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On the number of line tangents to four triangles in three-dimensional
space *

Hene Bronnimam?

Abstract. We establishupper andlower bound
on the nunmber of conrectedcompnentsof lines
tangen to four trianglesin R3. We shawv thatfour
trianglesin R®* mayadmitatleast88tangentines,
and at most 216 isolatedtanget lines, or anin-
finity (this may hapgenif thelines suppaeting the
sidesof the triandes arenot in generalposition).
In thelattercasethetangemlinesmayform upto
216 conrectedcompaents,at most54 of which
canbe infinite. The bowundsarelikely to be too
large, but we canstrengtherthemwith additioral
hypotheses: for instance,if no four lines, each
suppating an edgeof a differenttriangle, lie on
acomma ruledquadic (possibly degenerateo a
plane) thenthenumterof tangemsis alwaysfinite
andat most162 if thefour trianglesaredisjoint,
thenthis numberis at most21Q andif both con-
ditions aretrue, thenthe numker of tangets is at
most156 (thelower bourd 88 still apgies).

1 Introduction

In this paperwe areinterestedn linestangentgo four trian-
gles.Ourinterestin linestangento triangles,andgenerally
to polytopesin R?, is motivatedby visibility prodems. In
comptergraphicsandrohbotics,scenesreoftenrepiesented
asuniors of notnecessarilyisjoint polygonalor polyhedral
objects.Theobjectsthatcanbeseenn a particdar direction
from a moving viewpoint maychangevhentheline of sight
beconestangentto oneor moreobjeds in the scene.Since
theline of sightthenbeconestangemto asubsebf theedges
of the polygonsandpolyhedrarepreseting thescenegues-
tionsabou linestangento four polygonsarisevely naturally
in this context.
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Our results. By atrianglein R?, we undestandthe con-
vex hull of three distinct pointsin R3. We are not dis-
cussingdegeneratdriangleswhichreduceto asegment or to
apoint. Givenfour triandest, t», t3, andt, in R?, dende
by n(t1,t2,ts,t4) thenumterof linestangento all four tri-
angles! Notethatthis numbercanbeinfinite if, for examge,
four sidesof thetrianglesaresupprtedby four linesthatlie
onahyperbdic paratwloid. Let usdenoteby T'4 thesetof all
quadupletsof triandes (1, t2, t3, t4) With the propety that
for ary of the 3* = 81 quadupletsof lines (£1, £z, £3,44)
suchthat/; suppeots anedg of ¢;, the four linesdo not be-
long to a quadic (a paralwloid hyperbdic or a hyperbolad
of onesheet) andno two of thesdinesarecoplanarin par
ticular, for every (t1,t2,t3,t4) € T4, thereareat mosttwo
linestangento thelinessuppoting ary qualrupletof edges,
hen@n(t1,ts,t3,t4) is finite andat most162.
In this paperwe areprimarily interestedn the numbe

triangles
n riang

= max n(t17t27t37t4)

(t1,t2,t3,t4) €Ty
Our mainresultsaretwo-fold. First,we shaw that

Theorem 1 We haven'*"8!*s > 88 More precisely there
is a corfiguration of four disjointtrianglesin R® which admit
finitely many but at least88, distincttangert lines.

Next, we improve the uppe bourd on n 4 slightly, in the
disjointcase.
Theorem 2 We hawe n'2"8'* < 162. More precisely if
four trianglesarein T, they admitat most162 distincttan-
gentlines. This numler is at most156 if the trianglesare
disjoint.

