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Experimental lower bounds for three simplex chirality measures in low
dimensions
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Three proposedsimplex chirality measures—intersection,
union, andinflation—areexploredexperimentallyin ��� and
��� . The intersectionmeasurein ��� (solved analyticallyby
BudaandMislow in 1991) servesasa control case.We at-
temptto discover anapproximatelower-boundonthedegree
of chirality (i.e. the “most chiral” simplex) andpresentour
findings. While ananalyticsolutionin ��� for thesemeasures
remainsopen,we provide evidencesuggestingtheprobable
geometriesfor ��������� .
�  "! �#	%$'&)(*�+�#,-$ !

A geometric object . embeddedin �/� is calledchiral if the
object’s mirror image .10 cannot beperfectly superimposed
with . through rigid motionin ��� . An objectwhich canbe
superimposedwith its mirror is calledachiral (seeFig. 1).
For a fixednumber of dimensions � anda geometricobject
. , a chirality measure 2 (in � � ) is a function 2435.768�
suchthat 2:9;.=<>�@? when . is achiral,and 2A9B.=<>�DCE2:9;.10F<
[2]. Thedegreeof chirality of object . is definedas G%2:9;.=<HG .

Figure1: Examplesof chiralobjects(left) andachiralobjects
(right) in �I� .

Ourmotivation for investigatingchirality measurescomes
from cheminformatics,wherethe “handedness”of various
chiral molecules (i.e. stereoisomers) is important to their
identification and functional description[4], [7]. TheseJ
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molecules may be modeledassimplicial complexesin �/� ,
with anoverall chirality measureformedby considering the
chirality measuresof the constituent � -simplices(tetrahe-
dra). Discussionsat the2001 BellairsWinter Workshop on
ComputationalGeometry led to the proposalof threecan-
didate chirality measuresfor tetrahedra—the intersection,
(convex hull of) union, andinflation measures—though the
question of which is superior wasnot resolved. A definition
of eachof thesemeasuresfollows(seealsoFig. 2).

For a polytope N , let OP9;N=< denotethe content(“hyper-
volume”) of N andlet Q#RTSVU'9;N=< denote theconvex hull of N .
For a � -simplex W , anda givenchirality measure2 , let XZY
be a rigid motion that maximizes G 2:9[WI<HG . The intersection
measure for �I� is definedas

2 �\ 9;WI<^]H_a`� bEC O^c[WedfXgY+9[Wh0F<jiOk9;W>< l
Theunionmeasure for �A� is defined as

2 �m 9;WI< ]H_a`� bEC Ok9;W><
Onc[Q#RTSVU'9[WeoZX Y 9;W 0 <p<ji l

Theinflationmeasure for ��� is definedas

2 �q 9;WI<^]H_a`�sr5�
wherer is thesmallestnon-negative realsuchthat

cp9jb:tur)<�vwW>iIofX Y 9[W 0 <I�xc�9�b:tyrz<hvwWIi l
In 1991, BudaandMislow analyzedtheintersectionmea-

sure in �h� , 2{�\ , and discoveredthat the degree of chiral-
ity of the most-chiral triangle(which canonly be obtained
in the limit, as the triangle’s height approacheszero) is
9[| �}C~b�<p��9a| �/t�b�< , andconjecturedthata similar limiting
resultwouldhold in higherdimensions[2].

For fixed number of dimensions � andchirality measure
2 , let �1�� be an achiral � -simplex and �:�� be a most-chiral
� -simplex. Thus, 2I�\ 9[�1<>��? and 2��\ 9B�{<>�@? l b+��� .Our objective is to discover an experimentalapproxima-
tion of themost-chiral � -simplex � for eachof thethreepro-
posedmeasuresin both �A� and �h� , with the above known
caseservingas a control. The general approachwe have
taken,for eachcase,is to generatea large seriesof random
simplicesandtheirmirrors,performinganoptimization pro-
cessoneachpair in order to discoveranapproximateworst-
case(and corresponding approximation of the most-chiral
simplex).
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Figure2: Pictorial representation of the threemeasures in
��� . Left: a scalenetriangleandits mirror. Right: intersec-
tion, union, inflation.
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Theoptimizationmethodchosenwasaniterative-stochastic
method, involving threenestedloops.Theouter“trial” loop
generatedrandom, non-degeneratesimplices W andtracked
worst-caseinformation.Themiddle“epoch” loopgenerated
random seedvaluesfor thetransformationX andcheckedfor
early-exit conditions. The inner“optimize” loop wasbased
onastandardgradient-descent with momentumoptimization
[6], with thefollowingvariations:severaladditional random-
izedvectorsat eachgradient calculation wereaddedto pre-
vent theoptimizer gettingstuckat saddlepoints,a gradient
scalingfactorwasexponentially decayedto allow the opti-
mizerto “settle” on thearrived-atminimum.

