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Unfolding Polyhedral Bands
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Abstract bandunfddings can overlap, if a “bad” edgeis chosento

A bandis definedastheintersectiorof the surfaceof a con-
vex polyhedronwith the spacebetweentwo parallelplanes,
aslong as this spacedoesnot containary verticesof the
polyhedron An unfolding of a given bandis obtainel by
cutting alongexadly one edg andplacingall facesof the
bandinto the plane without causingntersectionsWe prove
that for a specifictype of bandthereexists an apprgriate
edgeto cutsothatthebandmaybe unfdded.

1 Introduction

It haslong beenanunsohed problemto decide whetherev-
ery polyhaedlronmay be cut alongedgesandunfoldedflat to
a single, norovellapping polygon [7, 5, 4]. An interesting
specialcaseemeped in the late 19Ds: ! canthe bard of
surfaceof a convex polyhedra enclosedbetweenparallel
planes,andcontainirg no polyhedra vertices, be unfdded
without overlap by cutting a single edge? A bandandits
associategolyhedronareillustratedin Fig. 1.
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Figurel: A polyhedroncutby two pardlel planesandatop
view of theresultingbard.

This bandforms the side facesof what is knowvn as a
prismadoid—the convex hull of two parallel corvex poly-
gonsin R®—but thebandunfdding questim ignoresthetop
andbottan facesA and B of the prismatad. An exampe
was found (by E. Demaineand A. Lubiw) that shavs that
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cut; seeFig. 2.
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Figure2: A truncatedtetrahedra canunfold to anoverlap-
ping configuationif thewrongedgeis cut.

So the question remained Does there always exist a
“good” edgeto cut? This paperanswersyEs for a special
casewhenthetop A andbottan B polygmsof thebandare
nestedn thesensdhattheprojection of A ontotheplaneof
B fallsstrictly interior to B. In this casewe saythatthe bard
is nestedasshavnin Fig. 1). Intuitively, we mightexpectto
obtaina nestedbard if both planescut the polyhedronnear
its “top”. Our argumentprovides morethannonorerlapin
thefinal planarstate:it ensurs nonintersectiorthroughaut
a continwous unfoldng motion Moreover, we believe the
argumentshouldexterd to captue arbitray bards.

Band-like constriets have beenstudiedbefore. Bhat-
tachaya and Rosenfeld 2] definea polygonalribbon asa
finite sequencef polygons, not necessarily}codanar such
thateachpair of successie polygonsintersectsexactlyin a
comnonside. Triangularandrectanglar ribbons(bothopen
andclosed)have alsobeenstudied. Artecaand Mezey [1]
dealwith continwusribbors. Simplebandscanbe usedas
linkages to transfermechanichmotion as poirted out by
CundyandRollett[3].

There is oneunfolding resultthatis relevant to our prob
lem, which may be interpretedas unfdding infinitely thin
bandg. This is that a “slice curwe” the intersectionof a
planewith a convex polyhedron,developsin the planewith-
outoverlap[6]. This holds regardlessof wherethis curne is
cut. Thus,boththetop andthe bottomboundaryof any bard
(andin factary slice curve between) unfold without over-
lap. Sooverlap canonly occu from interaction with the cut
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edgeasin Fig. 2.

2 Unfolding Nested Bands

Theprojectian of anestedbandhascertainproperties.Every
vertex is incidentto exactly threeedges.Two of theseedges
belorg to oneof the nestedpolygons,andthethird links to
theotherpolygon. Thereareno edge crossingsThe projec-
tion is partitioredinto quadilaterals,eachcorrespondig to
partof a polyhedralface.Sinceeachfaceis flat, the quadri-
lateralsin arein facttrapezads whereedgesrom theinner
and outer polygonsare parallel. Unlessmentiored other
wise,all argumentsn this sectioninvolve the projectian of a
band

We continwe with somedefinitionsthat are necessaryo
describehe unfolding motiors:

An edgeof a bandis a hinge if it waspartof an edg of
the given polyhedran. All hingeshave an endmint on each
of thegivenparallelplanes.

After cutting a single hinge, a flattering motionis a con-
tinuous motion during which eachface moves rigidly but
remainsconrectedto eachadjacenfacevia their commnon
hinge andthe resulting configurationis planar If no in-
tersectionoccus during the motion thenthis motionis an
unfoldng.

A planarchainis convex if joining the endmints with an
edgeyieldsacorvex polygon.

A non-cawex chainis weaklycorvex if we encounteronly
left (or onlyright) turns aswetraverseit, andjoining theend-
pointswith an edgeyields a polygon which hasno exterior
angledessthanf.

Any chainthathasonly left (right) turnsbut is not convex
orweaklycorvex is aspiral.

Theinterior ande at a vertex of a spiralor convex chain
is thesmallerof thetwo anglesatthevertex. Extelior angles
aredefinedaccordimgly.

Thenormalconeof avertex v belorgingto aconvex poly-
gonis the region betweentwo halflinesthatbegin atv, are
respectiely perpemicularto thetwo edgesncidert atv and
arebothin the exterior of the polygon.

