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Three-Dimensional 1-Bend Graph Drawings *

Pat Morin

Abstract

We consicrthree-dmensionagrid-dravingsof grapts with

atmostonebendperedge Undertheadditinal requilement
thattheverticesbecollinear we prove thattheminimum vol-

umeof suchadrawing is ©(cn), wheren is the numter of

verticesandc is the cutwidth of the graph We then prove
thatevery grafh hasa three-dmensiona grid-draving with

O(n?/log” n) volume andonebendperedge. Thebestpre-
viousbounndwasO(n?).

1 Introduction

We conside undireced, finite, and simple graghs G with
vertex setV (G) andedgesetE(G). Thenumler of vertices
andedgesf G arerespectiely dendedby n = |V (G)| and
m = |E(G)|. A three-dimensional polyline grid-drawing
of agraph hencéorth calleda polyline drawing, represents
the vetticesby distinctpoints in Z?2 (calledgridpoints), and
represets eachedgeasapolyline betweerits endmintswith
bend (if any) alsoatgridpoints,suchthatdistinctedgesonly
intersecatcomnonendpants, andeachedgeonly intersects
avertex thatis anendmint of thatedge.A polyline drawing
with atmostb bend peredgeis calleda b-bend drawing. A
0-berd drawing is calleda straight-line drawing.

A folkloreresultstateghatevery gragh hasa straight-line
drawing. Thuswe areinterestedn optimisingmeasure®f
theaesthetiquality of suchdravings. The bounding box of
apolyline drawing is theminimum axis-alignedox contain-
ing thedrawing. If thebourdingboxhassidelengtts X — 1,
Y —1andZ — 1, thenwe speakof an X x Y x Z poly-
line drawing with volume X - Y - Z. Thatis, thevolumeof a
polyline drawing is thenunberof gridpointsin thebouwnding
box.

Thispape contintesthestudyof upperboundsonthevol-
ume and numter of bend per edgein polyline drawvings.
The volumeof straight-linedrawvings hasbeenwidely stud-
ied (see[6]). Only recentlyhave (non-orthogonal) polyline
drawings beenconsideed [4, 8]. Table 1l summaisesthe
bestknown upper bourdsonthevolumeandbend peredge
in polyline drawings.

Cohenet al. [2] proved that the completegraph K,
(andhenceevery n-vertex graph) hasa straight-lire draw-
ing with O(n?®) volume andthatQ(n®) volumewasneces-
sary Dyck et al. [8] recentlyproved that K ,, hasa 2-bend
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drawing with O(n?) volume. The sameconclusim canbe
reacked from the O(gn) volume bownd of Dujmovi¢ and
Wood [4], sincetrivially every graph hasa (n — 1)-quele

layou. Dyck et al. [8] asledtheinterestingquestion: what
istheminimumvolumein al-berd drawing of K ,,? Thebest
known upperbourd at thetime wasO(n?), while Q(n?) is
thebestknown lower bourd. (Boseet al. [1] provedthatall

polyline dravingshave Q(n + m) volume.)

In this paperwe prove two results. The first concens
collinear polyline drawingsin which all the verticesarein
asingleline. Let G be a graph andlet ¢ be a linear or-
derof V(G). Let L,(e) and R, (e) denotethe endpants of
eachedgee suchthat L,(e) <, R,(e). For eachvertex
v € V(G), theset{e € E(G) : Ly(e) <y v <; R,(e)}
is calledthe cut in o atwv. The cutwidth of ¢ is the maxi-
mumsizeof acutin ¢. Thecutwidth of G is the minimum
cutwidthof alinearorderof V(G).

Theorem 1 Let G be a graph with n vertices and cutwidth
¢. The minimum volume for a 1-bend collinear drawing of G
isO(cn).

Theaem1 represets a qualitatve improvemett over the
O(nm) volumebouwnd of Dujmovi¢ andWood[4]. Our sec-
ondresultimprovesthe bestknown upper bourd for 1-berd
drawingsof K,,.

