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Abstract

We show thatfinding the optimistic shortestpathon anun-
certainterrainis NP-hardusingaredudion similarto Canry
andReif'srediction of 3SAT to 3D Euclideanshortespath.

1 Introduction

Shortesipathprodemsarea well-studiedclassof problens
in theoreticalcompuer science.Oneparticdarly applicalte
type of shortespathproblemis to find the gealesicshortest
pathon aterrain. This type of algorittm finds the shortest
pathbetweentwo poirts that stayson the surfaceof ater
rain. The mostpopuar method for finding sucha shortest
pathinvolve avariantof Dijkstra’s algorithm andrunin time
appraimatelyO(n?2) in thesizeof theterrain[5, 4].

Thesealgotithmsfor calculatingshortespathsonaterrain
requile a predse input; ary erross in measung the terrain
translateinto erross in the outpu of the algoithms. What
appeas to be a shortest path accordng to the given input
may turn out to be longerthanan alternatepathin reality.
Uncertainterrainsare a nev modelfor acknavledgirg and
dealingwith theseerrors.

In this paperwe considemneversionof the shortespath
prodem on uncetain terrains: the optimistic shortestpath.
Essentially we would like to find the pathwhoselengthis
smallestover all pathsand over all possiblerealterrairs.

This seemgo be a slight genealizationof the traditioral
geodsicshortestpathprodem. We shaw thatit is, in fact,
moreakinto the prablemof findingtheshortespathin three
dimensims that avoids polyhedral obstacles.This prablem
wasshowvn to be NP-hardby Canry andReif [3] in 1986 It
is from their prod thatourwork is derived.

1.1 Definitions of Terms

A terrain is atwo-dimersionalsurfacein threedimensioml

spaceobtaired by triangulating the projectia into the xy-

planeof a setof n verticesin 3D (no two of which share
the samez, y coodinates)andusinglinearinterpdation to

obtainthe surfacewithin eachtriangle.
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An uncertainterrain is asetof n verticesin thezy-plare,
eachof which hasanassociated interval, anda triangua-
tion of the (zy-prgectionof the)vertices.Any terrainwhose
prdectioninto the zy-planeproduceshe sametriangulation
andwhosevertices have a z valuewithin the correspndirg
z intenal is consistentvith theuncertairterrain A vertexin
anuncertairterrainwith a z interval thatcontairs morethan
asinglevalueis calledanuncertainvertex.

A pathis a sequene of z,y coodinates. A pathcanbe
placedonaterrainto createa sequeneof 3D pointsby asso-
ciatingwith eachz,y coordnatethe correspndingz value
from theterrain. Thelengthof a pathon aterrainis thesum
of the EuclideandistancedetweeradjacenBD pointsafter
placingthepathontheterrain

The shortestroute from s to z is a sequene of terrain
edge traversedby a shortespathfrom s to x. A pathclass
is an equivalenceclassof points z that all have the same
shortesroute(s)from s.

1.2 Statement of the Problem

Givenanuncetain terrainandtwo pointss andt¢ in the zy-
plane we wantto find a pathfrom s to ¢ thathasthe shortest
lengthamongall pathsfrom s to ¢ wherethe pathlengthis
measuedontheconsistenterrainthatminimizesthelength
Castasa decisionprablem, this becoms, “Is therea path
from s to ¢t on someconsistenterrainof lengthat mostK ?”
We call thisthe optimistic shortespathsincewe aremeaswr
ing apathontheconsistenterrainthatminimizesits length

1.3 Overview

The decisionprodem is NP-hard It is not clearly in NP
dueto thealgebriéc comgexity possiblen shortespathson
terrairs [2].

To shaw thatthe prablemis NP-hardwe will usearedtc-
tion similar to Canry and Reif’s reductio of 3SAT to the
problem of finding shortestpathsin 3D with obstacleq3].
In fact, we construt gadgets (splitters,shuflers, etc.) that
performthesamefunctionsasthecorrespondig Canry-Reif
gadyets,but arepartof anuncertainterrainrathe thanbeirg
3D objects.

Let ® bea4SAT formulawith n variadesandm clauses.
Our constretion usesn path splitters to create2™ path
classesgachcorrespnding to a truth assignmenfor then
variables. Thenit directsthe pathsthroudh m clauseboxes,
eachof whichhas4 literal filters. Thepurpseof eachclause
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boxis to lengthereachpathclassthatdoesnothave asetting
thatsatisfieghe clause After the clauseboxes, the patls are
directedthroudh anotlercascadef n pathsplitters thistime
reversed.After thelastone,thereis only onepathclassleft.
We placet in this pathclass,andby measurig the shortest
pathlengthfrom s to ¢, we candeternine if ary oneof the
2™ shortestouteshave not beenlengttened. If so,thenwe

{IOIoop

Splitters Clause boxes
splitters

Figure 1: Overview of theconstructio

We will now look atthegadgetsin greder detail.