Unfortunately we canrot claim thatif the nunberof tan-
gentlinesis finite, thenit is atmost162,becagethenumter
maybefinite althowgh thefour trianglesdo notbelongto 7'4.
Whenthe four triandes arenotin T4, the numker of lines
tangat to all four trianglescanbeinfinite, andevenwhenit
isfinite it couldbemorethan162.In thiscasewe maygroup
thesetangentdy conrectedconponerns: two line tangents
arein the samecompmentif one may move continwously

1A line tangant to four trianglesdoesnot propely crossthe interior of
thesetriangles,andsoit correspodsto anunocdudedline of sight. If it is
contanedin the planeof ary of thesetriangles,it mayinterseet the interior
but it is not consideed a propercrossing Indeed,theline is still tangentto
thetriangle consideed asa degeneratethree-dmension polytope.
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betweenthe two lines while stayingtangentto the four tri-
angles.Letn'(t1,t2,ts,ts4) dende thenumtier of conrected
compamentsof tangentinesto four triangle,andlet

s triangles
Ny = max

nl(t17t27 t37 t4)
any (t1,t2,t3,t4)

Eachquadupletof edgesnayinduceupto four compments
of tangentlines [2], bringing the upperboundto 324. We
cangive abetterbourd onthenurbern j of conrectedcom-
ponetsof linestangento four triandesin ary position.We
only statethefollowing theorem(the proof will appeain the
competeversion.

Theorem 3 We haven/,""*"€'* < 216 (and210 if thetrian-
glesare disjoint). Moreover, the numter of infinite compo-
nentsis bourdedabove by 54.

2 Proof of Theorem 1

For thelower bound, we construt four disjoint trianglesin
suchaway thatthey admitat least88 tangents. At thehheart
of our constructio is a pertubation schemefrom a con-
figuration of lines!y, I, I3 andl4 which have exactly two
transwersallinesz andy. We will pertub eachl; into copla-
narlines, !} and!l!, in orderto multiply 2 andy into two sets
of tangent lines. By chocsing the pertubationcarefly, we
argue thatthosetangentineswill betangento thetriangles
t; definedby thethreelinesi;, I}, andl'.

Oneway to obtainsucha configuationis by takingl, I,
I3 onahyperbdic paralwloid (seeFigurel). Thisparabdoid
admitstwo familiesof ruling lines,andwe take [, I», I3 in
oneof thetwo families. Next we choasea vertical planer 4
intersectinghe paratwloid in aconicC (actudly, aparabds,;
seeFigurel) andaline I, in w4 thatcutsC in two points,
x4 andys. Thelines that belorg to the secondfamily of
linesruling the paralwloid passinghrough thesetwo points
aredendedz andy, andandintersect,...,l4. In orde to
avoid ary kind of degenerateconfigurationswe maytake all
four linesalgelraically indepemnlent.

For our constrietion, a bit of notation helps. Giventhree
skew lines a, b, ¢, we dende by L(a, b, c) the setof their
line trans\ersals,andby Q(a, b, ¢) thequadic ruledby these
lines. In particularwe will dende by Q ; the quadic pass-
ing throwgh thelinesi; for all i € {1,2, 3,4} distinctfrom
j. We dende by 7; a (not necessarilyettical) planepass-
ing throughl; (i = 1,2,3,4). Notethateachplaner; in-
tersectsthe correspondiy quadic Q; in a nondegererate
conic C;, andin this planethe line [; intersectsC; in two
points,z; = z N m; andy; = y N ;. We canalwayspick
m; suchthatC; is aparabda, or in caseof a hyperbola,such
thatl; intersectghe samebranchtwice. Thiswill beimpor
tantin the constructio belov andis referedto asthelocal
corvexity of C; in theneigtborhoodof z andy.

Construction of t,. The situationin 4 is depictedin
Figure 2(left). The first stepof our constructia is to pick
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Figurel: Theinitial configuationliy, I», I3 andl, with the
hyperbdic paratloid Q4.

a point on [4 outsidethe conic C4 (on the side of z4) and
rotatel, into aline [} by avery smallanglee4. Thisintro-

duces two poirts z/, andy}. Thenwe pick aline I}/ which

intersect<, in two pointsin the very small arc from y 4 to

yy. Note that this line is almosttangentto C4. Thelines
l4, I} andl thusintersect<, into six points, which areas
closeaswe wantto x4 andys. Thelocal convexity of C4

arowndy ensureshatthosepoints actuallylie onthetriangle
t4 boundedby 14, I}, andi}.? Thesesix points corresponds
to six linesthataretrans\ersalto l4, I5, I3 andtangento the
triande t4, andwhich areascloseaswe wantto z andy.

