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On the number of line tangents to four triangles in three-dimensional
space
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Abstract. We establishupper andlower bounds
on the number of connectedcomponentsof lines
tangent to four trianglesin ��� . We show thatfour
trianglesin ��� mayadmitat least88tangentlines,
andat most 216 isolatedtangent lines, or an in-
finity (this mayhappen if the linessupporting the
sidesof the triangles arenot in generalposition).
In thelattercase,thetangent linesmayform up to
216 connectedcomponents,at most54 of which
can be infinite. The bounds are likely to be too
large,but we canstrengthenthemwith additional
hypotheses: for instance,if no four lines, each
supporting an edgeof a differenttriangle, lie on
a common ruledquadric (possiblydegenerateto a
plane),thenthenumberof tangents is alwaysfinite
andat most162; if the four trianglesaredisjoint,
thenthis number is at most210; andif bothcon-
ditionsaretrue, thenthenumber of tangents is at
most156(thelowerbound 88still applies).
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In thispaper, weareinterestedin linestangentsto four trian-
gles.Our interestin linestangentto triangles,andgenerally
to polytopesin ��� , is motivatedby visibility problems. In
computergraphicsandrobotics,scenesareoftenrepresented
asunions of notnecessarilydisjointpolygonalor polyhedral
objects.Theobjectsthatcanbeseenin aparticular direction
from amoving viewpoint maychangewhentheline of sight
becomestangentto oneor moreobjects in thescene.Since
thelineof sightthenbecomestangent toasubsetof theedges
of thepolygonsandpolyhedrarepresenting thescene,ques-
tionsabout linestangent to four polygonsarisevery naturally
in this context.
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By a trianglein ��� , we understandthecon-

vex hull of three distinct points in �.� . We are not dis-
cussingdegeneratetriangleswhichreduceto asegment or to
a point. Givenfour triangles /10 , /32 , / � , and /54 in �6� , denote
by 7�89/,0�:5/32;:</ � :</�41= thenumber of linestangent to all four tri-
angles.1 Notethatthisnumbercanbeinfinite if, for example,
four sidesof thetrianglesaresupportedby four linesthatlie
onahyperbolic paraboloid. Let usdenoteby >.4 thesetof all
quadrupletsof triangles 89/?0;:5/32):5/ � :5/�41= with theproperty that
for any of the @ 4BADC�E quadrupletsof lines 8�F 0 :5F 2 :3F � :3F 4 =
suchthat F1G supports anedge of /�G , thefour linesdo not be-
long to a quadric (a paraboloid hyperbolic or a hyperboloid
of onesheet),andno two of theselinesarecoplanar. In par-
ticular, for every 8H/ 0 :5/ 2 :5/ � :5/ 4 =JIK> 4 , thereareat mosttwo
linestangentto thelinessupporting any quadrupletof edges,
hence 7�8H/ 0 :5/ 2 :</ � :</ 4 = is finite andat most E*LNM .

In thispaper, weareprimarily interestedin thenumber

7�OHPHQ R,S?T,U V�W4 A XZY�[\^]`_,a ]9b�a ]9cda ]�egfih)j1e 7�89/ 0 :5/ 2 :5/ � :</ 4 =
Ourmainresultsaretwo-fold. First,we show that

Theorem 1 We have 7kOHP9Q R<S*T<U V�W4 l C)C . More precisely, there
isaconfigurationof four disjointtrianglesin �m� whichadmit
finitelymany, but at least88,distincttangent lines.

Next, we improve the upper bound on 7�4 slightly, in the
disjointcase.

Theorem 2 We have 7kOHP9Q R<S*T<U V�W4 n E*LNM . More precisely, if
four trianglesare in >o4 , they admitat most E*LNM distincttan-
gent lines. This number is at most E1p)L if the trianglesare
disjoint.