Theorem 2 Every complete graph K ,,, and hence every n-
vertex graph, hasa 1-bend O (log ) x O(n) x O(n?/ log® n)
drawing with O(n?/ log” n) volume.

It is not straightbrward to compare the volume bourd
in Theoem 2 with the O(kgm) bownd by Dujmovi¢ and
Wood [4] for k-colouable g-quelwe graghs (seeTable 1).
However, sincek < 4qg andm < 2¢n (see[7]), we have
that O(kgm) € O(¢*n), andthusthe O(kgm) bourd by
Dujmovi¢ andWood[4] is no morethanthe bourd in The-
orem 2 wherever the graphhasa O((n/ logn)?/3)-quete
layou. On the otherhand,kgm > m?/n. Sofor dense
graphs with Q(n?) edgesthe O(kqgm) bownd by Dujmovi¢
andWood [4] is cubic (in n), andthe bourd in Theaem 2
is necessarilysmaller In particula, Theorem2 provides
a partial solutionto the above-mertioned open prablem of
Dyck et al. [8] regarding the minimum volume of a 1-berd
drawing of K,,.

2 Proof of Theorem 1

Firstwe prove thelowerbourd in Theoem1.
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Tablel: Volumeof 3D polyline drawings of grapts with n verticesandm > n edges.

graph family bend peredge volume refeence

arbitray 0 O(n?) Cohenet al. [2]
arbitrary 0 O(m*/3n) Dujmovi¢ andWood[6]
maxinum degree A 0 O(Amn) Dujmovi¢ andWood[6]
bowndedchromaic numker 0 O(n?) Pach,ThieleandT6th[9]
boundedchromdic numker 0 O(m?/3n) Dujmavic andWood[6]
boundedmaximumdegree 0 O(n?/?) Dujmavic andWood[6]
H-minor free (H fixed) 0 O(n3/?) Dujmovit andWood[6]
boundedtree-width 0 O(n) Dujmovi¢ andWood[5]
k-colourableg-queue 1 O(kgm) Dujmovit andWood[4]
arbitray 1 O(nm) Dujmavi¢ andWood [4]
cutwidthc 1 O(cn) Theaeml

arbitray 1 O(n®/log*n) Theaem2

g-queue 2 O(gn) Dujmovi¢ andWood [4]
g-queue(constant > 0) o) O(mg®) Dujmovit andWood[4]
g-queue O(logq) O(mlogq) Dujmavi¢t andWood 4]

Lemma 3 Let G be a graph with n vertices and cutwidth c.
Then every 1-bend collinear drawing of G has at least ¢n/2
volume.

Proof. Considera 1-bend collinear drawing of G in an
X x Y x Z bourding box Let L be the line contain-
ing the vertices. If L is not contairedin a grid-pane,then
X,Y,Z > n, andthevolumeis atleastn® > cn.

Now assumewithout loss of genertdity, that L is con-
tainedin the Z = 0 plane. Let ¢ be a linear orderof the
verticesdeterninedby L. Let B bethe setof bend corre-
spondhg to theedges in thelargest cutin o. Then|B| > c.
For evely line L' parallelto L, thereis at mostonebendin
B onlI', asothewisethereis a crossing.

First supposéhat L is axis-paallel. Withoutlossof gen-
erality, L is the X-axs. ThenX > n. The gridpointsin
thebouwndingbox canbe coveredby Y Z linesparallelto L.
ThusY Z > |B| > ¢, andthevolumeXY Z > en.

Now supposéghat L is notaxis-parallel. ThusX > n and
Y > n. Thegridpointsin the bourding box canbe covered
by Z(X +Y) linesparallelto L. ThusZ(X+Y) > |B| > ¢,
andthevolume XYZ > XY ¢/(X +Y) > en/2. O

To prove the upperbourd in Theoem 1 we will need
the following lemma,which is a slight genealisationof a
well known result. (For exampe, Pach, ThieleandTo6th [9]
provedthe caseX = Y). We saytwo gridpointsv andw
in the planearevisible if the sggmentvw containsno other
gridpoint.