(SeeFigure2(right).)
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Figure2: (left) In w4, thelinel, cutsC, in two points,z, and
ya. (right) From2 intersectios to 6.

Construction of t3. Thesecondsteptakesplacein 3.
Thequadic Q(l;,12,1}) cutsms in aconicCj vely closeto
Cs, while Q(l4,15,1}) cutsms in aconicC4 (notnecessarily
closetoCs). NotethatC; intersectgs in two points z§ andys
vely closeto z3 andys, while C{ intersectds in two points
betweerys andy}. Thuseither(i) C¥ is almosttangentols,
or (i) it is hyperbda whosetwo branhesarealmostparallel
in theneightorhaod of y 3. (SeeFigure3(left)).

In ary case,we pick a point on I3 outsidethe sggment
(z3,ys3) (thistime onthesideof y3) androtatels into aline
I4 by asmallanglees. Thuslj intersect<s in two points
closeto z3 andys; andC; in two points closeto x4 andys.

2| ocal corvexity is crucid here If ¢; hadbeenconave in aneighbor
hoodof y, aswould have happaedif C4 hadbeena hyperbolaandis had
cutits two brandes,then? would have actudly puty, andy) outsidethe
triande t4.
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Figure3: (top) In 73, theline I3 cutsCs, C5 andC} in six
points,closeto x5 andys. (batom) From6 intersectios to
6 + 6 + 4 = 16: (left) nearzs (right) nearys.

By chasinges smallenoud (¢4 beingfixed)we canalso
guaranteethat!l} intersect<’{' in two pointscloseto y3 and
y5. Finally, we chose e big enowh with respectto the
curvature of C3 andC4 so thaf the portions of C3 andC}
closeto z3 andz} in the anguar sectorbetween/; andlj
bothadmitaline I thatintersectdothconicsin two points
eachwithin thatsector Notethat!} is almosttangemto both
curves C3 andcCy.

Note the appaent contradction: 3 mustbe big enowgh
w.r.t. cunatureof anddistancebetweerC; andC; to allow
for the existenceof {5, yet small enowh for I} to intersect
Cy. Weresohe it by arguing that choosimy the diredion of
rotationof 5 carefully. In case(i), we rotatel} towardsthe
directionof the concaity of C5. Thusthetwo intersectios
with C§' still exist for quitelarge values of £ 3. Notethatcase
(i) posesno prodem. This essentiallremoresthe contra-
diction.

Again, the local corvexity of both C3 and(C} is usedto
guaranteethatall thesepoirts lie onthetrianglets; bourded
in w3 by I3, If andlf. Together!;, l2, t3 andts have
6 + 6 +4 = 16 tangen lines. The situationis depicted
in Figure3(top.

Construction of to. In 7o, in additiontoC, we now have
threeothercorics vely closeto C, (intersectio with 7, of*
Q(ly,ls,1y), Ql1,15,14), and Q(l4,15,1})). Therearealso
a secondgroupof two conicsresultingfrom theintersection
with mo of Q(l1,{l3,14},1}), which may be almosttangen
to l2 neary, asin case(i) above, or hyperbdas whosetwo

brandesintersect, neary, asin case(ii) above. Similarly,

thereis athird group of two conicsresultingfrom the inter-

sectionwith w2 of O(1y,14, {l4,1,}), whichintersect, near
x5 (eithercase(i) or (ii)). (SeeFigure4(left).)

3This is the sorepoint: £3 mustbe big enoudh w.r.t. curvature of and
distarce betveenCs andCj to allow for 14, yet small enoughfor I to
intersectCy . Until we do the conaeteconstrudion, the doubtremairs...

