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Precise Flattening of Cubic Bézier Segments

Thomas F. Hain*

Abstract

A methodfor flattening(geneating polyline appraimation
for) cubic Béziercurve segmers is given. It is shovn to be
more efficient than recursve subdvision by geneating an
average of only 2/3asmary linearsegmentswhile maintain-
ing theflatnes<criterionwithin 4%. Thealgoiithm execttion
is 37%fasterthanrecursve subdvision.

1 Introduction

A Béziercurwe segmeri is gererally rendeed by subdvid-
ing it into a seriesof disjoint curve subsgments, andthen
apprximating eachsubsgmentby joining its endpants by
aline sgmert (chord. The maximum transwersedeviation
of eachcurve subsgmeri from thecorrespondimg chad (the
achieved flathness)houd be no greaterthana minimum er
ror value, f, calledtheflatness.The standardechniqwe for
doing this is by a process called recursve subdvision [2],
whereinthecuneis recusively dividedby two until theflat-
nesscriterion is met. The adwartage of recusive subdvi-
sionis thatthe numkber of sggmerns genergedis variade—
depenling on the natue of the curve—ratherthan being
fixed,asin thecaseof forward differencing[1]. Theproblem
with recursve subdvision is that, if the flatnesscriterionis
exceeedby evena smallamount, the division is performed
onemoretime, with eachof the resultingsegmerts having
an achieved flatnessof aslittle as25% of f. As a conse-
querce, the numker of sggmentsin the resultingpolyline is
greaterthannecessanpy asmuchasa factorof two. The
describedalgorithm repeately rediwcesthe front end of a
curve by a sggmentwhoseflatnesscriterionis closely met,
thus minimizing the nunber of geneated segmeris in the
apprximatingpolyline.

2 Flattening by parabolic approximation

Figure 1 shavs a Bézier curve definedon contrd points
Pi(x1,y1),--- , Pa(z4,ys). We wish to find the parametc
valuet of a point P(z,y) on the curve suchthat the maxi-
mumtrans\ersedeviation of thecurve from theline sggmen
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P, P is equalto theflatnessf. Thecuneis now subdvided*
into two (geneally uneaial) curve segmerns. Thefirst curve
semert with paranetric range [0, ¢t] can be replaed with
sufficient accurag by theline segment P, P. Theremainirg
segmeri is the basisof a new calculation Thisis cortinued
until the solutionfor ¢ (with respecto theremairing curve)
is greaterthanl. At this point, the remainirg curve canbe
repla@dwith aline sgment P P, , whereP; andP/, arethe
cune engoints.

While t in the previous paragaph representsan optimal
poirt, the analyticalsolutionis conputationdly expensve,
soweresortto anapprximation Themethodfor estimating
thevalueof ¢ wherethe curve shouldbe subdvidedrelieson
thefactthatthebeginning of thecurve (for sufficiently small
values of ¢) canbefitted to a parabda. This appioximation
works well for curvesthat have no inflection points, or for
rangesof ¢ sufiiciently removed from inflection points. We
will examine this casefirst.

The paranetricequationof thecurve

Q1) = (2(t),y(t)) is

2(t) = (1— )3z, + 3t(1—t)22s + 3t2(1— t)z3 + t324
y(t) = (1= 1)%y1 + 3t(1—1)°y2 + 3t*(1 - t)ys + t*ya

We now expressthe equatims in termsof coodinatesr
ands, with the origin beingat P, the startof the curve at
t = 0, the r-axis being orientedalongthe velocity vecta
of thecurve att = 0 (i.e., toward P), andthe s-axis beirg
right-handed orthogoral to ther-axis. Thatis,

P, — Py

o 2P
P2 — Py

— Ta—T1 Y2—Y1
V(@2—21)2+(y2—y1)2 " y/(m2—21)%+(y2—y1)2

y2—y1 —(z2—21)

S=
<\/($2—w1)2+(92—y1)2 ’ \/(wz—w1)2+(yz—y1)2 >

Thus, apoint P(z, y) hascoodinates

r=(P—-Pq)-f
— @-zi)(@2—z1)+(y—y1)(y2—y1)
V(@2—21)2+(y2—y1)2
(z=21)(y2—y1)—(y—y1)(z2—z1)
\/(-702—-?1)2"1‘(3/2—1/1)2

1To subdiideacubicBézier curve definedby control pointsR, - - - , P4
att define

S =

P1=P1+tx(P2—P1), Py=Pa+tx (P3—P2), P3=P3+tx (P4—P3)
PY =P|+tx (Py—P}), Py =Py +tx (Py—Ph), P{" =Py +tx (Py —PY)

The contol points of the first segmentare Py, P}, P{, P}’, and of the
secondseggmentarePy’, Py, P5, Py.
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Figurel: Approximating the startof a Béziercune.

