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Experimental lower bounds for three simplex chirality measures in low
dimensions*

David Bremnert

Abstract

Three proposedsimplex chirality measures—inteection,
union, andinflation—areexploredexpeimentallyin R? and
R3. Theintersectiormeasurdén R2 (solved analyticallyby
BudaandMislow in 1991 senesasa contrd case.We at-
temptto discover anappoximatelower-boundonthedegree
of chirality (i.e. the “most chiral” simplex) andpresentour
findings. While ananalyticsolutionin R¢ for thesemeasures
remainsopen,we provide evidencesuggestinghe prokable
geonetriesfor d = 2, 3.

1 Introduction

A geometic objectG embededin R¢ is calledchiral if the
objects mirror imageG’ canna be perfetly superimpsed
with G throudh rigid motionin R¢. An objectwhich canbe
superinposedwith its mirror is calledachiral (seeFig. 1).
For a fixed numkber of dimersionsd anda geanetric object
G, achirality measue y (in R?) is afunctiony : G = R
suchthatx(G) = 0 whenG is achiral,andx(G) = —x(G")
[2]. Thedegreeof chirality of objectG is definedas| x(G)].

Figurel: Exanplesof chiralobjectyleft) andachiralobjects
(right) in R2,

Ourmotivation for investigatingchirality measuresomes
from cheminbrmatics,wherethe “handedness’of various
chiral molecule (i.e. sterecisome) is important to their
identification and functional description[4], [7]. These
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molecues may be moceled as simplicial comgdexesin R3,
with anoverall chirality measurdormedby considerig the
chirality measuref the constituat 3-simplices (tetrate-
dra) Discussionsatthe 200L Bellairs Winter Workshg on
Compuational Geomery led to the proposalof threecan-
didate chirality measuredor tetraheda—the intersection
(corvex hull of) union, andinflation measures—thah the
questim of whichis supeior wasnotresohed A definition
of eachof thesemeasuesfollows (seealsoFig. 2).

For a polytope P, let V(P) denotethe content(“hyper
volume”) of P andlet conv(P) dende thecornvex hull of P.
For a d-simplex S, anda given chirality measurey, let T'*
be a rigid motion that maximizes|x(S)|. Theintersection
measue for R? is definedas

V(sSnT*(S")

def
X4(8) = 1- )

Theunionmeasue for R? is definal as

V(S)

def
X5(8) = 1- V (conv(SUT*(S"))

Theinflation measue for R? is definedas
Xi($) & h,
whereh is thesmallesinonneyative realsuchthat
(A+n)-S)uT*(S")=(1+h)-S).

In 1991, BudaandMislow analyzedheintersectiormea-
surein R?, x4, and discoveredthat the degree of chiral-
ity of the most-chial triangle (which canonly be obtainel
in the limit, as the triande’s height approacheszerg is
(v2 — 1)/(v/2 + 1), andconjectued thata similar limiting
resultwould hold in higherdimersions[2].

For fixed nunber of dimersionsd andchirality measure
x. let A4 beanachirald-simplec andT'¢ be a most-cliral
d-simplex. Thus, x2(A) = 0 andy2(T) ~ 0.172.

Our objedive is to discoser an expelimental apprxima-
tion of themost-cliral d-simplex I for eachof thethreepro-
posedmeasuresn both R? andR2, with the abose known
caseservingas a cortrol. The geneal appoachwe have
taken, for eachcase,is to geneatea large seriesof randan
simplicesandtheir mirrors, perfaming anoptimization pro-
cesson eachpairin orderto discover anappoximateworst-
case(and correspading apprximation of the most-cliral
simplex).
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Figure 2: Pictorial represetation of the threemeasuesin
R2. Left: ascalendriangleandits mirror. Right: intersec-
tion, union, inflation.

2 Method and Implementation

The optimization methodchosenwvasaniterative-stochastic
method involving threenestedoops. The outer“trial” loop
geneatedrandan, non-cegeneate simplicesS andtracked
worst-casenformation. Themiddle“epocH loop geneated
randam seedvaluesfor thetransfomationT' andchecledfor
early-&it condtions. Theinner“optimize” loop wasbased
onastandardyradent-descernwith momentumoptimization
[6], with thefollowing variatins: several additioral randan-
izedvectorsat eachgradien calculation wereaddedto pre-
ventthe optimizer gettingstuckat saddlepoints,a gradien
scalingfactorwas exponentially decayedo allow the opti-
mizerto “settle” onthe arrived-atminimum.

In orderto avoid numercal degererag, therancbmly gen-
eratedsimplicesweretranslatedo positionthe centroid at
theorigin andscaledsuchthatthe spanof the largestdimen-
sionwasequalto the intenal [-1, 1]. Moreover, simplices
with hyperwlumeslessthana fixedthreshdd—0.1and0.01
werechoserfor R? andR?, respectiely—wereconsidred
degererate.

The Qhull library [1] (versian 3.1) was usedto find hy-
penolumes, cornvex hulls andintersectiongvia intermedi-
ate half-spa&e representi#on) of the various polytopesused
in the project. All programmirg wasdonein portableC++,
with BorlandC++Builder 3. TheJavaView viewerapplet5]
wasalsousedextensiely duiing the couseof theproject.

Notethattheuseof Qhull for all centraloperatimsallows
expelimentaltrialsto beperformedin arbitrarily dimensiors,
thoudh only R? andR® were corsideredin this implemen-
tation, enablig somelocal optimizatiors. As the number
of degreesof freedam increaes,however, the optimization
processbecomnesmudc moreexpensve andlessstable sug-
gestinghatananalytic solutionshodd bepurswedfor higher
dimensims.