“We will extend Q() with a set-treorett notafon to avoid tedousrepe-
titions. Forinstane, Q(I1, {13, 14}, {14, 1} }) refersto theunionof thefour
possiblecombirations.
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As befae, we pick a point on [, outsidethe segment
(z2,y2) (saynearys) androtatel, into aline I}, by a small
anglee». Unfortunately if the secondandthird groups are
bothin case(i) andtheirtangermiesareon oppaite sidesof
1>, we canna choosethedirectionof rotation asfor [ 3 above,
becasewe maylosetheintersectios with thegroy whose
tangacy is ontheothersideof the directionof therotation
It turnsout thatwe canplacethefour linesiy, Is, I3, andly
suchthatthe secondandthird groupsarebothtangemto -
on the sameside. Thuswe canchooseto rotatel), towards
that direction (without corstraintson £») andintersectthe
first group of conicsin eightpoints, andthesecondandthird
groupsin anotherightpoirts, four neary » andfour nearz,,
introducingsixteennew trans\ersals.

As for 1%, we chooseit almosttangentto the first grouyp
of four conicssothatintersectsall four twice nearz 5 in the
anguar sectorbetween/, andlj. Again, the apparehcon-
tradiction ontheorde of magntudeof ¢ » w.r.t. thecunature
of theseconicsnearz, andtheneedfor €5 to besmallis re-
solvedby thedirectionof rotationwhichguarateestheexis-
tenceof theintersectios between’, andthesecondyroup of
conics evenfor ratherlargevaluesof 5. Thusl) introduces
anadditinal eightnew trans\ersals.

Let the triangle ¢t be bourdedin 72 by Io, 15 andl.
Again, the local corvexity of all the conicsguarateesthat
all the new trans\ersalsto I, I}, andl} areactuallytanget
to thetrianglets bourdedin w3 by I3, I} andl}. Together
l1, ta2, t3 andt, have 16 + 12 + 8 = 36 tangent lines. (See
Figure4(right).)
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Figure4: (left) In 74, theline I cutsthreegroupsof conics,
thosecloseto C-, thosetangemto I, atz,, andthosetangent
aty,. (right) From16intersectiosto 16 + 16 + 8 = 40.

Construction of t;. In 7y, the situationhasmultiplied
Close to C; are eight conics (including C;) intersectio
of mi with Q({l2,15},{ls,1%},{ls,1}}). There are also
four conics(secondgroup intersectingl; neary;, result-
ing from the quadrics Q({l2, 15}, {ls,15},14,1}). And two
groups (third and fourth) of four corics each,intersectiig
l; nearzy, which resultfrom Q(15,, {ls,14}, {l4,1,}) and
O({la, 15}, 14, {ls, 11}). (SeeFigure5(left).)

We play the samegarre, androtatel; into /; by anangle
€1, introdwing sixteennew trans\ersalswith thefirst group
of corics. We cannotignore the casewhere the second
third andfourth groups all fall in case(i), but in this case
at leasttwo groups sharethe sameside of tangeimy, sowe
canchoasethedirectionof rotationof /1 tointrodweatleast
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anotler sixteennew trans\ersals,without restrictionsone.
Finally, we canchomse!! to closethetrianglet; in sucha
way thatits side cutsthe eight conicsof the first group be-
tweenl; andl} into sixteennew points,all onthe boundary
of t; by againusingthelocal corvexity of all conicsnearz
andy, . Thesituationis depictedn Figure5(right).
Hencethe four triandes thus corstructedhave a total of
40 + 16 + 16 + 16 = 88 linestangentfinishingtheprod of

Theoem1.

Figure5: In 71, theline I; cutseight conics(first grouy),
andthreegroypsof four conicseach bringing the nurmberof
intersectios from 36t0 40 + 16 + 16 + 16 = 88.

Remark. Inwhatpreedeswehaveonly accountedfor the
tangers that passthrough only one of the sidessuppated
by 1Y, 14, 1§, andl). Becauseof the shortlengthof each
of thesesggments,it is hardto saywhetherthereare com-
montangeis to thetrianglesthroughmorethanoneof these
sides.If the corstructioncouldbe morecontwolled, perhag
thelower bownd couldbeincreased.

3 Proof of Theorem 2

It is known thatfour segmentshave at mostfour trans\ersals
(or aninfinity); moreover, if thefour suppoting linesdo not
belorg to acomnonruledsurface thentherecanbeat most
two trans\ersals[2]. Thusif the triandesarein 7', thefour
triangleshave at most3* = 81 quadrupletsof edgesformed
by picking anedgefrom eachtriande. Eachquadupletcan
have at mosttwo trans\ersals andhencewe very easilyob-
tainntHenEles < 81 x 2 = 162.