Unfortunately, we cannot claim that if thenumberof tan-
gentlinesis finite, thenit is atmost162,becausethenumber
maybefinite althoughthefour trianglesdonotbelongto > 4 .
Whenthe four triangles arenot in > 4 , the number of lines
tangent to all four trianglescanbeinfinite, andevenwhenit
is finite it couldbemorethan162.In thiscase,wemaygroup
thesetangentsby connectedcomponents: two line tangents
are in the samecomponent if onemay move continuously

1A line tangent to four trianglesdoesnot properly crossthe interior of
thesetriangles,andsoit correspondsto anunoccludedline of sight. If it is
containedin theplaneof any of thesetriangles,it mayintersect theinterior
but it is not considereda propercrossing. Indeed,the line is still tangentto
thetriangleconsideredasa degeneratethree-dimensional polytope.
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betweenq the two lines while stayingtangentto the four tri-
angles.Let 7sr`8H/ 0 :</ 2 :5/ � :5/ 4 = denote thenumber of connected
componentsof tangentlinesto four triangle,andlet

7 r4 OHP9Q R,S?T,U V�W A XZY;[t�u;v \^] _ a ] b a ] c a ] e f 7 r 89/<0;:5/32):5/ � :</�41=
Eachquadrupletof edgesmayinduceupto four components
of tangentlines [2], bringing the upperboundto @ M;w . We
cangiveabetterbound onthenumber 7.r4 of connectedcom-
ponentsof linestangentto four trianglesin any position.We
only statethefollowing theorem(theproof will appearin the
completeversion).

Theorem 3 Wehave7xr4 OHP9Q R,S?T,U V�W n MyE*L (and M�E*z if thetrian-
glesare disjoint). Moreover, thenumber of infinite compo-
nentsis boundedaboveby p;w .
{ |}������~���~��&��'����i'y��	

For the lower bound, we construct four disjoint trianglesin
sucha way thatthey admitat least88 tangents. At theheart
of our construction is a perturbation schemefrom a con-
figuration of lines � 0 , � 2 , � � and � 4 which have exactly two
transversallines � and � . We will perturb each�3G into copla-
narlines, ��rG and ��r rG , in order to multiply � and � into two sets
of tangent lines. By choosingtheperturbationcarefully, we
argue thatthosetangentlineswill betangentto thetriangles
/ G definedby thethreelines � G , �`rG , and ��r rG .

Oneway to obtainsuchaconfigurationis by taking �?0 , �92 ,
� � onahyperbolic paraboloid (seeFigure1). Thisparaboloid
admitstwo familiesof ruling lines,andwe take �,0 , ��2 , � � in
oneof thetwo families.Next we choosea verticalplane � 4
intersectingtheparaboloid in aconic � (actually, aparabola;
seeFigure1) anda line � 4 in � 4 that cuts � in two points,
� 4 and � 4 . The lines that belong to the secondfamily of
linesruling theparaboloid passingthrough thesetwo points
aredenoted � and � , andandintersect� 0 :*�?�*�?:<� 4 . In order to
avoid any kind of degenerateconfigurations,wemaytakeall
four linesalgebraically independent.

For our construction, a bit of notation helps.Giventhree
skew lines � , � , � , we denote by ��8H��:g��:<�?= the set of their
line transversals,andby ��8H��:,��:,�?= thequadric ruledby these
lines. In particularwe will denote by �$� the quadric pass-
ing through the lines � G for all �$I�� E : M :<@%: w�� distinct from�
. We denote by �oG a (not necessarilyvertical) planepass-

ing through ��G ( � A�E : M :,@�: w ). Note that eachplane �kG in-
tersectsthe corresponding quadric �JG in a non-degenerate
conic �%G , and in this planethe line �iG intersects��G in two
points, ��G A ������G and �NG A �J����G . We canalwayspick
��G suchthat ��G is a parabola, or in caseof a hyperbola,such
that ��G intersectsthesamebranchtwice. This will beimpor-
tant in theconstruction below andis referredto asthe local
convexity of � G in theneighborhoodof � and � .
� ����(d
��5����
���������~ �?¡�-

The situation in � 4 is depictedin
Figure2(left). The first stepof our construction is to pick

Hyperbolic paraboloid, with l1, l2, l3, (in blue), l4 (navy),
and the two transversals x and y (in red)

