

F(6)
k

Therebre, theincreasdan weightcanbe “chamged”to the
k edgesfrom V to its children andthe chage on eachof
theseedgeds atmost 1 F'(6).

We first give a brief ovewiew of Chans algorithm([4] be-
fore proceeihg to its approximatian analysis.

Overview of Chan’salgorithm. It recusively transfoms
therootedtreeT into a new degree-4spanningreewith the
indudive hypothesisthattheroat v of treeT" hasdegree3in
thenew tree.

Let7 = 1.143. Let T andT’ betwo subtres, of anorig-
inal MST, rootedatv andv’, respectiely. Let T N\ T' be
a tree obtainedby making v’ a child of T'. It recusively
transfomsT '\ T' to anew treesuchthatv hasdegreeat
most3 in the new treeandthe new tree hasweight at most
[vv'] + 7(w(T) + w(T")). It chocsesa corvenient permu-

(14v| +1BV|+[cV| + DV

tationwvy, ..., v of the k childrenof v in T' togetherwith
v’ (with Ty, ..., T}, beingtheir correspading subtres) for
transfomation.

Our analysis. Let v be the vertex underconsideation
whosedegree hasto be redwced. Let v have k biologcal
childrenand at most 1 fosterchild. Whenk < 3, Chan
shavedthattheratio is bourdedby (v/2 + 2)/3 < 1.1381.
We wereableto improve Chans ratio of 1.143 by tackling
the casek = 4, for which his analysisis tight. As per his
indudion hypothesisp hasa total of at most5 children(4
biologcal andl foster) In essenceyurobjectiveistoreduce
thedegreeof v from 5to 3 (degreeinducedonv by its paren
is excluded, but countsin thefinal solutionwhich malesv’s
degreeto be4). Thealgorithm reduces’s degreefrom 5 to
3 by perfaminglocal changesrownd v.

To undestandour analysisin a nutshell,considerFig. 1
with v beirg thenodewhosedegree we wish to rediwce from
510 3, nodeswy, v9, v3,v4 beingv’sbiologicd children,and
v' beingv’s fosterchild. Suppse Zvivv' = 65 < 60° (this
is possibleasvv’ is a nonMST edge). Say Chans algo-
rithm considersa transfornation which involves replacing

Figure 1: Notationfor k = 4 analysis.

edges v’ with v1v" and,say vv, with vzvs. While Chans
analysis would directly chage the extra weigh inolved in
suchatransfomationto the MST edgesnvolved, our anal-
ysisproceed by calculatirg the potertial savingsdueto the
repla@mentof edgevv’ by v1v' (noticethatds < 60° and
vov' > vu; asvv; waschoseroverviv' to betheMST edee)
anduseit to absorbpart of the extra chage incurred dueto
theotherreplacerent(vvy — vsvs).

Givenbelow is our analysisfor the casek = 4. To make
the descriptim easier we introduce a fundion called“Re-
duce.

Reduce(v, z, y): Let vz andvy betwo edge incidert on
poirt v. Reduceg, z,y) replaceshe edgemax{vz, vy} by
zy. In simpleterms,v’s degreeis reducel by 1, by donatirg
oneof {z,y}.

Let vy, v92,v3,v4 be the biologcal children of v in T
andlet v’ be the fosterchild of v. Let v andits children

be placedas shawvn in Fig. 1. Let |vvy| = zy,|vvs| =
T2, [vus| = w3, [vog| = x4, [VV'| = 35,01 = Lvyvoe, ) =
lvovvs, 03 = Lugvvg, 0y = Zvgov' and by = Zo'vvy.

Sincevw;, vve, vv3 andvvy areMST edgesfs, 6-, 603,04 +

05 > 60°. Also, max{6;,6,03,04 + 05} > 120° corsid-

ering the factthatoneotherMST edge,connectig v to its

paren exists (notshavn in figure) We considerthreecases
(themissingoneis symmetric).

Case l: 4, < 60° andf; < 60°. We hande this casein
thesameway asin [4]. Extraweigh involved is bourdedby
0.1331.