2 The Gadgets

2.1 Rotator

A basicopeaationthatour gadgets mustperfam is to rotate
the oriertation of the group of pathclassedy 90°. Thisis
important as a building block of othergadgtsandis per
formed by a rotator, which s like a squareof paperfolded
alongits diagoral. SeeFigure2 for anexampe of a rotator
of width 1 locatedat (0, 0,0) with athicknessparametery
thatis essentially0.

(1,%1)

Outpu Vertex ¢
Hd Al
P 5 i ) (1,2,10, 1]) .
Input Edge
P 100,0)
Frort View

(0,0,0)"
BackView

Figure2: Frontandbackview of arotatorshaving shortest
pathsacrosst asdottedlines

Sincethe shortespathsleave therotatorin avettical line,
we have chang@dtheorientationof the pathsfrom holizontal
to vertical.

2.2 Path Splitter

The pumposeof apathsplitter, asits namesuggests,is to take
n pathclassesandsplit theminto 2n pathclasses.

To createthe splitter, we constriet the uncertén terrain
so thatary shortestpathfrom s to ¢ mustenterat or near

theuncertairvertex d, crosseitheredge ef or fg, andcross
output edgeeg. Theheigh of theinputvertex d closelyde-
termiresthepoint atwhichthe pathcrossesheoutput edee.
SeeFigure3.

Note that splitters are like two rotatos that have been
joinedtogetter.

Input Vertex
(1,0,10,1])

(0:’758) ?2,7,0)

FrontView

f

BackView

Figure3: The splitter, shaving the dowling of the number
of pathclasses

Giventhesegadjets,we arereadyto describehefirst part
of the construgion. In front of theinitial poirt s, we con-
structawall thatis highenowghthatary shortespathfrom s
to ¢ mustgo arownd thewall to theleft or right. This creates
two shortesipathclassesFollowing this wall is a sequene
of n conrectedrotatorsandsplitters joinedattheircomma
vertex d andincreasingin size by a factorof 2 eachtime.
Whenwe join the rotatas andthe splittersat the vertex d,
we leave a gapbetweenvertex a ontherotatorandvertex e
onthesplitter It is possibleto fill this gapwith a very high
wall (or avery low trench, but for now we will leave gaps
unfilled andassumehat no shortestpathcanafford to pass
overagap.

The outpu edgeof the last splitter may be reachedrom
s via 2™ shortestoutes.Eachof theseshotestroutesinter-
sectsthe final outpu edgeat a different locationalongthe
output edee.

We nunbertheresultingpathclasseslongthis edgefrom
0 to 2™ — 1 andassociatehemwith the 2™ possibletruth
assignmets to thevariabes of theformua .

The restof the constructia lengthes the pathsin those
path classesthat correspondto unsatisfyng truth assign-
ments.

2.3 Path Shuffler

Thepathshufleris designe to output aperfect shufle of the
pathclassesnputtoit. A perfectshufle takesthe sequene
01234567 andpermutest to 0415263, for exanple. Notice
thatthis is the sameasdoing a circularbitwise right shift of
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eachnunberin thesequenceThus, if 01234667is theorder
of pathclasse®ntheinputedge of ashufler, 041326374is
theorderontheoutpu vertex.

Theimplementationof the shufler is similar to theimple-
mentationof the splitter The shufler canalso be seenas
beingcompsedof two rotatos put together Assumethat
the pathsare § apart. We will split the group of pathsinto
two parts,sothathalf goto onesideandhalf goto theother
When the groy hasbeensplit, one of the halves will be
raiseda slightamoun (1/2 + §/4) andtheotherhalf will be
loweredthe sameamount. The pathswill thenberotatedso
thatthey interleave vertically.

In orderto ensurethat pathsdo not crossinto the wrong
grop, we put a gapbetweerthe two grougs of paths. This
is shavn in Figure4 asthegraytriangle.

The shortestpathsleave the rotatos through point a or
pointb in Figure4. They thentravel alongedgeac or bc to
pointe. Pointc is theinput vertex to areversedrotata (nat
shawn) thatrotatesthe group of pathsbackto horizantal.

(0727 _% - g)

(0,1,0)

(17 17

(0,0,0)
0123
InputEdge

4567

Figure4: The shufler viewed from above. Thecircledre-
gions containrotatos, shavn projectel into the zz plane
above the shufler at the correctrelative heights. The ver
tex markedc is the outpu vertex.