In this coordirate system, the control points are
Pi(r1,81), -+ ,Pa(rs, s4), andconsideriig only the move-
mentof thecurwe in the s-direction

s(t) = (1—1)%s1 + 3t(1—t)%sy + 3t°(1—t)s3 + 354

Sincer; = s1 = s = 0, we have,

s(t) 3t?(1—t)s3 +t°s4
= 3s3t® + (54 — 383)t3 )

For smallvalues of ¢, andassuminghatsj is notcloseto
zero(which would occurif the beginning of the curve were
nearan inflection poirt) the first termdoninates.If we fur-
ther assumethe acceleratioralong the cure is reasoably
small, i.e., the value of the r-coordinde variesreasoably
linearly with ¢ (this assumptioris metin all placesexcep
nearacusppoint, whichwill behanded asa separatease,)
the form of the curve canbe appioximatedas parallic as
shavnin Figure2.

/
SA G

» =Vt

Figure2: Parabdic appraimation
Thus,theform of thecurweis s = ar?, and

2 _9
I ar

LetP(r, s) beapointonthecurwe,andlet P’ (r’, s') bethe
point on the curve, which hasthe maximumdeviation from

theline P, P. Theslopeof thecure atP’ is equatotheslope
of theline P;P. Thus,

S ar
2ar' = 2 =
r

l.e.,r’ = 3s,ands’ = a(37)* = §s
LetP"(r', s") bethepoint onP; P atr’. By similar trian-

gles,
S” 1"

v

S

r! r T
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I.e.,S = 58

For smallvaluesof r, wherethe slopeof PP is small,we
get
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Note that this is independentof the constanta. We can
now substitutethis into equation(1), with the assumptiorof
smallt togethe with |s3| > 0, yielding

frlLs| m |3 x 3sst?|

f

or, t~2 X
3 s3]

wheret is the paraméric value of the curve suchthat the
maxinmum deviation of the point P(¢) from the line PP is
appoximatelytheflatnessf.

3 Inflection points

We canwrite coordnatesof the curve as paranetric func-
tions
z(t) = azt® + byt? + cpt + d,
{ y(t) = ayt® + byt® + ¢yt +d
where usingtheBézierbasismatrix,thecoeficientsin terms
of thecontol points are

Gy = —T1 +3T2 — 323 + T4 ay = —y1 + 3y2 — 3Y3 + Y4

b, = 321 — 622 + 33 by = 3y1 — 6y2 + 3y3
Cy = —3x1 + 322 ¢y = —3y1 + 3y
dw =T dy =Y

At inflection points the compaent of the acceleratia
(seconl derivative of positior) perpendicularto the veloc-
ity (first derivative of position)is zero;the crossprodtct of
thetwo vectorsis zero.Thus,

de &’z d%z dy -0

dt di2 4?2 dt

= (3at* + 2b,t + ¢;)(6a,t + 2b,)
—(6azt + 2by)(3a,t? + 2b,t + cy)

= 6(ayby — a,cby)t2 + 6(aycy; — azcy)t + 2(bycy — byey)
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Solvingthis quadatic equationfor ¢ yields

. _ 1 faycs —aggy

cusp 2 \ayb; — agby
y N P 1 (byca — bacy
cusp P 3 \ayby — azby

1 [/ byc, — by
t = ¢ 2 _ |y Ty
2 cusp + \/ cusp 3 (aybw _ awby>

the parametrigoositiors ¢; andt, of theinflectionpoints,if
they exist (i.e., have real solutions).

t1 =

4 Processing inflection points

At inflection points only the derivative of the acceleration
hasa commnentperpeiicularto thevelocity vector Thus,
if we subdvide the curve at aninflection poirt, sayt,, and
considerthe secondsegment, againusinganr-s coordinate
systemwith the r-axis alignedwith the velccity at the in-
flectionpoint, andthe origin at the inflection point, we have
r1 = 81 = s3 = s3 = 0, andequation(1) becanes

s(t) = ()% s4

wheret' is the paranetric valuerelative to this segmert (in
whicht' € [0, 1]).
If wesets(t') = f andsolvefor ', we have

f
3
ty 51
The achiered flatnessof the curve sgments [—t 7, 0] and
[0,t7] will belessthanthe trans\erse displacemens(t ).
Sincethe maximum trans\erse displacerent for thesetwo
segmeris areof oppaitesigns,we canmeige theseseggments
into asingleseggment having theparametricange [—t ¢, +t¢]
andflattenit. Transfoming this paranetric range into the
correspndirg paranetric rangein the original curve yields
[t tT 1 wheret] =t —tp(1—t1) andty =t +tp(1—t1).
A similar paranetric range[t; , t3] is found surrowndingthe
secondexisting) inflectionpointi,.

