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On the Fréchet dista nce of a set of curves

Adrian Dumitrescd

Abstract

The Frédet distanceof two curves measues the resem-
blanceof the curvesandis known to have applicatiors in
shapecomparisonandrecogition. We exterd this notionto
asetof curvesandshaw how it canbecompuedandappro-
imated.

1 Introduction

A curve is a contiruous mappirg f: [a,b] — R¢ with
a,b € R anda < b. As ameasurdor the resemblancef
curves, Alt andGodauhave considerd theso-called=réchet
distancer.

Definition 1 Let f: [a,a'] — R? andg: [b,b'] — R? be
two curves. The Fréchetdistance denotedd ¢ (f, g), is de-
finedas

op(fr9) = inf - max [[f(a(t)) — g(B())Il,
a: [0,1]—[a,a’] t€[0,1]
B: [0,1]—=[b,b']

wheee a, § range over cortinuousand increasingfunctiors
with a(0) = a, (1) = o', f(0) = aandf(1) = b'. The
functiors a, 8 are alsocalled paranetrizationfunctians.

For polygmal curves P and @, consistingof p and ¢
edges,Alt and Godau [2] developed an algorithm which
computestheir Fréchetdistancen time O(pq log (pq)). We
will review this algorithm in Section3.

Anothe possibility of measuringhe resembanceof two
cures is the via the so-calledHausdaff distanced g be-
tweenthe setof pointswhich make up the two cunes. For
two boundkdsetsA, B C R?,

6r (A, B) = max (323 inf Yla - bll, sup inf lla - b||>,

TheHausdoff distancebetweertwo polygonalcurves P and
@, consistingof p and ¢ edges,canbe compitedin time
O(p + ¢q)log (p + ¢) [1]. TheHausdoff distanceconsides
thecurvesjustaspointsets.

While in someapplicatiors the Hausdoff distanceis a
suitablemeasureof similarity, thereare othersin which is
not: especiallywhenthecouseof thecurvesis important—
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suchaswhenthey areinput by a digitizer — andthe order
of the points on eachcureis relevant. The Fréchetdistance,
definedby Fréche [4, 5], is moresuitablein this case.

A popular and highly intuitive illustration [2] of the
Fréchetdistanceis the following. Supmsea manis walk-
ing his dog, he is walking on onecurve andthe dog on the
othercurve. Both areallowed to adjusttheir speedbut are
not allowedto go backwards. Thenthe Fréchetdistanceof
thetwo curves is the minimum lengh of aleashthatis nec-
essary

Sincedr is symmdric andthe triangle inequality holds
[5], 0 is ametriconthesetof all curvesif two curveswhich
differonly in their paranetrizationareregadedasequal[2].

The following definition is a natual extersion of the
Fréchetdistanceo asetof m > 3 cunes.

Definition 2 For a setof m curvesF = {fi,...
fit [ai, a] — R4, wedefinetheir Fréchetdistanceas

7fm}’

O0p(F):= inf

Qi [071]%[0‘170'11]

mox Il fiai(t)) — £i(e; ()],
1<i,j<m

G [0,1]=[am,al,,]

whee ay,...,a,;, rang over continwous and increasiry
functimswith a;(0) = a; anda;(1) = al,i=1,...,m.

Thecorrespadingintuitiveillustrationis asfollows. Sup-
posethat m points are moving, one on eachof m given
cunes. The speedof eachpoint may vary but no point is
allowedto move backwards. Assumethatall pairsof points
areconrectedby stringsof thesamdength ThentheFréchet
distanceof thesetof curvesis the minimum lengthof acon-
nectingstringthatis necessary

Theorem1 Considera finite setof m > 3 curvesin arbi-
trary dimersions. Letd;; := 0r(fi, f;) anddz := 6p(F).
Then

max (d” + dzk)

dr < min
1<j<k<m

1<i<m
Thisinequality is bestpossible alread for m = 3, andfor
any chace of numbes di,, d;3, ds3 satisfyingthe triangle
inequality, there are 3 curvesfor which equalityholds.