In the caseof the intersectionmetric, it was possible

1 Subsequet resuls suggestd the incerter would be moreapproprate
in the caseof theinflation measure.

thatthetransfomationT" would yield a null intersectionin
which casethe discovery of a gradien vectorwasimpossi-
ble. This situationwasremalied by zeroirg the momentum
termandrepeatedlyhalvingthe translationcompnentof T
until the intersectionrwas non-rull. Finally, several further
optimizations inspired by the branchandbound appoach
wereimplemened, redudng thetime requred to runalarge
seriesof trials from weeksto hours(on a consuner-grace
workstation).

3 Experimental Results

Early experimentsreveded thatthe global minimumwould
not necessarilyalways be discovered (a problem with all
stochasticoptimization prodems whose perfamancesur
faceshave local minima). In an effort to mitigatethis pos-
sibility, the nunber of trials per simplex was chosento be
relatively high (25 trials per triande, 100 trials per tetra-
hedon). To obtain a reasonaly diversesampling, 1000
nondegeneratesimplicesweregeneatedfor eachof the six
cases. Finally, an uppe-bourd basedon early testingwas
choserfor eachcaseto provide anearly-&it speed-p.

As the inheren instabilities of a randanized high
dimersional perfamancesurface-eéscentoptimizer leads
occasioally to the detectionof a “false positive”, several
clearly incorrect resultswere discarded Moreover, spot-
checling of candidateresultsin the R? casesevealedthat
the global minimum was usually not actually discovered,
suggestingthatthe values obtaned have a lower reliability.
An abridged,graplical representatioof theexperimentake-
sultsfor eachcasds presentedh Figs.4—-9(thez-axisis the
samplenunber, orderedby thediscoreredworst-casevalue,
the horizantal line depictsthe estimatedower-bound, after
false-paitives were discared). After false positives were
removed,the discoreredworst-case$or eachmeasuravere
(o representingthe appreriatesimplex): x2 (o) = 0.1702,
X2 (o) = 0.2920, x3(0) = 0.2841, x3(0) = 0.4110,
x2 (o) = 0.5934, x3 (o) = 0.5726.

4 Analysis

The first item of noteis that the expaimentally obtainel
result for the degree of chirality of the intersectionmea-
sure(0.1702) is very closeto the theordical limiting value
(~ 0.1716). Secondthe degreesof chirality of the union
andinflation measuresvereboth similar enowgh to onean-
other to warrantthe investigdion of a possibleinterrda-
tionship Third, the discovered most-chir& simplicesin all
casestronglyresembld oneanotter (in particdar, triangles
tende towardthelimiting casedescribedy BudaandMis-
low in [2]). Furthe inquiry suggestethe conjedurethatthe
tetraheda werealsotendingtoward a limiting caseA, with
geonetry describedn Fig. 3.

Todiscover if thisconjectue meritedfurtherinvestigdion,
theanalyticallydiscoveredtriangle K andproposedtetrahe-
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Figure3: Presumedeometryof themost-chial tetrahedon
A. As h(A) (thedistancebetweenD andthe plane ABC)
appr@achegero triande ABD appoachexonguene with
triangleBAC.

dron A weresuppliedto the optimize for a seriesof verifi-
cationtrials. Initially, the areaof K wassetto 0.1 andthe
volumeof A setto 0.01. Decreasinghe areaof K to 0.01
andthe volumeof A to 0.001 causedhe inflation measure
to becone unstableyielding valid resultsonly for the inter-
sectionandunionmeasure¢seeTablel). Thenearequality
of theunionandinflation evaluatims suggestshatthey may
indeedsharea lower-bound,thoughthisis difficult to verify
dueto the erraticbehaiour of the optimizer with that mea-
sureasthe simplicesappgoachdegenerag.

Additional obsenations: the degreeof chirality of thein-
tersectionmeasuretendstowards (v6 — 1)/(v6 + 1) ~
0.4202 in R3, and the degree of chirality of both the
unioninflationmeasuregendtowards 1—1/+/2 = 0.2929 in
R? and1 — 1//6 ~ 0.5918 in R3. Thisleadsto afinal con-
jectureabou the geneal form of theseequatims?, namely
thatthelower bound for thedegreeof chirality measuesare
asfollows: for R¢, the worst-case(i.e. most-cliral) degree
of chirality of theintersectiormeasue is

Vd -1
Vdl +1

2 The"law of smallnumbers’suggestshatit is unwisein the extremeto
suggesthisform basednashortsequere: it shouldbeundestoodmerely
asa possiblesourceof intuition whenapprachirg the analtic solution.
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Measue | V(K)=0.1 | V(K)=0.01
X2 0.1531 0.1719
X2 0.2653 0.2929
X2 0.2653 —

Measue | V(A) =0.01 | V(A) =0.001
X2 0.4067 0.4279
x5 0.5773 0.5951
X3 0.5774 —

Table1l: Experinentalresultsfor the variousmeasuresnd
areas/elumes.

andthe worst-casalegree of chirality of the unionfinflation

measue is
1 Va-a
V! Nz

Interestingly theseforms satisfythed = 1 case where all
1-simdices (line segments)areachiral.
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Figure4: Experimentalresultsfor x 2.
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Figure8: Expeimentalresultsfor y 2.
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Figure9: Expeimentalresultsfor x3.
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