2.4 Literal Filter

Theliteral filter is a meta-@dget.It consistsof n pathshuf-
flers and one barier. We usethe literal filter in order to
stretchout pathsthat have a truth valuethatis oppositethe
truth valueasledfor in a clause.For exampe, if we wantto
expresszs, we stretchall pathsin thosepathclassesvhose
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corresponéhg truth assignmenhasa 1 in thethird position
To dorthis, we take the pathsthrouch threeshuflers. At this
point we have all the pathswith a 1 in their third bit in the
left half of the output edgeandall the pathswith a 0 in the
right half. Thenwe puta barrieronthe sidewith theonesto
stretchall of them. Finally, we putn — 3 shuflersto getthe
pathsbackin their original positions.

2.5 Clause Box

A clausebox consistf two cascadedplitter/ rotatorcom-
binatimsthathave the effect of splitting eachpathinto four
copies. Thesearefollowed by a literal filter for eachliteral
in the clauseput in parallel so that eachof the copiesof a
given pathgoes throughexactly oneliteral filter. Finally, we
addtwo reversedsplitter/ rotata combnations.

A shortpath P existsthrowgh this gadyetif andonly if P
belorgsto apathclassthatcorrespadsto atruthassignment
thatsatisfiesatleastoneliteral in theclause.

. Splitters

Literal filters

Splitters

Figure 5: The clausebox

3 The Hardness of Optimistic Shortest Paths

We will now shav thateachgadget increasedhe length of
the shortespathtraveling throughit by a specifiedamoun.
Wewill alsoshav thata paththattravelsthrough agadgetin
anonshortesmannemwill bedetectablattheend.

Lemma 1l For arotator of widthw, there existsa pathfrom
apointin ([zo,21],0,0) ontheinputedge to theoutpu ver-
tex of lengthlessthanor equd to w+ 2+ onlyif thepathexits
throudh theoutput vertexin therange (w, 2+, [zo—¢, 1 +£])

wheey = 8—2

13
w "

Proof. In orderto find the locally optimal pathacrossa ro-
tator, first we considerthe unfdding of the rotatorwhenthe
output vertex is at its lowestpossibleelevationand~y = 0.
The shortestpath from the point (z¢,0,0) is clearly the
straightline acressto (zq,w,0). If we refold the rotator
this pointgoes to (w, 2y, o). Sincepoirts canonly exit via
theoutput vertex, the outputvertex mustmove to thatpoirt.
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VAT

a w b
Figure 6: The unfdding hasthree fixed verticesand the
fourth insidethe shadedstrip.

Now considerthe casewheny # 0. Whereaghe unfdd-
ing of therotatorwasa squarewith edgelengthw, it is now
a quadilateral. In the unfdding (seeFigure 6), the trian-
gle abe forms aright-angledtrianglewith leg lengthsw and
v w? + 2. Thefourth vertex d falls within a strip of width
~ abovethew x y/w? + ~2 rectamyle. We canconstret an
apprximationof thequadilateralthatis aw x w squarewith
a2~ stripaddedo thetopto representheuncetainlocation
of d; theoutpu vertex d mustbeinsidethis strip.

If we consicer apathof lengthw + 2+ acrassthis qualri-
lateralfrom anarbitrary input point, thewidth of theregion
thatthe outpu pointcouldpotentiallybein is 4/ (w + 7).
Therebre,if v = % thisregion hasawidth thatis lessthan
2¢. Thus,if theinputpoint startsin range [z, 1], it will exit
intherange [zg — €, 21 + €]. O

Lemma?2 For a shufler of width 2w, there exists a
path from a point in ([z¢,21],0,0) on the input edee to
the outpu vertex of length less than or equal to 2w +
Vw? + (w/2 + §/4)2 + 2 onlyif theoutput vertex s either
in (w,2w+3y, [to—w/2—6/4—e,x1 —w/2—0/4+€]) or
in(w,2w+3y, [xo+w/2+ /4 —c,x1 +w/2+ /4 +¢]),
depeningwhetherzy < z; < 1 or not.

Proof. Thelocally optimal motionfor apathenteringashuf-
fler is for the pathto travel in a straightline to the rotator
acrosgromit. Onceit is attherotator Lemmal applies. O

FromLemmal andLemma2, we candedicethe maxi-
mumdistancepossiblefor any locally optimal paththatcor
respois to a truth assignmenthat satisfiesthe formula ®.
This distancewill alwaysbelessthantheminimumdistance
of ary paththatis eithernot locally optimal or that corre-
spond to a truth assignmenthat doesnot satisfy the for-
mula ®. We ensurethat no path crossedrom a pathclass

representingonetruth assignmento a pathclassthatrepre-
sentsanotheiby makingtheinitial wall verywide. Sincethe
width of a pathclassonly grows by 2¢ for eachgadget, the
pathclassesarenever closeenowgh that charging from one
to theotheris alocally optimalmotion. Thuswe have

Theorem 3 The optimistic shortestpath problemis NP-
hard. Thatis, we canfind a path that haslengh < K if
andonlyif wecanfinda settingof variablesthat satisfieghe
formula® in 4-CNFform.
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