Sectior2 cortainstheprod of Theoreml, while Section3
discusseshe compuationandappraimationof the Fréchet
distanceof asetof curwes.



CCCG 2004, Montreal, Quebec, August 9-11, 2004

2 Proof of Theorem 1

The first part is immediateand follows from the fact that
the comgete gragh K, includesthe star Ky ,,—;. Select
i € [m] which minimizesmax; <j<x<m(dij + dix), andlet
a1,...,a, becorrespading paranetrizationfunctions so
thatfor ary j € [m] \ {i}, dij = maxsejoqy [|fi(ci(t)) —

fi(e(t))||. By thetriangleinequality, for ary j,k € [m],

maxyepo,i] |f;(e () — filox(®)]| < dij + dig. Thisim-

pliesthat

dF < min

i max (dg; + d). 3]

1<j<k<m
Intuitively, ¢ is choserasthe “leading” curve, or the “man”

curve, while the othersarethe“dog” curves. Thenthedis-

tancebetweerary two dogsor betweerthemanandary dog
throughou thewalk is bounad by the sumof thelengthsof

thelongesttwo leasheshe manholds.

We will now constriet anexamplein which the bourd is
tight. Evenif ourboundsholdin ary dimensiois, thecures
in this exanple can be selectedof the simplestform, i.e.,
polygonal curveson the real line. For illustration however,
the different segmentsaredrawn staclked on eachother see
Figurel.
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Figurel: A setof threepolygonal curves usedin the proof
of Theoreml. Parametes a,b, ¢ satisfya < b < ¢ and
c<a+hb.

The following obsenation is useful in obtaininglower
bounds:

Obsewation 1 Considera piece f' of a curve which con-
sists of a horizontal sgmen of length z, traversed from
right to left. Supposethat this pieceis matdedto a piece
of anaher curvewhich movesmondonically to theright (or
which is just a singlepoint). Thenthe maximundistancen
this joint parametrizationis at leastz/2.

Lemma2 LetF = {f1, fo, f3} bethesetofthreepolygonal
curvesshownin Figure 1, wheiea < b < candec < a + b.
Thendm =, d13 = a, d23 =c anddf =a+b.

Proof. Denotethefive sggmenswhichmakeup f; by A-FE.
Similarly we denoteby F—L and M —R theseven(resp five)
segmeris of fo andfs.

Theideaof theexamge is asfollows: To achieze the min-
imum distancedss = ¢, thesmallwiggle FGH on f, must
be matched to the large zigzagM N P on f3. On the other
hand theminimum distancel;» = b canonly beachievedif
thesmallwiggle G H on f, matclesthestraightmovement
A on f;. For achieving the minimumdistanced,3 = a, A
mustbematchedo M, however. It follows thatnotall three
pairwiseminimumdistanceganbeachieved simultaneosly
in ajoint repaametrizatiorfor all threecurves.

A graphical represetation of the situationis shavn in
Figure 2 asa threedimensioml box, repesentingthe joint
paraneterspace(a;, as, as) of threepointsmaving on the
threecurwes. The threesidesof the box arefree-spacealia-
gramg[2] for pairsof curveswith athresholdvalues = a+b.
White regions (the free space)orrespad to pairsof points
fi(a;) and f;(a;) with distanceat moste, andshadedareas
areforbidden areaswherethe distanceis too big. A solu-
tion with Fréchetdistanceat moste is repesentedy a path
from the origin (in the centerof the picture) to the opposite
correr of the box which is morotonein eachdirection and
for which the projectio to eachcoodinatehyperplare lies
in thefreespace Theprgectionsof two suchpathsis shavn
in thefigure. (They have the sameprojection onthe a.1—s
plane) Oneseeghatcertainpassageareaboutto becone
blockedif ¢ is decreaedbelow a + b, for examge, point1in
theas—as plane. Thesegmern labeled? in the as—as plane
andin the a;—a3 planewill be unpassablébecaseit is no
longer morotonewhene is smallerthana + b. Someother
segmeris of thiskind areshaovn asdottedlines. It is apparat
thatfor ¢ < a + b the only remainirg morotonepathsin the
a1—a3 planego arownd the obstacledik e the paththrough
point 1 shavn in thesepictures.Onecanthencheckthatthis
is inconsistenwith a mondone path through spacewhose
prgectiononthe a;—a» planeandon the as—as planelies
in thefreespace.