Figure1: The initial configuration � 0 , � 2 , � � and � 4 with the
hyperbolic paraboloid � 4 .
a point on �H4 outsidethe conic ��4 (on the sideof �¢4 ) and
rotate ��4 into a line ��r4 by a very small angle £N4 . This intro-
duces two points �or4 and �%r4 . Thenwe pick a line �3r r4 which
intersects��4 in two pointsin thevery small arc from ��4 to
� r4 . Note that this line is almosttangent to ��4 . The lines
� 4 , �Hr4 and ��r r4 thusintersects� 4 into six points, which areas
closeaswe want to � 4 and � 4 . The local convexity of � 4
around � ensuresthatthosepointsactuallylie onthetriangle
/ 4 boundedby � 4 , �Hr4 and ��r r4 .2 Thesesix points corresponds
to six linesthataretransversalto � 0 , � 2 , � � andtangentto the
triangle / 4 , andwhich areascloseaswe want to � and � .
(SeeFigure2(right).)
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Figure2: (left) In � 4 , theline � 4 cuts � 4 in two points,� 4 and
� 4 . (right) From2 intersections to 6.
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The secondsteptakesplacein � � .

Thequadric ��8H��0�:,��2;:<�`r4 = cuts � � in a conic ¥$r� very closeto
� � , while ��8H�`0�:<��2):<�Hr r4 = cuts � � in aconic ¥$r r� (notnecessarily
closeto � � ). Notethat �sr� intersects� � in twopoints ��r� and��r�
very closeto � � and � � , while �or r� intersects� � in two points
between� � and��r� . Thuseither(i) ¥¦r r� is almosttangent to � � ,
or (i) it is hyperbola whosetwo branchesarealmostparallel
in theneighborhoodof � � . (SeeFigure3(left)).

In any case,we pick a point on � � outsidethe segment
89� � :<� � = (this time on thesideof � � ) androtate � � into a line
�Hr� by a small angle £ � . Thus �`r� intersects� � in two points
closeto � � and � � and �kr� in two points closeto �or� and ��r� .

2Local convexity is crucial here: If §i¨ hadbeenconcave in a neighbor-
hoodof © , aswould have happenedif § ¨ hadbeena hyperbolaand ª ¨ had
cut its two branches,then ª « «¨ would have actually put © ¨ and ©�«¨ outsidethe
triangle ¬ ¨ .
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Figure3: (top) In � � , the line � � cuts � � , �or� and �kr r� in six
points,closeto � � and � � . (bottom) From6 intersections toL®­KL®­¯w�A°E*L : (left) near� � (right) near� � .
By choosing £ � small enough ( £ 4 beingfixed) we canalso
guaranteethat �ir� intersects�or r� in two pointscloseto � � and
�yr� . Finally, we choose £ � big enough with respectto the
curvature of � � and �sr� so that3 the portions of � � and �sr�
closeto � � and ��r� in the angular sectorbetween� � and ��r�
bothadmita line ��r r� that intersectsbothconicsin two points
eachwithin thatsector. Notethat � r r� is almosttangent to both
curves � � and �sr� .

Note the apparent contradiction: £ � mustbe big enough
w.r.t. curvatureof anddistancebetween� � and �kr� to allow
for the existenceof ��r r� , yet small enough for �5r� to intersect
�or r� . We resolve it by arguing thatchoosing thedirection of
rotationof �ir� carefully: In case(i), we rotate �5r� towardsthe
directionof theconcavity of � r r� . Thusthetwo intersections
with �or r� still exist for quitelarge values of £ � . Notethatcase
(ii) posesno problem. This essentiallyremovesthecontra-
diction.

Again, the local convexity of both � � and �kr� is usedto
guaranteethatall thesepoints lie on thetriangle / � bounded
in � � by � � , �`r� and ��r r� . Together, �i0 , ��2 , / � and /54 haveL±­°L±­²w²A³E*L tangent lines. The situationis depicted
in Figure3(top).

� ����(d
��5����
������¦��~o�1´�-
In � 2 , in additionto � 2 , wenow have

threeotherconics very closeto � 2 (intersection with � 2 of4

��8H� 0 :,� � :,�Hr4 = , ��8H� 0 :<�`r� :<� 4 = , and �¦8`� 0 :<�Hr� :,�Hr4 = ). Therearealso
a secondgroupof two conicsresultingfrom theintersection
with � 2 of �¦8`� 0 :?�1� � :,�Hr� � :,�Hr r4 = , which maybealmosttangent
to ��2 near �N2 asin case(i) above, or hyperbolas whosetwo
branchesintersect�`2 near�N2 asin case(ii) above. Similarly,
thereis a third group of two conicsresultingfrom theinter-
sectionwith ��2 of �¦8`�`0�:<�`r r� :?�1�µ4;:,�Hr4 � = , which intersect�`2 near
��2 (eithercase(i) or (ii)). (SeeFigure4(left).)

