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Meshless Surface Reconstruction by Kernel Clustering*

JoachimGiesen

Abstract

We discussa meshlessappoachto the prablem of recon-
structinga surfacein R? from a finite sampling This ap-
proadis adirectadapationof akernelmetha for clustering
pointsin Euclideanspace.The reconstrated surfaceis the
preimag of the boundaryof the smallestenclosingball of
thesamplepoints mappedinto somefeaturespace We have
implemerted this apprachandrepot on our expetimental
findings that indicatethatit might be suitablenot only for
surfacereconstration but alsofor featue detectionandre-
constrieting manifdds of highe co-dmension.

Keywords. Curne andsurfacerecorstruction,kerné meth-
ods,suppat vecta clustering

1 Introduction

Surfacerecastructionis theprodemof compuing acontin-
uousmock! of a surfaceembededin R? only from a finite
setof samplepoints. Themodelshouldshareasmary topo-
logical andgeonetric propertieswith the origind surfaceas
possible.The precbminar appoachtowards surfacerecon-
structionin compuationalgeoméry is via surfacemeshing
from the Delauray triangulation of the samplepoints [1, 2].
Thesemeshesanbe provento sharemary propertieswith
the original surface. In computer graphics recertlly mesh-
less appoachesto the surfacereconstration problembe-
camepopdar [5]. In theseappoacheshesamplepointsetis
usedto conmputea function f : R? — R whosezeroset,i.e.,
f71(0), is usedasa surfacemoded. Sometimesghe function
f is choserto bealinearconmbinationof asetof radialbasis
functions[5]. Thisis alsotheappr@chwe wantto take here.
Our appoachis the direct adaptatiorof a techniqie de-
veloped by Sclblkopf et al. [9] for novelty detectionand
by Ben-Huret al. [3] who exterded this apgoachto clus-
ter pointsin Euclidea space. The apprachis to mapthe
smallestenclosingball prablem non-linearly into somefea-
ture space.The miniball prablem,i.e., the prablemto com-
putethe centerandradiusthe smallestball that contairs all
samplepoints, haslong beenstudiedin compuational ge-
ometry[6]. It is well known thatit is aninstanceof a con-
vex quadatic problem (QP). In the QP formuation of the
miniball problemthe samplepoints only appeain dot prod-
ucts. This makesthe QP formuation of the minibdl prob-
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lem amenale to the socalledkerrel trick. Thekerneltrick

is to repla@ all dotproductsin input spaceby evaluaions of

a positive semidefinitekernelat the samplepoints. A pos-
itive semidefinitekerrel is a positive semidefiite function

k:R® x R® — R. Applying thekerneltrick correspondgo

implicitly mappirg the samplepoints to somefeaturespace.
Theminiball problemis thensolvedin thefeaturespace The
surfacemodelwe wantto studyis the setof pointsin input
spacej.e., R3, thatare magedto bowundary sphereof the
miniball in featurespacelf our kerneé would bejustthe or-

dinary dot productin R? thenthe surfacemodé would just
bethe surfaceof theminiball in R3. Otherkernds give sur

facesthatadaptmuchbetterto the “geomretry” of the point
set,seeFigurel for atwo-dimersionalexampe.

Figurel: Ontheleft: Miniball of a setof pointsin R2. On
theright: Thepreimage of a miniball in featurespace.

2 Miniball in Feature Space

In this sectionwe introducethe miniball prodem in featue
space Our expositionfollows [3]. Thefeatue mappng

¢: R = F,x— ¢(x)

mapsourinput spaceR? to somefeaturespaceF. In geneal

F hasadimersionmuchlarger thanthreeor is eveninfinite

dimersional. In F we compue theradiusR, andthe cen-
ter o of the minimum enclesing ball of the mapped sample
poirts, i.e., we solve thefollowing optimizatian prablem,

min  R?
st ||¢(z;) —al|* < R® V¥ samplepointsz;

It turnsout that the solutionsof this optimization probdem
tendto beunstablan ourapplication thatis in computinga
surfacemode from theinput points. The computedsurfaces
eithercorsistof mary compmentsor thesurfacetendsto be
“blobby”, seeFigure 3 for exanples. This phenanenonis
quitewell known in machindearningandin generateferrel
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to asoveffitting. Oneway to dealwith overfittingis to relax
the constraitts, i.e., we no longer demandthat all sample
points have to be containel in the ball but we allow some
outliers. Sincewe do not want too mary outlierswe have
to peralize themin the objectve function Thatleadsto the
following optimizationprodem,

min R*+c¢) ¢
J

st [l¢e;) —all* <R*+¢
§ >0

With the varialdes §; > 0 we wealen the constraims and
constraim violations areperalizedby theterme Zj & inthe
objective function. By adjustingthe valueof ¢ onecancon-
trol the violation of the constraints.The KuhnTucker con-
ditionsfor this optimization problemguaanteetheexistence
of B;, uj > 0 suchthat

(R? + & — ll(z;) —al®)B; = 0
&Guyg = 0

Thatis, theimageof a samplepoint z; lies ontheboundary
of the optimalball if £; = 0 and0 < 3; < ¢. Pointsfor
which 8; = 0 lie insidethe sphee. For &; > 0 theimageof
thepointz; lies outsidethe optimalball.