In thefollowing we give a detailedandelememary prod
that does not make recouse to the free-spacediagram
We dende differert points on the curves by their labels
€ {0,1,2,3,4, 5,6, 7} indexed by thesegmentto whichthey
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Figure2: The pairwisefree-spae diagrans for the curves f1, fa, and fs, for paranetervaluese = 1, b = 1.5, ¢ = 1.8 and

threshdd values = a + b.

belorg, e.g.,74 = 7 denotegshecomnon endpant of sey-
mentsA andB oncurwe fy, atlocation?7.

It is sufficientto prove di2 < b, di13 < a, dag = ¢, and
dr > a+b. Equalityfor dy2, d;3, andd # follows thenfrom
therelationdr < diz + di3 (sincethen,a +b < dr <
dis +diz <a+ b)

We start by proving that d;2 < b, by exhibiting a
scheduleS,» for a pair of moving points p € fi1, ¢ €
fo suchthat at ary time the distancebetweenthemis at
most b. In some parts of this schedulethe two points
move at the samespeedalorng a comnon portion of the
two curves, in othersonly one point is moving while the
other staysput. Si2: p1,p2: 0,1,2,3; po: 3,4,3,2,3;
P1,p2: 3747576777675747372)170717273747372; b1 2717
2;p1,p2: 2,3,4,5,6, 7. Themaximumdistancebetweerthe
two pointsin this schedulds b, asclaimed.

Theprodsofd;3 < a andof dy3 < c¢follow asimilarpat-
tern. Thefollowing schedle S35 provesthatd;s < a. Si3:
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D1,p3: 07 17 273747576; Di: 67 776’ D1,p3: 67574737 27 1!
D1: 170711 D1,ps3: 1727374; Db3: 475741 D1,ps3: 4737271;
p3:1,0,1; p1,p3: 1,2,3,4,5,6,7. It is clearthatthe maxi-
mumdistancebetweerthetwo pointsin this schedie is a.

The following schedule S;3 proves that dos < .
523: D2,p3: 03152a334; ps3: 4a536a5a4; Dp2,ps: 4a332-
D3 2,1,2; pa,p3: 27374a5; p2: 5,6, 776a5’ Pp2,p3: 5a4737
2,1,0,1,2,3: p2: 3,4,3,2,3; p2, p3: 3,4,5,6,7. Themax-
imum distancebetweenthe two poirts in this schedle is
max{a,b,c} =c.

We now shaw thatdsz > ¢. Considerary schedle for
p2, p3, andlet ¢; bethe earliesttime whenps isin 1p, ¢,
be the earliesttime whenps is in 5o andts bethe earliest
time whenps is in 0g. We analyz the positionof p, att;.
If p € F atty, sinceps hasreached y at somet < ty,
|paps| > catt. If po € GU H atty, thenpy, mustreach
7r atsomet € [t1,t2], otherwise|paps| > a + b > ¢ after
t2; henceatt, |paps| > |57 = ¢. Ifpp € TUJ at
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t1, thenatts, p» € [3545] U [4k3k]; it follows thatat ¢,
|p2ps| > |0r2L] = a+b>c. If po € K UL atty, we also
have atts, |p2ps| > |0r2L| = a + b > ¢. We conclwethat
das > ¢, thUSd23 =cC.

Finally we have to prove thatd» > a + b. Someof the
argumentsare the sameasfor proving d23 > ¢. Consider
ary scheduldor py, p2, p3, andlet ¢y, to, t3 beasabore. We
analyzethe positionof p, att;.

Assumethatp, € F att¢;. Thenps is in 65 at some
t < t1.f po € [0r3F] att, then|paps| > b+c¢ > a+batt.
If p» € [3r4r] att, then|paps| > a + b att;.