Lemma4 The number of gridpoints {(z,y) : 1 < z <
X,1 < y <Y} that are visible from the origin is at least
3XY/272.

Proof. Withoutlossof generalityX < Y. Let N bethede-
sirednumbe of gridpdnts. Foreachl < z < X, let N, be

thenunmberof gridpoints (z, y) thatarevisible from the ori-
gin, suchthatl < y < Y. A gridpdnt (z, y) is visible from
theoriginif andonly if z andy arecoprime.Let ¢(x) bethe
nunberof positive integers lessthanz thatarecopiime with
z (Eulers ¢ function). Thus N, > ¢(z), and

X X

If X > Y/2,thenN > 3XY/2n?2, andwe aredore. Now
assumdhatY > 2X. If z andy arecoprime, thenz and
y + z arecoprime. Thus N, > |Y/z| - ¢(z). Thus,

3X?

w2

v 3 e = (V) S
~ g:(;’—X)X > 3XY .
2 = 272

|

Now we prove the following strengthaing of the upper
boundin Theoren 1.

Lemma5 Let G be a graph with n vertices and cutwidth
c. For all integers X > 1, G has a 1-bend collinear X x
O(c/X) x n drawing with the vertices on the Z-axis. The
volumeis O(cn).

Proof. Let o be a vertex ordeing of G with cutwidth c.
For all pairsof distinctedge e and f, saye < f when
ever R,(e) <, L,(f). Then < is a partial orde on
E(G), where an antichainin < is a cutin ¢. By Dil-
worth's Theaem([3], thereis apartitionof E(G) into chains
Ey,E,,...,E;, suchthateachE; = (e;j1,€:,2,..-,€ik;)
andR,(e; ;) <s Ly(esj+1) foralll <j <k; — 1.
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By Lemnma 4 with Y = [4n2%¢/3X], thereis asetS =
{(ziys) 11 <i<el<p <X, 1<y <Y}of
gridpoints that arevisible from the origin. Positionthe ith
vertex in o at (0, 0,4) onthe Z-axs, andpositionthe bend
for eachedgee; ; at (z;,y;, j). Edgesin distinctchainsare
contairedin distinctplanesthatonly intersectin the Z-axs.
Thussuchedgeglonotcross.Edges within eachchainE; do
notcrosssincenotwo edgesn E; arenestedr crossingn o,
andthe Z-coordingesof thebendsof theedgein E; agrees
with theorderof theirendpants onthe Z-axis,asillustrated
in Figurel. Thebowndingboxis X x [47w2¢/3X ] x n, since
thenumter of edgesin asinglechainisatmostn — 1. O

Figurel: Constructiorin Lemmabs.

Theconstantsn Lemmab canbetwealedasfollows.

Lemma6 Let G be a graph with n vertices and cutwidth c.
Then G hasa 1-bend collinear 3 x [ <527 x n drawing. The
volumeisat most 3(c — 1)n/2.

Proof. LetS = {(-1,0),(1,0)} U {(=,1),(z,-1) : =1 <
z < [(c—6)/2]}. ThenS consistsof at leastc gridpoints
thatarevisible from the origin. Theresultfollows from the
prod of Lemmab. a

Sincethe cutwidthof K, is n?/4 we have:

Coradlary 7 The minimum volume for a 1-bend collinear
drawing of the complete graph K ,, is©(n?). For all X > 1,
K, has a 1-bend collinear X x O(n?/X) x n drawing
with the vertices on the Z-axis. Furthermore, K,, hasa 1-
bend collinear 3 x [n?/8] x n drawing with volume at most
3n3/8.0
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3 Proof of Theorem 2

Let P = [$log,n] and@ = [n/P]. Let V(K,) = {va,; :
1<a<P1<i<Q}. Positioneachvertex v, ; at

(2a, a@ + 1, 0) .