We saythata pointis to theleft (right) of a sggmentzy if
it is to theleft (right) of adirectedline through zy.

Whenanedgeof agivenbandis cut, thetwo corvex poly-
gonsin the projedion mentiored above arecut into (degen-
erate)convex chains.Suppaethatwe begin aflatteningmo-
tion by “squeeing” thetwo pardlel planesandkeepirg all
verticesof the bandon the planes. Sucha motion will in-
creasethe interior ande at every vertex in the projedion.
Furthemoreaninterior anglecanonly opento 7. Thusin
theprojectian acorvex chaincanna self-intersectftersuch
a motion. Prods for theseclaimsare omittedhere. All of
our proofs involve this specificmethodof flattening

The prgectionof a bandis relatedto the actualflattening
motionof abandasfollows: let zy betheverticalseparation
betweerthetwo planes,A andB. Thetwo planeswill move

towards eachother alwaysremaning parallel. Verticesof
the hingeswill alwaysremainin the planes. Let f be one
bandface,the hull of paralleledges b,b; andajas. 2 is
deternined by the dihedal ande at b, b, betweenf andthe
baseplaneB. At ary onetime,the2D pictureis anoveread
prgectionof the 3D band,with z decreasindrom its initial

valuezg to 0, atwhichtimeit is entirelyflat in the B plane,
i.e. we have a uniform squashingf the bandby lowering A

until it meetsB. Forary facef, thevalueof z deterninesits
dihedal anglewith respecto B. Theopering of the cornvex

chairs, visible in the overheadriew representstheturning at
eachhinge,necessaryo accomnodatethe various simulta-
neots dihedal motiors.

Let the verticesof the innerpolygm be ordeedin clock
wise order andthe cut hinge be incidentto vertex a ;. We
hold a; 1a; fixed horizontally in the planeandrelabelthe
newly createcendpant asa*. Correspadingdy, for theouter
polygon, the direction of b; 1b; remainsfixed (it moves
away from a;_1a; but remainsparallel)andb* is a “mov-
ing” endpoint. Thusthe cutedgeis split into edgesz ;b; and
a*b*. Thesedefinitiors areillustratedin Fig. 3.

bi+1

Figure3: Left: projectionof theinnerconvex chainandpart
of theouterchain Theconeof avertex a; is shavn, aswell
astheprojectionof thepolyhedraledgeincidentto a ;. Right:
theresultof cuttingata;b; andflattening.

Notice thatthe prgection of the hingeincidert to a; be-
comes longer afterflattening.

Lemmal A flattered bandcanrot producean inner chan
thatis a spiral.

Proof. Duringourtypeof flatteningmotion a *a;+1 canonly
rotateclockwise, becausall joints openclockwise,andthe
centes of rotationat thesejoints areall left of a;1a*. Let
R betheregion thatis to theright of the two half-linesthat
form thenormalconeof a;. As theunfolding motionbegins,
a* canonly move within R. This canbe seenby opening
eachanglesuccessiely in clockwiseorder, startingwith the
angleat a; ;. Also, it follows from Cauchys armlemma
(seege.g.,[8]) thatnotwo pointsonanopering corvex chain
appoacheachother Eventwally a* mayendup arywhere
within R or in the region to the right of a;_1a;, but only
aftertracinga clockwisemotionabou a;. Consequetty, a
flattenedbandcanrot producea spiral. Also noticethatthe
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final directionof a*b* will alwaysbe more clockwise than
thefinal direction of a;b;. O

Lemma 2 If aflattenirg prodwcesaninnerchainthatis con-
vex thenthe bard canbeunfolded.

Proof. If intersectioris to occur thensomepartof theinner
chainmustcrossthrough a;b; or a*b*. This follows from
the resultson slice curves, mentiored in the introduction.
Fromthe algumentsof the previouslemma,we seethatthe
innerchainwill be corvex throughou the motion. Sincethe
directionof a*b* is alwaysmoreclockwisethanthatof a;b;,
theendsof thebandcannotintersect. a

Thesameypesof amgumentanaybeusedo prove thatwe
cansafelycutalongary hingewhereb; is locatedwithin the
normal coneof a;, or ary hinge incidentto anacuteinterior
angle.

We now charactdre the typesof chainsthat may be ob-
tainedaftera flatteningresultingfrom acutata;b;. We say
thata chainis “safe” if it is corvex. Therearetwo types
of “dangerous”chains,depenihg on which endmint is not
onthehull (clearlyoneof thetwo engointsmustbe onthe
hull). Supposehata; is notonthehull of theoperedchain.
A prablemmightariseif a;b; wasinitially to theright of the
normal coneat a;. In otherwords,a, might crossthrough
a;b;. In this casethe chainis “unsak” (seeFig. 4). We note
thatif the whole flatteningmotion is obseved, it is possi-
ble that this crossingmight hapgen but in the final position
therewill benointersectior(i.e. a. andall successie edges
might crossout again) In otherwords, the term “unsafe”
senesjustasawarning Even under thesecondtions there
maybenointersectio atary time of theflatteningmotion

Figure4: Cuttingat a; is “dangeous” if a* endsup abore
the dottedline. In this casethecutis labeled‘unsafe”if the
hingeata; (shavn dashed)s to theright of its normal cone.
A symméric dangerousandunsafecaseexists for the other
sideof thecone

As mentiored, therearetwo typesof dangrousunfdd-
ings, andin eachcasethereis only a potentialprodem if a
hingelies on a specificside of its associatediormal cone.
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Clearlyif a givenbandcannd unfdd with our motion then
all verticesareassociateavith unsaé openngs.