Case2: 6, > 60° andt95 < 60°. Sinceé?g, <60° 21 <zy
(otherwise|v'v1 | < |vw: |, whichcontiadictsthefactthatvv,
waschoserover v'v; to beanMST edg).

Case2.1: 6, > 120° orfy + 65 > 120°.

Call Reduceg, v1,v"). Sincefs < 60°, noextraweightis
incureddueto thecall. By Lemma2, we have permutatios
with extraweightbourdedby

F(6y) min{xo,z3}, F(5) min{xs, z4}.

Thus, theminimum extraweightis at mostthe smallerof the
following values:

F(02)m2, min{F(Gz), F(Gg)}$3, F(03)JE4
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Sincethe minimum is lessthan or equalto the harnonic
mean the minimum of thesequantitiesis atmost

%H.M.{F(Gz), min{F(6), F(83)}, F(65)} (2 + x5 + z4).

Sinced, + 03 < 180°, the above coeficient is bourdedby
1F(90°) = (vV2+2)/3 < 0.1381.

Case2.2: 6§, > 120° (Caseflz > 120° is symmetric)

Case 221. =x3 or z4 is the smallest among
{z1,22,%3,24}.

(2.21a) If 3 < 101.8°, then call Reduceg,vy,v").
Since 5 < 60°, no extra weight is incurred.
Call Reduceq,vs,vs). By Lemma 5, extra weight
F(63) min{z3, 24} is chagedto {vvy, vve, vvs, vv, } andis
bourdedby 0.1381(z1 + x2 + x3 + 4).

(2.21b) Else if max{z1,z2,24} # x4, then choze
0, andf,. Notethatd, + 64 + 65 < 138.2°. Call
Reducet, vq,v2) and Reduceq,vq,v'). By Lemmma 5,
if 8, < 69.36°, extra weights F'(61) min{z1,z>} and
F(64) min{z4, 25} are chaged to {vvy,vv2} and {vvs}
respectiely, else extra weights F'(6;) min{z;,22} and
F(64) min{zym, x5} are chaged to min{vv,,vv2} and
{max{vvy,vvy },vvs } respectiely.

(22.10) Else (max{$1,$2,m4} = .CL'4) if 84 < 69.36°,
then call Reduceg, v1,v2) and Reducév,vy,vs5). Since,
0, + 04 + 05 < 138.2° andf,, 64 > 60°, extraweights of
at mostF'(78.2°) min{xy, x>} and F(69.36°) min{z4, x5}
are chaged to {vvy,vvs} and {vus}, respectiely (by
Lemmab5), andis boundedby 0.1381(x 1 + =3 + z4).

(2.21d) Else 85 < 8.84°. Hencef; + 05 < 68.84°
and 6, + 65 < 782°  Call Reduceg,vs,v’) and
Reduce(, v1,v4). By Lemmab, extra weights F'(6; +
05) min{zs, x5} and F (84 + 65) min{z;,24} arechaged
to {vvy} and {vvy,vv,s}, respectiely, andis bourded by
01381(1‘1 + x9 + .’L'4).

Case 222 zx3 or z4 is 2nd smallest among
{z1,22,%3,24}.

(2.22a) If 63 < 90° then call Reduce(,wv:,v’).
Since 85 < 60°, no extra weight is incurred.
Call Reduceq(,vs,vs). By Lemma 5, extra weight
F(65) min{zs, 24} is chagedto {vvs, vvs } andthelongest
of {vv1,vv, }, andis bonndedby 0.1381(z1 + 22 + 3 +24).

(2.22b)Elsef; + 84 + 05 < 150° andhen@ 5 < 30°.