Foreachl < a < P, thesetof vertices {v,,; : 1 <1i < Q}
inducesa completegraph ¢, whichis dravn usingCorol-
lary 7 (with thedimensims permued)in the box

[2a,2a 4+ P] x [aQ + 1, (a + 1)Q] x [0, —cQ*/P] ,

for somecorstante. Forall1 < a < b < P, oriert each
edgee = (va,i,vs,;), andpositionthebendfor e at

Te = (2(I+1, bQ+]; 4P_aQ_i) )

asillustratedin Figure2. We sayv, ;7. iS anoutgoing sey-
mentatwv, ;, andr.v; ; is anincoming sggmer at vy ;.

Figure2: Constructiorof 1-benddrawing of K ,,.

Thus the bownding box is O(P) x O(n) x O(4¥Q +
Q?/P), which is O(logn) x O(n) x O(n3?/logn +
n?/log® n), whichis O(logn) x O(n) x O(n?/log®n).
Hencethevolumeis O(n?/ log® n). It remairs to prove that
thereareno edge crossings By Corollary 7 all edgesbelov
the Z = 0 planedo not cross.We now only consideredges
abovethe Z = 0 plane.

Each poirt in an outging segmentat v,,; hasan X-
coodinatein [2a,2a + 1]. Thus an outging segmentat
somevertex v,, ;, doesnotintersecianoutgoing segmentat
somevertex v, i, Whenaer a; # as. Clearlyanoutging
semert at v, ;, iS not coplarar with an outging segment
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at v, ;, Wwheneeriy # iz, andthusthesesegmentsdo not
cross. Sinceeachbendis assigneda unique gridpoint, ary

two outgdng segmentsat the samevertex v, ; do notcross.
Thusno two outgadng segmens cross.

Each point in an incoming segmen at v, ; hasa Y-
coordnateof @ + j. Thusincomingsegmentsat distinct
verticesdo not cross. Sinceeachbendis assignedh unique
gridpoint, ary two incomingsegmentsat the samevertex do
not cross.Thusno two incoming segmentscross.

To prove thataninconing segmern doesnot crossanout-
goingsegmen, we claim thatin the projectian of the edges
ontheY = 0 plane,anincomirg sggment doesnot crossan
outgang segment. In the remairder of the proof we work
solelyin theY = 0 plane,anduse(X, Z) coordnates.

Theprojectionin theY = 0 planeof anoutgang segment
atavertex v, ; is thesegmert

s1 = (2a,0) = (2a + 1,477 Q —i) .

Theprgectionin theY = 0 planeof theincomming sggmen
of anedge(ve,k, vq,¢) iS thesemer

5o = (2c+1,477°Q — k) = (24,0).

For thereto beacrossingclearlywe musthavec < a < d.
To prove thatthereis no crossingt suficesto shawv thatthe
Z-coadinateof s, is greaterthanthe Z-coadinate of s
whenX = 2a + 1. Now s is cortainedin theline

4P-cQ —k
- 2c+1—2d(X_2d) :
Thusthe Z-coadinateof s, at X = 2a + 1 is atleast
4P—c Q _ Q
Thusit suflicesto prove that
4P—c Q _ Q Pa

Clearly (1) is implied if it is proved with a = ¢ + 1 and
d = ¢+ 2. Inthiscase(1) redwcesto
4P=c 1
3

Thatis, 4°—¢=1 > 1, whichis true,sincec < P — 2. This
comgetesthe proof.