5 Handling segments around inflection points

Thecurve sggmert to berendeed (0 < ¢t < 1) maybeparti-
tionedinto up to five sequentiasubsgments,depenéhg on
thevalues of ¢, , ¢, ¢, ,t5, eachof which canbe approi-
matedby eitherastraightline, or by apolylinefor aseggmen
having a consistenturvatue eitherto theleft or to theright.
Thecasesresummaizedin Tablel.

2|n the paraboic approximaion usedabove, it wassmallg by a factor
of 4, but herewe malke no suchassertio, andusethe consevative value
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Case | Treatment |
Use paralmlic appraximationto
flattensegment[0, t7]. Replace
.61 0,1] e o

curve segment[ty,#] by line
seggment. Use paranetric ap-
prox. to flattensegmernt [t 1].

Alty,t3]0[0,1] =0

Replacecurve segmert [0,¢]]
by line sggment. Use parabdic
apprx.  to flatten segmen
[t1,1].

0€[ty,t]
Alty,t5]1N[0,1] =0

Use parallic appraximationto
flatten segmert [0,¢;]. Re-
placecurve sggmentdt; , tcysp)
and[t..sp, t1] by line segmerts.
Use parallic appraximationto
flattensegmert [t 1].

[ty 67Nty . 5] # 0
Aty , 131 C[0,1]

Othercases Handledsimilarly.

Tablel: Caseanalysidfor inflectionpoints

6 Segment reduction performance

Thegoalis to efficiently flattena Béziersegment. We will
compare the numker of linear sgmeris generatedby our
paralwlic appoximatian algoithm (PA) with the numker
geneatedfor the samecurwe by recusive subdvision (RS).
The recursve subdvision algorithmwe usedusesthe max-
imum deviation calculationmethodof Hain [3], which is
mote preciseandno slowerthancornventionaltechnigiesfor
deternining this value.

To geneate a repiesentatie collection of 10,00 test
cunes,which attemptgo cover a reasonale distribution of
practicad Béziercurves, we useda canotical repiesentation
[4], in which thefirst threecontol pointsareat (1,0), (0,0),
and(0,1), andthefourth cortrol point variesoveragrid from
—3 to +3in bothz andy. The flatnesscriterion wasfixed
at0.00( (atypical relative resolution—lowever, theresults
wererelatively insensitve to this value.)

The ratio of numter of sgmentsgeneratedy the RS to
PA algorithms is givenin Figure 3. Theratiosfall in the
range from 1to 2, with themearbeingl1.4%. As canbeseen
in Figure4, the distribution of the relative achieved flatness
values in the PA algoithm (over all segmentsof all curves),
areverytight aboutthevaluel. In fact,95%of all segments
fall within 3% of the specifiedvalueof f. Thiscanbecom-
paredto the distribution of relative achieved flathessvalues
for RS givenin Figure 5, which shavs a large numter of
segmeris with values consideably below the optimal value
of 1.

7 Run-time performance

The distribution of the ratio of RS over PA runtime, col-
lectedover 10,0® curvesdescribe abore, is shovn in Fig-
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Figure3: Distribution of ratio of nunberof segmeris gener
atedby RSto thatof PA.
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Figure 4: Distr. of relative achievedflatnessfor PA.
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Figure5: Distr. of relative achieved flatnesdor RS.

ure6. Codeswverewrittenin C++,andrunonal.8GHzIntel
machire underMS-XP. Themeanspeedups 1.37. Therea-
sonfor thePA speedujis attributedto thefactsthat(1) fewer
segmeris aregeneated,(2) no calculation of maximum de-
viation is requred, and (3) the codeis iterative ratherthan
recursve.
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Figure6: Distribution of ratiosof recursve subdvision (RS)
to paratwlic appoximation (PA) runtimes.

8 Conclusion

An algorittm for the flatteningof cukic Bézier cune seg-
mentshasbeendescribed It is shavn to be more efficient
thanrecursve subdvision by generatig only 2/3 as mary
segmeris, while 97% of all segmerts fall within 4% of the
flatnesscriterion The codé® runs 37% fasterthanrecursie
subdvision.
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