In orderto avoidnumerical degeneracy, therandomlygen-
eratedsimplicesweretranslatedto positionthecentroid1 at
theorigin andscaledsuchthatthespanof thelargestdimen-
sion wasequalto the interval [-1, 1]. Moreover, simplices
with hypervolumeslessthanafixedthreshold—0.1and0.01
werechosenfor �>� and �h� , respectively—wereconsidered
degenerate.

The Qhull library [1] (version 3.1) wasusedto find hy-
pervolumes,convex hulls and intersections(via intermedi-
atehalf-space representation) of thevariouspolytopesused
in theproject. All programming wasdonein portableC++,
with BorlandC++Builder3. TheJavaView viewerapplet[5]
wasalsousedextensively during thecourseof theproject.

Notethattheuseof Qhull for all centraloperationsallows
experimentaltrialstobeperformedin arbitrarily dimensions,
though only � � and � � wereconsideredin this implemen-
tation, enabling somelocal optimizations. As the number
of degreesof freedom increases,however, the optimization
processbecomesmuch moreexpensive andlessstable,sug-
gestingthatananalytic solutionshould bepursuedfor higher
dimensions.

In the caseof the intersectionmetric, it was possible

1 Subsequent results suggested the incenter would be moreappropriate
in thecaseof theinflation measure.

that thetransformation X would yield a null intersection, in
which casethe discovery of a gradient vectorwasimpossi-
ble. This situationwasremediedby zeroing themomentum
termandrepeatedlyhalvingthetranslationcomponentof X
until the intersectionwasnon-null. Finally, several further
optimizations inspired by the branch-and-bound approach
wereimplemented,reducing thetime required to runa large
seriesof trials from weeksto hours(on a consumer-grade
workstation).

� �)�V�z� 	�, �P�V! ��
 ���{� �w( � ���

Early experimentsrevealed that theglobal minimumwould
not necessarilyalways be discovered (a problem with all
stochasticoptimization problems whoseperformancesur-
faceshave local minima). In an effort to mitigatethis pos-
sibility, the number of trials per simplex waschosento be
relatively high (25 trials per triangle, 100 trials per tetra-
hedron). To obtain a reasonably diversesampling,1000
non-degeneratesimplicesweregeneratedfor eachof thesix
cases.Finally, an upper-bound basedon early testingwas
chosenfor eachcase,to provideanearly-exit speed-up.

As the inherent instabilities of a randomized high-
dimensional performance-surface-descentoptimizer leads
occasionally to the detectionof a “f alsepositive”, several
clearly incorrect resultswere discarded. Moreover, spot-
checking of candidateresultsin the �E� casesrevealedthat
the global minimum was usually not actually discovered,
suggestingthat the valuesobtainedhave a lower reliability.
An abridged,graphical representationof theexperimentalre-
sultsfor eachcaseis presentedin Figs.4–9(the � -axisis the
samplenumber, orderedby thediscoveredworst-casevalue,
the horizontal line depictsthe estimatedlower-bound,after
false-positives were discarded). After falsepositives were
removed,thediscoveredworst-casesfor eachmeasurewere
( � representingtheappropriatesimplex): 2 � \ 9B��<}��? l b���?T� ,2��m 9B��<4��? l ���
��? , 2��q 9B��<���? l ���¡ ¢b , 2{�\ 9B��<���? l  ¢bTbw? ,2��m 9B��<A�@? l £ �¡��  , 2{�q 9B��<>�¤? l-£ �¡��¥ .
¦ � ! 
 � § �H,-�

The first item of note is that the experimentally obtained
result for the degree of chirality of the intersectionmea-
sure( ? l b+�+?
� ) is very closeto the theoretical limiting value
( ¨©? l b���bw¥ ). Second, the degreesof chirality of the union
andinflation measureswerebothsimilar enough to onean-
other to warrant the investigation of a possibleinterrela-
tionship. Third, the discovered most-chiral simplicesin all
casesstronglyresembled oneanother(in particular, triangles
tended towardthelimiting casedescribedby BudaandMis-
low in [2]). Further inquiry suggestedtheconjecturethatthe
tetrahedra werealsotendingtowarda limiting caseª , with
geometrydescribedin Fig. 3.

Todiscover if thisconjecturemeritedfurtherinvestigation,
theanalytically-discoveredtriangle « andproposedtetrahe-
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Figure3: Presumedgeometryof themost-chiral tetrahedron
ª . As r59;ªA< (thedistancebetween¬ andtheplane ­�®�¯ )
approacheszero,triangle ­�®°¬ approachescongruencewith
triangle ®�­�¯ .

dron ª weresuppliedto theoptimizer for a seriesof verifi-
cationtrials. Initially, the areaof « wassetto ? l b andthe
volumeof ª setto ? l ?*b . Decreasingthe areaof « to ? l ?*bandthe volumeof ª to ? l ?¡?*b causedthe inflation measure
to become unstable,yielding valid resultsonly for theinter-
sectionandunionmeasures(seeTable1). Thenearequality
of theunionandinflationevaluationssuggeststhatthey may
indeedsharea lower-bound,thoughthis is difficult to verify
dueto theerraticbehaviour of theoptimizer with thatmea-
sureasthesimplicesapproachdegeneracy.

Additional observations: thedegreeof chirality of thein-
tersectionmeasuretendstowards 9�| ¥eC±b�<���9a| ¥Ptxb�<²�
? l  
�¡?T� in ��� , and the degree of chirality of both the
union/inflationmeasurestendtowards b*C1b+� | �=��? l ���T�¡� in
� � and b�Cub+� | ¥°��? l-£ �*b�� in � � . This leadsto a final con-
jectureabout the general form of theseequations2, namely
thatthelowerbound for thedegreeof chirality measuresare
asfollows: for �>� , the worst-case(i.e. most-chiral) degree
of chirality of theintersectionmeasure is

| �¢³¡Cyb
| �¢³�t@b �

2 The“law of smallnumbers”suggeststhatit is unwisein theextremeto
suggestthis form basedonashortsequence: it shouldbeunderstoodmerely
asa possiblesourceof intuition whenapproaching theanalytic solution.

Measure OP9;«´<I�@? l b OZ9B«´<I��? l ?*b2{�\ ? l b £ �*b ? l b+�Vb��2 � m ? l ��¥ £ � ? l �¡�T�¡�2{�q ? l ��¥ £ � —

Measure OZ9Bª�<>�@? l ?¢b OP9;ªA<>��? l ?¡?¢b2{�\ ? l  T?T¥
� ? l  V�T���2{�m ? l-£ �T�+� ? l £ � £ b2{�q ? l-£ �T��  —

Table1: Experimentalresultsfor thevariousmeasuresand
areas/volumes.

andtheworst-casedegreeof chirality of theunion/inflation
measure is

bEC b
| �¢³ � | �z³¡Cµb

| �z³ l
Interestingly, theseforms satisfythe �¶�·b case,where all
b -simplices(line segments)areachiral.

¸ �/�T¹ ! $Tº � � &*» ���k��! ���
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Figure4: Experimentalresultsfor 2A�\ .
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Figure5: Experimentalresultsfor 2A�\ .
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Figure6: Experimentalresultsfor 2A�m .
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Figure7: Experimentalresultsfor 2A�m .
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Figure8: Experimentalresultsfor 2A�q .
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Figure9: Experimentalresultsfor 2A�q .
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