> 4P7071 .
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Banana Spiders: A Study of Connectivity in 3D Combinatorial Rigidity

AndreaMantler *

Abstract

Finding a combindorial testfor rigidity in 3D is an open
prodem. We prove that vertex conrectiity canrot be used
to constret suchatestby descriting a classof mecharsms
thatincreasehe vertex connectvity of flexible grapls to 5.
Ourresultis tight, asminimally rigid graptsin 3D canbeat
most5-comected.

1 Introduction

In two dimersions,combnatorialrigidity is well undestood:
Lamans conditiononthenumberanddistributionof edgesis
bothnecessargndsuficientfor deternining if aframework
isrigid. In threedimensiois, however, findingatestfor com-
binatoial rigidity hasproved elusie. Little hasbeenpub-
lishedonthefailedattemptsin this paperwe shav thatver
tex comectvity doesnothelpusin ourgoal: 3-cannectvity
togethe with the 3D extensionto Lamans condtion is in-
sufficient,and4- and5-comectiity areneithersufficientnor
necessarya minimally rigid gragh cannotbe greaterthan5-
conrected.

There are mary mockls of rigidity. We examine first-
orderrigidity of barjoint framevorks [3, 5]. Mathemati-
cally, a framawork is definedas graphwith an embedihg
in ®¢. Onceembedled,the edgesof thegraphbecomefixed
lengthbarsconneted at flexible joints. Knowing whether
a framework is flexible or rigid, i.e. whethe or not there
exists an edgelength preserviig defamationthat changs
the distancedetweensomenonadjacen vertices, is useful
in mary applicatims, suchas designingbridges and other
structurs. If agraphG hasarigid embelding thenalmost
all embedihgs of G prodwesarigid framewvork. Thuswe
would like to assumea generic embedding (see€[3, 5]), and
determire whetheror not a framework is rigid basedsolely
on the graphof vetticesandedges. (We call a gragh rigid
in B¢ if thereexists an embedling in R¢ that givesa rigid
frameawork.)

In 197Q Lamanpulisheda condtion thatcanbeusedto
testwhetheragragh is rigid in $2:

Condition 1 (Laman, [3,4]) Agraph G = (V,E) isrigid
for dimension 2 if and only if thereisa subset E’ of F such
that:
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Figure 1. The dowle barana,with animplied hinge edge
througha andb.

1. |E'| =2|V|-3,and
2. for all E" C E' where|V(E")| > 2, wehave |E"| <
2|V (E")| - 3.

This condtion, knowvn as Lamans condtion, is both nec-
essaryandsufiicient. Notethatthegraph G' = (V, E') is
minimally rigid: removing ary edgefrom G’ gives a flexi-
ble graph Embedled geneically, a minimally rigid gragh
producesanisostaticframework [5].

Modifying Lamaris conditian for 3D, we get:

Condition 2 ([3]) Agraph G = (V, E) isrigid for dimen-
sion 3if and only if thereisa subset E’ of E such that:

1. |E'| = 3|V| - 6, and

2. for all E" C E' where |V(E")| > 3, we have |[E"| <
3|[V(E")| — 6.

We refer to Condition 2 as Lamans conditian, and call
graphs satisfyingthis condtion Laman graphs. Although
Lamariscondtion is necessaryt is nolongersuficient. The
double banana [2], shavn in Figurel, is the classicexam:
ple of a framavork that satisfiesLamans condtion, yet is
flexible.

Thedouwlebanamis thesmallesexanplewhereLamans
condtion is insufficient, but what are others? Lacking a
necessarand sufiicient extensionof Lamaris condtion to
3D, we would at leastlike to characterizehe casesvhere
Lamaris condition is not sufficient.

A naturalquestio is whethertrianglesare requred for
rigidity. Euler’s formua showvs thatplana graghsrequireat
leastonetriangleto berigid in 2D, andmustbefully trian-
gulatedto berigid in 3D. ThebipartitegraphkK s 3, however,
wasknown in the 19th centuryto be infinitesimallyrigid in
2D. Bolker and Roth [1] proved that trianglesare also not