It turnsout for several reasos thatit is muchmorecon-
venien to work with the dual of this optimizatian prodem.
The dual prodem is obtainedfrom the Lagrangianfunction
L of the primal optimizatian problem. The Lagrargianfunc-
tion is the objective functionminusa linear combiration of
theconstraintsvith nonnegaive coeficients,

L = R+c) &-> Bi(R*—¢& —é(z;) —all®)
j j

> &nis Bipi >0
J

The Lagrame multiplier theoem statesthat an optimum of
the primal prodem correspadsto a saddlepoint of the La-
grandan function. Sincea saddlepointis a critical point of
L thegradent of L hasto vanishat suchapoirt. Thatis, the
partial derivatives of L with respecto R,a and§; have to
vanish.Fromthis we get

doBi=1, a=) Bidlx;), Bi=c—u
J J

Theseequatios can be usedto eliminatethe varialles R,
a and¢; from the Lagrargian fundion which thenonly de-
pend onthe;,

L = Z/Bj(ZS(xj)z - Zﬂiﬂj¢($i)T¢(xj)

A saddlepoint of L correspadsto alocal maximumof L'.

12

Thus we obtainthefollowing optimizatian problem,
max Y Bid(e;)’ =Y BiBid(wi)  d(x;)
J 4,
st. 0<B;<c

Solving this optimizationprodem we getthe centera of the
miniball asa = -, B;¢(z;). For every pointz € R3 the
squaed distanceR?(x) of its imagein featue spacefrom
thecentera of thespheras

R*(z) = |l¢(2) - all®

The samplepointsz; whoseimagelie on the surfaceof the
optimal ball arecalledsuppat vectos. TheradiusR of the
optimal ball satisfieghefollowing

R? = { R*(z;) | z; asuppat vector}.

Obsere thatin the dual optimization prodem we do not
needto accesshe mapped samplepoints ¢(x;) but only to
thevalueof the dot productsé(z;) - ¢(x;). This canbeex-
ploitedby applying thesocalledkerneltrick andsubstituting
dot praductsin input spacewith kerrel functionevaluations
in featurespacej.e.,

¢(z) - ¢(y) = K(z,y).

Making this substitutionrelieves us from compuing dot
productsin F andmakesthe mappirg ¢ implicit. The defi-
nition of theradiusof theoptimalball aswell asthedistance
function from the centerremainthe same only the square
distanceunctionnow read asfollows,

R*z) = |¢(z)—al? 1)
= K(m,x)—2ZK(m,xj)

J

+> BiBiK (wi, ;).
i,

For the rest of this pape we will work with the Gaussian
Kerné

9(2) - 4ly) = K(z,y) = e M=ol
This kernelis popularin machne learning graphcs andap-
praximationtheory Notethatthefunction

II*

K(,z) R 5 Ra — K(z,z;) = e Moo

is aradialbasisfunction. Thus R?(z) is justalinearcomb-
nationof radial basisfunctions centeredat the suppot vec-
tors.

3 Reconstruction

We usethedistancdundion to the centerof theoptimalball
to definea surfacemodel. The surfacesS is the setof points
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Figure2: Ontheleft: Threenontouching ringswerereconstratedfrom 600 samplepoints.In themiddle A kndtedtorusis
recorstructedrom tenthousandsamplepoints.All samplepointsaresupprt vectos. Ontheright: The Stanfod bunry model

is reconstratedfrom 33,947 samplepoints.

z € R® whoseimageg(z) lie onthebowndaryof theoptimal
ballin featue spacenamely

S={zeR|R(x)=Ro}

where R(z) is the distancefunction correspading to (1).
In otherwords, the surface S is the preimag R 1 (R,) of
thedistanceR, of thesuppat vectos from the centerof the
optimalball. SinceR is asmoothfunction we getfrom Sards
theoren [4] its critical valueshave Lebesge measurezero.
Thisimpliesthatfor all valuesof R, besidesisetof measure
zeroS = R7'(Ry) is atwo-dimersionalmanifdd.