Lemma 3 Not all hinges can be to the left (or all to the
right) of their associatechormalcones.Thusnotall vertices
canhavethe sametypeof unsafeproperty

Proof. Itisenoudntolookattheinitial projectianto seethis:
supmse without loss of geneality that on the inner chain
all hingesare clockwise of their respectie normal cones.
Take ary trapezoid with heigh A (measued in the projec-
tion). The trapezdd belondng to the next edgeclockwise
musthave heigh greaterthanh. This contiruesarourd the
convex polygonuntil we reachthe original trapezad which
would have to have height greaterthanh. So someavhee
thereis a vertex a; whosehingeis courterclockvise of the
nomal coneat ay, while the hingeat a1 is clockwiseof
its respectre cone. O

Supmsethat we have locatedtwo successie verticesas
descritedin thepreviouslemma.For thecutsatbothvertices
tobeunsag,in eachcasesomeportionof edges rax1 is not
ontheresultinghull of theinnerchain(seeFig. 5). In other
words the type of dangerousopenng cannotbe the sameat
bothvertices.

Figure5: Thetype of dangeousopening (indicaed by the
cunes belov the labeledvertices)must alternatebetween
somepair of successie vertices.

Lemma4 Cuttinga hingeincidentto eitheray, or ax; (de-
finedin thepreviouslemma)mustresultin a chainthatis not
unsde.

Proof. Let usbegin by cuttingatar+1. As usual,we hold
arar1 fixedhorizantally andopenall angles. Newly cre-
ateda™ mustendup in theupperright quadgantof a 41, in
orderto havethenecessartypeof dangeousoperng. Now
we make a new cut at ay, andtranslatethe entireunfdded
chain(exceptthefixed edge)sothata™* re-attaclesto ag1.
We let the translatedcopy of ay, retainits label,andcall the
holizontaledges *a1. Noticethata;, mustbein thelower
left quadantof a* (seeFig. 6).

Now we have a new opene chain, excep that we have
nottaken careof the operingsattheangles of a, anday 1.
Sinceay41ax42 (previously a*ag+2) hadrotatedclockwise
in thefirst unfdding, andwe have merelytranslatedt back
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Figure6: Left: anunfddedchain. Right: translatingpart of
thechainsothatthe cut vertex is switched.

we mustrotateit cownterclochvise to returnit to its initial
orientation. We mustthenfurthe rotateit counteclockwise
in order to opentheinteriorangleata 4. Theentirechain
will rotaterigidly aswell. Thusaj canna crossinto the
uppe-left quadant of a*. Now noticethat duiing the first
opering, edgeay—1a; rotatedclockwise,dueto the open-
ing of the angleat a;. Sowe might expect thatin order
to compesatefor thisin ourfinal diagmamwe shouldrotate
ar_1ay counteclockwise(whichmightcauses; togoaboe
the hoiizontal line). After all, if a cutis madeat ay, then
ak—1a; mustrotatecourterclockwisefrom its initial posi-
tion, but now it is clockwise.However, sincethe openng of
theangleat a1 wasincludedin thefirst openng, andthis
hasnotbeentamperedvith, thenedgea _; a; mustbein its
correc position. The counteclockwisemotion producedby
adjustingthe angleat a1 is enoudp to make the direction
of ay_1 ax morecounteclockwisethanit wasinitially.
Thismeanghatcuttingata,, leadseitherto the sametype
of dangeousopeniry asa 41 Or to a safeopering. We con-
cludethatanopenirg which is notunsafeexists eitherat a
oratagyi O

Sincewe canalwaysfind a vertex to cut sothattheinner
chainopensto a positionthatis not unsafe we canalways
find an edgeto cut alongso that a nestedbandcanbe un-
folded

Theorem 5 Everynestedbandcanbeunfdded.

3 Remarks

In a closedband vetticesareallowedon the parallelplanes
of theslah We claim thatall closednestedband may also
be unfolded, thoudh prod is omittedhere. We alsobelieve
thata more comple prod establisheshatall bands maybe
unfdded. Evenwith it establishedhatarbitrary bards may
be unfdded without overlap, it remainsinterestingto seeif
thiswill leadto anunfolding of prismatoid without overap,
including thetop andbottompolygons A andB. It is natual
to hope they could be nestledon oppasite sidesof the un-
foldedband but it is notobvioushow to ensurenoroverap.
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