(2.22b-) If 1 = min{z1,z2}, wlo.g. letzs < 4.
Sincemin{fy,0; + 65} < WT*%O, by Lemnma 3, z; >
225 cos(2 =), Call Reduceg, vy, v'). Sinceds < 30°,
no extra weightis incurred dueto thecall. Also, sincevwv
is an MST edge,z5 > z; andthus,by Corollary4, x5 >
2z1 cos 05. By Lemmal, juv’|—|v,v'| resultsin savingsof at
least(2 cos s — 1)z;1. Let Tpefore bethesubtrednducedby
nodesv, vy, va,v3,v4 andv’ andlet T, s, bethesubtrein-
ducedby nodesv, vy, s, v3 andv,. Clearly asperourargu-
mentabove, theweightof T, f4c iS (2 cos 5 — 1)z lessthan
thatof Ty rore. Sinceourgoalis to bound the extra weight,
incurredduringlocaltransformations to within 0.138L times
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theMST weight,asperourchaging policy, everyMST edge
e canbe chagedan extra weigh of 0.1381e. The savings
obtaired, dueto the transfomationfrom T'yc fore 10 Ty pters

is equivalentto having atleast2239°=1 extra vv; edges,
eachof which canbe chaged 0.1381x,. In otherwords,
it is asif we have at leastan additioral (22230"—1)yy, to
chage. Call Reduce(, v3,v4). By Lemmab, extra weight
F(63) min{zs,z4} is chaged to {vvy,vvs,vv3,vvs} and
(220539 =1 )vuy, andis given by

F(03)(z1 + 2 + w3 + 24 + %.’L‘l)

342 (:05(2‘1();_93 ) (1 + 2°8.8133%°1_1)

whichis boundedby 0.079(z 1 + a2 +z3+24+ 2830 =L g, ).
(2.22b2) Else (z; # min{z,z2}) the analysispro-

ceedsin the sameway as dore in the previous step, ex-

ceptthatthe extra weight F'(63) min{zs, x4} is chagedto

{vv,vv3,v04} and(%)vvl, andis givenby

F(03) (21 + @2 + @3 + 24 + 2983014,

3+ gyger (208300 — 1)

whichis boundedby 0.048(z 1 +x2+z3+24+ 2830 =1 ).

Case22.3: T3,Ty4 > T1,T2-

(2.23a)If 3 < 79.29°, Call Reduce(, v1,v'). Since
s < 60° no extra weight is incurred due to the
call. Call Reduceg,vs,v4). By Lemmab, extra weight
F(03) min{xs, x4} is chagedto {vvz} and {vvs}, andis
bowundedby 0.1381(z3 + z4).

(2.23b) Elseif 84 < 69.36° andf; < 90°, thencall
Reduceq, v4, v5) andReduceq, vy, v2). By Lemmab, ex-
tra weights F'(8,) min{z4, z5} and F'(6,) min{z,z,} are
chaged to vvy and {vvy,vve,vv3}, respectrdy, and is
bowndedby 0.1381(z2 + z2 + 3 + 4).

(2.23c) Else if 8, < 69.36° and ; > 90°, then
0 < 10.71° and60° < 6, + 65 < 70.91°. Since
02 + 04 + 65 = 360° — 6, — 03 < 190.71°, by Lemma 3,
1 > 2w4 c0s(190.71° — ). Call Reduceg, vy,v’). Since
05 < 10.71°, no extra weightis incurred due to the call.
Also, sincevwv; is an MST edge,xz; > x; andthus, by
Corollaly 4, z5 > 2zicosfs. By Lemma 1, |vv'| —
|v1e’| resultsin savings of at least(2cosf; — 1)z;. It is
asif we have at leastan additioral (2¢%1811°=1),, to
chage. Call Reduceg, v2,v3). By Lemmab, extra weight
F(62) min{z», z3} is chaged to {vvy,vve,vv3,vvs} and
(2eos 10711 )49, andis given by

F(62) (21 + T2 + 13 + 34 + 208101 =1 )

3+ 2c05(190.71° — 0) (1 + 2eesloTio1)

which is bourded by 0.089(xy + z2 + z3 + x4 +

2¢0s10.71° -1
s T1)-

0
(2.23d)Else(84 > 69.36°) 85 < 31.35°.
(2.23d1) If 85 < 11°, thensincef; + 64 + 05 =
360° — 03 — 65 < 280.71° — 65 andz, < x4, by Lemma3,
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T > ZmQCOS(W). Call Reduceg,v1,v'). Since
05 < 11°, no extraweightis incurred dueto thecall. Also,
sincevwv; is an MST edge,zs > x; andthus, by Corol-
lary 4, 5 > 2zicosfs. By Lemmal, |vv'| — |v1?v/]
resultsin savings of at least (2cosfs — 1)z;. So, it is
as if we have at least an addtional (22t2=1)yy; to
chage. Call Reduceg, v2,v3). By Lemma 5, extra weight
F(62) min{z,, z3} is chaged to {vvy,vve,vv3,vve} and
(Zeosll=1)yy,, andis givenby