Thefundion R depemnisontwo paranetersi ande. If the
samplepoints are not noisy thenthey shouldall lie on the
surfaceS. Thusall samplepointsshouldbe supprt vectos.
Thisis achievedfor fairly largevalues of A. For smallvalues
of A therearefew suppots vectas, thesurfaceS tendsto be
blobby andit tendsto have thetopdogy of a sphere Onthe
otherhandfor largevaluesof A thesurfacegetsdisconrected
- evenif the original surfacewasconneted. For very large
valuesof \ every samplepoint lies on its own compaent
of the surfaceS. Both pheromena(blobbinessanddiscon-
nectedess)canbe contrdled with the secondparaméer ¢
which is calledregularizationparameterin machinelearn-
ing. Theeffectof theregulaizationparanetercanbeseenn
Figure3. Thechalleng is to find values for the paraméers
A andc whichwork well onalmostall setsof samplepoints.

We experimentedwith this apprachtowards surfacere-
constrietion. In Figure2 we shav someresults.For render
ing animplicit surfacewe approxmatedit with a meshthe
we obtainedusinga variart of themarching cubesalgaithm
provided by Lewiner et al. [7]. The examges of the three
rings andthe knot demorstratethat this apprach can han-
dle compex topologes like several connectd compments
or nontrivial isotopy type

Furthemore,varying the paraneters\ andc seemdo re-
veal topdogical propertiesof the surfaceslike bourdaries.
Thisis demanstratedn Figure4 in aone-dmensionakxam-
plewith azero-dmensionaboundiryandatwo-dimersional
exampe with aonedimensiomal boundary

Figure3: Therecorstructedsurfacedepend on the param
etersA andc. Left: A = 20,¢ = 1 resultsin a blobby sur
facewith abou 75% of the samplepointslying on the sur
face.Middle: All pointslie onthe disconnetedsurfacefor
A = 80,c = 1. Right: Allowing outliersc = 0.00623 the
surfacestaysconrectedfor high \.

Figure 4: On the right: The two outliers are exadly the
endmints of the non<closedcurve in R2. On theleft: The
outliers are exactly the points on the two onedimensiosl
bowndariesof thetube.

We obsevedthatsamplepoints nearsharpfeaturesof the
input mocklIstendto receive highervalues3;. Thisisdemon
stratedin Figure5 wherethe samplepointsalongthe edges
of the the cubeget larger 3; valuesthanthe pointson its
facets.Thusit seemdo be possibleto detectnot only topo
logical but alsogeoméric featuesfrom the samples.

Sincewe have only oneequationthis apprachseemsn-
herettly restrictedto allow only the reconstration of two
dimersional surfaces- the equation eliminatesone degree
of freedbm. In our expeimentswe obseredthatwhenthe
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Figure5: Ontheright: Randonly samplectube.Ontheleft:
Reconstructig a curve in R%. Note thoudh the recorstruc-
tionis asurfaceit looksonedimensioml onalargescale.

methods appliedto samplegromacurvethentheadditioral
dimensim in therecorstructiongetsfurled. SeeFigure5 for
anexampe. This obsenation indicates thatit coud be pos-
sibleto getalsomearingful recanstructionsof curves.

4 Practical Issues and Outlook
Sofarwe couldnotfind a shapeindepeidentstratey to de-

terminethe paranetersA andc. Different shapesshoved
differentsensitvity to variatins of the paraneters,seeFig-

ure6.
'

Figure 6: The ThreeHoles topolog/ is properly recon-
structedwith only 10% of the samplepoints being suppot
vectos while in the caseof theknat even85% of the points
arenotenough.

Solving the dual optimization problem requies a
quadatic progamto be solvedwith thenumbe of variables
equalto the nunberof samplepoints. This makesexactso-
lutions impractical. We computed an apprimate solution
by adapating the sequentiaiminimal optimizgion (SMO)
method8]. Theaccurag of thesolutionhowever hasanon-
negledableimpad onthesurface.

To rende themodelswe computedtriangularmeshesvith
a variant of the marching cubesalgorithm [7]. This method
needsmary evaluationsof the function (1) which is costly
sinceit is a combiration of as mary radial basisfunctiors
astherearesuppot vectas. For fastermeshingmethod to
efficiently evaluate large sumsof radial basisfunctions as
discussedh [5] shouldbeadapted

At the moment our appoachis certainlynot competitive
with the stateof the art in threedimersionalsurfacerecon-
struction.But it seemdo bea promisingmethodto compue
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mockls of manifdds with higher co-dimensionfrom afinite

sampling Note,thatthe comgexity of solvingthe dud op-

timization problemdepend only on the nunber of sample
points but notonthedimension
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