3This is the sorepoint: ¶�· mustbe big enough w.r.t. curvature of and
distance between § · and §;«· to allow for ª « «· , yet small enoughfor ª «· to
intersect §�« «· . Until we do theconcreteconstruction, thedoubtremains...

4Wewill extend ¸�¹�º with a set-theoretic notation to avoid tediousrepe-
titi ons.For instance, ¸�¹µª�»d¼i½,ª · ¼`ª^«·?¾ ¼�½,ª ¨ ¼`ª^«¨?¾ º refersto theunionof thefour
possiblecombinations.

As before, we pick a point on � 2 outsidethe segment
89� 2 :<� 2 = (saynear � 2 ) androtate � 2 into a line ��r2 by a small
angle £)2 . Unfortunately, if the secondandthird groups are
bothin case(i) andtheir tangenciesareon oppositesidesof
��2 , wecannot choosethedirectionof rotation asfor � � above,
becausewe maylosetheintersections with thegroup whose
tangency is on theothersideof thedirectionof therotation.
It turnsout thatwe canplacethe four lines � 0 , � 2 , � � , and � 4
suchthat thesecondandthird groupsarebothtangent to � 2
on the sameside. Thuswe canchooseto rotate �gr2 towards
that direction (without constraintson £ 2 ) and intersectthe
first group of conicsin eightpoints,andthesecondandthird
groupsin anothereightpoints, four near� 2 andfour near� 2 ,
introducingsixteennew transversals.

As for ��r r2 , we chooseit almosttangentto the first group
of four conicssothat intersectsall four twice near � 2 in the
angular sectorbetween� 2 and ��r2 . Again, theapparent con-
tradiction ontheorder of magnitudeof £ 2 w.r.t. thecurvature
of theseconicsnear�o2 andtheneedfor £y2 to besmall is re-
solvedby thedirectionof rotationwhichguaranteestheexis-
tenceof theintersectionsbetween� r2 andthesecondgroup of
conics evenfor ratherlargevaluesof £�2 . Thus ��r r2 introduces
anadditional eightnew transversals.

Let the triangle /<2 be bounded in �k2 by �92 , �`r2 and �`r r2 .
Again, the local convexity of all the conicsguaranteesthat
all thenew transversalsto ��2 , � r2 and � r r2 areactuallytangent
to the triangle / � boundedin � � by � � , �Hr� and ��r r� . Together,
� 0 , / 2 , / � and / 4 have E*L¿­ÀE1M&­ÁC�A @ L tangent lines. (See
Figure4(right).)
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Figure4: (left) In � 2 , theline � 2 cutsthreegroupsof conics,
thosecloseto � 2 , thosetangent to � 2 at � 2 , andthosetangent
at �)2 . (right) From16 intersections to E1Lm­ÂE1L®­ÃC$A�w�z .
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In � 0 , the situationhasmultiplied.
Close to � 0 are eight conics (including � 0 ) intersection
of � 0 with �¦83�1� 2 :<�`r2 � :?�1� � :,�Hr� � :?�1� 4 :,�Hr4 � = . There are also
four conics(secondgroup) intersecting� 0 near � 0 , result-
ing from the quadrics ��8��1��2�:,�Hr2 � :��1� � :<�Hr� � :<�µ4;:,�Hr r4 = . And two
groups (third and fourth) of four conics each,intersecting
�H0 near �o0 , which result from �¦8`��r r2 :?:���� � :<�`r� � :?�1�µ4;:,�Hr4 � = and
��8��1��2;:<�Hr2 � :<�`r r� :����µ4):<�`r4 � = . (SeeFigure5(left).)