F(ez)(iﬁ + 2o +x3+24 + %Hh)

3 + 2 cos( 28011 —b2) (1 + 2°8?1131§5°1_1)

whichis bounadby 0.13(z1 +22 + 23 + 24 + 2 =1 5.
(2.23d-2 Elseif 11° < 605 < 25°, thensincef; =
360° — 05 — 93 — 04 - 05 < 200.35 — 0, by Lemmas3,
x1 > 222 c08(200.35° — #2). Call Reduceg, v1,v"). Since
05 < 25°, no extraweightis incurred dueto thecall. Also,
sincevv; isanMST edgexs > z; andthus,by Corollary4,
x5 > 2x1 cosfs. By Lemmal, jvv|" — |vi0'| resultsin sav-
ingsof atleast(2 cosfs — 1)x;. So,we have anadditioral
(Zees25°=1)yy,; to chage. Call Reduce, v2,vs). Using
Lemmab, theextraweight F'(6>) min{z,, 23} is chagedto
v, VU, VU3, VU4 and
(2eos28°=1 )y, andis givenby,

F(ez)(iﬁ + 2o +x3+ 24 + %Hh)

3+ 2005(200.35° — ) (1 + 29221 )

whichis bourdedby 0.138(z1+z2+z3+z4+ 298 25°=1 7).

(2.23d-3 Else (25° < 605 < 31.35°), sincef; =
360° — @y — 03 — 04 — 65 < 186.35 — 65, by Lemma3,
x1 > 222 c0s(186.35° — ). Call Reducef, v1,v"). Since
05 < 31.25°, no extra weigltt is incurred dueto the call.
Also, sincevv; is an MST edge,z5 > x; andthuszs >
2z1 cos 05. By Lemmal, juv’|—|v,v'| resultsin savingsof at
least(2 cos 05 — 1)z1. So,it is asif we have atleastanaddi-
tional (220831.35°=1 )y, to chaige. Call Reduceg, vz, vs).
Using Lemma5, the extra weight F/(05) min{zs,z3} is

f:hqgedto {vv1,vv2, 003,004} and(%)vvl, and
is givenby

F(02)(z1 + 22+ 23 + 24 + %ml)

3+ 2¢05(186.35° — ) (1 + 2eoslgse=1)

whichis boundedoy 0.1(z 1 +x2+z3+z4+ 2331 5,
Case 3: 4 > 60° andf5 > 60°. Theproof is similar to

thatof Case2, anddueto lack of spaceit is omitted.

Theorem 6 For anyarbitrary collectionof pointsin theEu-
clideanplane there alwaysexistsa degree4 spanting tree
of weightat most(v/2 + 2) /3 timestheweightof an MST.

3 Conclusion

By presentig an improved apprximation analysis for

Chans degree-4MST algotithm, we shaved that, for any

arbitrary collectionof points, therealways exists a degree-
4 spanniig tree of weigh at most1.1381 timesthe weight
of anMST. Our ratio for degree-4spaning treescanna be
improved unlessa more global apprachis consideed, in-

steadof justthelocal changsthatwe consicredin this pa-
per, asthereexists placemenof poirts for the casek = 3,

suchthatdoing local chargesalonedoesnotredicetheratio.
There exists degree-4and degree-3 trees(regular pentaon
andsquae with anextra point at the center)whoseweights
areatmost2:n36°+4 gng V243 timestheweightof anMST,

respectiely. It shouldbeinterestingto know whethe better
appoximatia algorithns canbedevelopedto achieve ratios
anywherecloseto theseowerbounds.
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