Assumethatp, € G U H att;. More precisely p, €
[3¢2¢] U [2r3#] att:. We now alsoanalyzethe positionof
p1 priorto t1. Notethatp, isin 4g atsomet < t1. If py is
on A att;, we distingush four cases.f p; € [0424] atty,
we have |p1ps| > a + b att. If p; € [2434] atty, we have
|pips| > b+ ¢ > a+ batsomet’ < t1, whenps isin 6.
If p1 € [3474] att;, we have |pip3| > a + batt;. If py is
onBUCUDUE att,, wehave |pip2] >a+c>a+bat
somet” < t;, whenp; isin 74.

Theremainirg casasp, € IUJUKUL att;. If po € I at
t2, then|pzps| > 2(a+b)/2 by Obserationl. If p» € JUK
atts, we musthave p, € [3545] U [4x3K] atts; it follows
thatatt3, |p2p3| > |0R2L| =a+b.

We concluak thatd» > a + b, thusdx = a + b. O

3 Approximating the Fréchet Distance

Considera setof m polygonalcurnves F = {f1,..., fm}
fi: [ai,ai] — R, wheee n; is the numker of segmerts of
fi,» i = 1,...,m. As mentiored in the introdiction [2]
presentsan algoithm for compuing the Fréchetdistance
betweentwo polygonal curnes with p and ¢ segmentsin
time O(pq log (pq)). Theiralgorithmmakesuseof onefor
solving the easierdecisionproblem namely: given polyg-
onal cures P and (Q and somee > 0, decice whether
0r(P,Q) < e. This canbe answeredn time O(pq). The
algorithm for actuallycompuing é (P, Q) for given polyg-
onalcurves P and@ makesuseof thedecisionalgorithmand
thetechniqee of parametricseach of Megiddo [6], accom-
paniedby aspeedp technigiedueto Cole[3]. Theresulting
final algorithmhastime comgexity O(pq log (pq)).

Returningnow to the decisionprodem, § 7 (P, Q) < € if
andonly if thereexists a curve from (0,0) to (p, q) in the
free-scediagamin the planewhich is mondonein both
coordnates.

To compue the Frechetdistanceof a setof curves, this
apprach canbe adapted.In answerig the decisionprab-
lem, onewould have to checkwhethe thereexists a curve
from (0, ...,0) to (ny,...,ny) in the freespacediagram
in R™ which is morotonein all m coordnates. This takes
O(ny - . .ny,) time,andtheresultingfinal algorithmhastime
comgexity O(nq -..npylog(ny .. .n.,)). Notethatthis is
prohibitive evenfor smallvaluesof m, e.g.for m = 10, and
evenfor thedecisionproblem

Therefore we outline the following simple algorithm
which compues the Fréchetdistanceof a set of cunes
appoximately based on our bound in Theoem 1.
The algoithm comptes all pairwise Frécheé distances
and outputs min; <j<m, maxi<j<k<m(di; + dix). Since
dr > maxicicj<m dij, the appraimation ratio is
2. The running time of the apprximation algorithm is
O(X 1 <icj<m Minylog (niny)), i.e., muchbetterthanthat
of theexactalgorithmpreviously mentiored.

4 Extensions and open questions

Our Definition 2 of the Fréché distanceof a set of
cunes measureghe maxinum diameter of the point set
{fi(ei(t)) | # = 1,...,m} atall timest¢. Onecanask
similarquestiondor other“size” measuresf apointset,for
exanple theradiusof the smallestenclosingoall, or thesum
of all pairwisedistances.

We have shawvn that using pairwise Fréchet distances
yieldsafactor2 appraimationfor the Fréchetdistanceof a
setof cunes(whichfollows from thetriangleinequality). Is
it possibleto geta betterappoximationfactorby, for exam
ple,consideing all triple-wiseFréchetdistancesl;;, ? What
is the bestbourd for d1234 in termsof di23, d124, d134, and
da347?
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