We play thesamegame, androtate �50 into �`r0 by anangle
£�0 , introducing sixteennew transversalswith thefirst group
of conics. We cannotignore the casewhere the second,
third and fourth groupsall fall in case(i), but in this case
at leasttwo groups sharethe samesideof tangency, so we
canchoosethedirectionof rotationof �dr0 to introduceat least
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anothÅ er sixteennew transversals,without restrictionson £ 0 .
Finally, we canchoose ��r r0 to closethe triangle / 0 in sucha
way that its sidecutstheeightconicsof thefirst group be-
tween �`0 and ��r0 into sixteennew points,all on theboundary
of /,0 by againusingthelocalconvexity of all conicsnear�.0
and ��0 . Thesituationis depictedin Figure5(right).

Hencethe four triangles thusconstructedhave a total ofw�z�­ÁE*L�­ÁE*L�­ÁE*L$A�C)C linestangent,finishingtheproof of
Theorem1.
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Figure5: In � 0 , the line � 0 cutseight conics(first group),
andthreegroupsof four conicseach,bringingthenumberof
intersections from 36to wNz.­�E*L®­�E*Lm­�E*L$AÆC)C .Ç '���È)�5É%-

In whatprecedes,wehaveonlyaccountedfor the
tangents that passthrough only oneof the sidessupported
by ��r r0 , �`r r2 , �`r r� , and ��r r4 . Becauseof the short lengthof each
of thesesegments,it is hardto saywhethertherearecom-
montangents to thetrianglesthroughmorethanoneof these
sides.If theconstructioncouldbemorecontrolled,perhaps
thelowerboundcouldbeincreased.

Ê |}������~���~��&��'����i'y�Ë{
It is known thatfour segmentshaveatmostfour transversals
(or aninfinity); moreover, if thefour supporting linesdonot
belong to a commonruledsurface,thentherecanbeat most
two transversals[2]. Thusif the trianglesarein >�4 , thefour
triangleshaveat most @ 4¿AÀC%E quadrupletsof edgesformed
by picking anedgefrom eachtriangle. Eachquadrupletcan
have at mosttwo transversals,andhencewe very easilyob-
tain 7¢OHP9Q R,S?T,U V�W4 n C�EÍÌ�M¿AÎE*LNM .

We now indicatehow to improve on this bound whenthe
trianglesaredisjoint. We canshow thatthereareat most78
quadrupletsto considerin the disjoint case,thusbounding
thenumber of commontangents by 156. Theproof follows
that on the upperbound for the number of tangentsto four
polytopes[1], but limits thenumberof configurations for dis-
joint trianglesin ��� . For clarity, wedividetheproofinto two
lemmas.For lack of space,however, we do not include the
proofs of Lemma4, andonly sketchtheproof of Lemma5.

Lemma 4 Fix anedge Ï of a triangle, say /10 . Thenumber of
quadrupletsof commontangents which contain Ï is always
at most27,at most26 if theline supportingÏ stabsonlyone
of the triangles /<2 , / � or /�4 , andat most25 if it stabsnone.
Thoseboundsare tight.

Lemma 5 Given four disjoint triangles, the number of
quadruplets that lead to a commontangent is boundedby
78.

Proof. (Sketch) The proof proceedsby constructing a bi-
partitegraph betweentwelve nodesrepresentingeachedge
Ï � G of every triangle /<� ( � AÐE : M :,@ and

� AÑE : M :<@�: w ) and
four nodes representing eachtriangle /�Ò ( ÓÕÔA �

). An arc
betweenÏ � G and /<Ò indicatesthattheline supporting Ï � G stabs
/5Ò . (We usearc to describetheedgesof thegraph, in order
to avoid confusionbetweenedgesof thegraph andedgesof
the triangles.) The proof restson the claim that this graph
canhave at most 18 edges(out of a possible48). We do
not prove the claim for lack of space,but its proof restson
a carefulexaminationof therelativepositionof two disjoint
triangles,andusingLemma4. Ö
Ç '���È)�5É%-

In thedisjointcase,it is possibleto pick four tri-
angles whosebipartitegraphhasexactly 18 edges, showing
thattheargumentabove cannot beimprovedfurther without
additional ideas.It is conceivable,however, thatfinding fur-
therrestrictions on thebipartitegraph mayleadto lower the
upperbound.
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