We now indicatehow to improve on this bound whenthe
trianglesaredisjoint. We canshaw thatthereareat most78
quadupletsto considerin the disjoint case,thus bounding
the number of commontangers by 156. The proof follows
that on the upperbourd for the numter of tangentgo four
polytopes|[], butlimits thenumberof configuratiors for dis-
joint trianglesin R3. For clarity, we divide theproofinto two
lemmas.For lack of spacehowever, we do notinclude the
prods of Lemmat, andonly sketchthe proof of Lemmab5.

Lemma4 Fix anedge of atriangle, sayt,. Thenumker of
quadupletsof commortangerts which containe is always
at most27,at most26 if theline supportinge stabsonly one
of thetrianglest,, t3 or t4, andat most25if it stabsnone
Thosebourdsaretight.

Lemma5 Given four disjoint triangles, the numter of
quadupletsthat lead to a commontangentis bourded by
78.

Proof. (Sketch) The prod proceedsby construting a bi-
partite gragh betweentwelve nocesrepesentingeachedge
el of every triande ¢t; (i = 1,2,3 andj = 1,2,3,4) and
four noces represeting eachtrianglet, (k # j). An arc
betweere! andt,, indicatesthattheline suppoting e stabs
t,. (We usearc to describethe edgesof thegraph in order
to avoid confusionbetweeredgesof the gragh andedgesof
the triangles.) The proof restson the claim that this gragh
can have at most 18 edges(out of a possible48). We do
not prove the claim for lack of spaceput its proof restson
a carefulexamination of the relative positionof two disjoint
triangdes,andusingLemma4. a

Remark. Inthedisjointcasejt is possibleto pick four tri-
angles whosebipartitegraphhasexactly 18 edges, shaving
thattheargumentabove cannd beimprovedfurther without
additinalideas.lt is cone@ivable,however, thatfinding fur-
therrestrictiors on the bipartitegraph mayleadto lower the
upper bourd.

Acknowledgments

Thisresearclwasinitiatedatthe SecondMcGill-INRIA Workshop
on ComputationalGeometryin ComputerGraphics,February7—
14,2003,co-oganizedby H. Everett,S.Lazard,andS. Whitesides,
andheldattheBellairsResearchnstituteof McGill University We
wouldliketo thanktheotherparticipantof theworkshopfor useful
discussions.

References

[1] H. Bronnimam, O. Devillers, V. Dujmovic, H. Everett,
M. Glisse, X. Goaoc,S. Lazard, H.-S. Na, and S. White-
sides. On the numter of lines tangentto four convex poly-
hedra. Proc. FourteenthCanad.Conf Comput.Geom, pp.
113-117 2002.

[2] H. Brdonnimann, H. Everett, F. Sottile, S. Lazard, and
S. Whitesides. Trans\ersalsto line segmerts in R®>. Proc.
FifteenthCanad.Conf Comput.Geom, 2003

[3] F. Durand,G.Drettakis,andC.Puech.The3D visibility com-
plex. ACM Trans.Graphics21(2):176-206,2002.

[4] H. Edelsbrunner Algorithmsin Combinatorial Geometry
SpringefVerlag,Heidelbeg, Germary, 1987.

[5] J. E. Goodman R. Pollack, and R. Wenger Geometric
trans\ersaltheory In New Trendsin Discreteand Computa-
tional Geometry (J. Pach,ed.), SpringerVerlag,Heidelbeg,
pp.163-198 1993

[6] H. PottmanandJ. Wallner Computationa Line Geometry
SpringefVerlag,Berlin, 2001.

[71 R. Wenger Progressin geoméric transwersal theory
In Advanes in Discrete and Computational Geometry
(B. Chazelle,J. E. Goodman and R. Pollack, eds.), Amer.
Math. Soc.,Providence pp.375-393,1998

187



