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We show thatfinding theoptimisticshortestpathon anun-
certainterrainis NP-hardusingareduction similar to Canny
andReif’sreductionof 3SAT to 3D Euclideanshortestpath.
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Shortestpathproblemsarea well-studiedclassof problems
in theoreticalcomputer science.Oneparticularly applicable
typeof shortestpathproblemis to find thegeodesicshortest
pathon a terrain. This type of algorithm finds the shortest
pathbetweentwo points that stayson the surfaceof a ter-
rain. Themostpopular methods for finding sucha shortest
pathinvolveavariantof Dijkstra’salgorithm andrunin time
approximately � �"!$#&% in thesizeof theterrain[5, 4].

Thesealgorithmsfor calculatingshortestpathsonaterrain
require a precise input; any errors in measuring the terrain
translateinto errors in the output of the algorithms. What
appears to be a shortest path according to the given input
may turn out to be longer thanan alternatepath in reality.
Uncertainterrainsarea new modelfor acknowledging and
dealingwith theseerrors.

In this paper, we consideroneversionof theshortestpath
problem on uncertain terrains: the optimistic shortestpath.
Essentially, we would like to find the pathwhoselengthis
smallestover all pathsandover all possiblerealterrains.

This seemsto bea slight generalizationof the traditional
geodesicshortestpathproblem. We show that it is, in fact,
moreakinto theproblemof findingtheshortestpathin three
dimensions that avoids polyhedralobstacles.This problem
wasshown to beNP-hardby Canny andReif [3] in 1986. It
is from theirproof thatourwork is derived.
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A terrain is a two-dimensionalsurfacein three-dimensional
spaceobtained by triangulating the projection into the 9(: -
planeof a set of ! verticesin 3D (no two of which share
the same9/;<: coordinates)andusinglinear interpolation to
obtainthesurfacewithin eachtriangle.
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An uncertainterrain is asetof ! verticesin the 9?: -plane,
eachof which hasanassociated@ interval, anda triangula-
tion of the( 9?: -projectionof the)vertices.Any terrainwhose
projectioninto the 9(: -planeproducesthesametriangulation
andwhosevertices have a @ valuewithin thecorresponding
@ interval is consistentwith theuncertainterrain. A vertex in
anuncertainterrainwith a @ interval thatcontains morethan
asinglevalueis calledanuncertainvertex.

A path is a sequence of 9A;7: coordinates.A pathcanbe
placedonaterrainto createasequenceof 3D pointsby asso-
ciatingwith each9A;7: coordinatethecorresponding @ value
from theterrain.Thelengthof a pathona terrainis thesum
of theEuclideandistancesbetweenadjacent3D pointsafter
placingthepathontheterrain.

The shortestroute from B to 9 is a sequence of terrain
edges traversedby a shortestpathfrom B to 9 . A pathclass
is an equivalenceclassof points 9 that all have the same
shortestroute(s)from B .
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Givenanuncertain terrainandtwo points B and N in the 9?: -
plane, wewantto find apathfrom B to N thathastheshortest
lengthamongall pathsfrom B to N wherethepathlengthis
measuredontheconsistentterrainthatminimizesthelength.
Castasa decisionproblem, this becomes, “Is therea path
from B to N onsomeconsistentterrainof lengthat most O ?”
Wecall this theoptimistic shortestpathsincewearemeasur-
ing apathontheconsistentterrainthatminimizesits length.
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The decisionproblem is NP-hard. It is not clearly in NP
dueto thealgebraic complexity possiblein shortestpathson
terrains [2].

To show thattheproblemis NP-hard,wewill useareduc-
tion similar to Canny andReif’s reduction of 3SAT to the
problem of finding shortestpathsin 3D with obstacles[3].
In fact, we construct gadgets(splitters,shufflers, etc.) that
performthesamefunctionsasthecorresponding Canny-Reif
gadgets,but arepartof anuncertainterrainrather thanbeing
3D objects.

Let U bea 4SAT formula with ! variablesand V clauses.
Our construction uses ! path splitters to create W(X path
classes,eachcorresponding to a truth assignmentfor the !
variables. Thenit directsthepathsthrough V clauseboxes,
eachof whichhas4 literal filters. Thepurposeof eachclause
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boxY is to lengtheneachpathclassthatdoesnothaveasetting
thatsatisfiestheclause.After theclauseboxes, thepaths are
directedthrough anothercascadeof ! pathsplitters,thistime
reversed.After thelastone,thereis only onepathclassleft.
We place N in this pathclass,andby measuring theshortest
pathlengthfrom B to N , we candetermine if any oneof the
W�X shortestrouteshave not beenlengthened.If so, thenwe
know thatour formula is satisfiable.

Reversed
splitters

Clause boxesSplitters

Figure 1: Overview of theconstruction

We will now look at thegadgetsin greater detail.
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A basicoperationthatour gadgetsmustperform is to rotate
the orientation of the group of pathclassesby _.`/a . This is
important as a building block of othergadgets and is per-
formed by a rotator, which is like a squareof paperfolded
alongits diagonal. SeeFigure2 for anexample of a rotator
of width 1 locatedat �b`�;<`(;<`
% with a thicknessparameterc
thatis essentiallỳ .
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Figure2: Frontandbackview of a rotatorshowing shortest
pathsacrossit asdottedlines

Sincetheshortestpathsleave therotatorin a vertical line,
wehavechangedtheorientationof thepathsfrom horizontal
to vertical.
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Thepurposeof apathsplitter, asits namesuggests,is to take
! pathclassesandsplit theminto W�! pathclasses.

To createthe splitter, we construct the uncertain terrain
so that any shortestpathfrom B to N mustenterat or near

theuncertainvertex
l
, crosseitheredge o&p or p?q , andcross

output edgeojq . Theheight of theinput vertex
l

closelyde-
terminesthepoint atwhich thepathcrossestheoutput edge.
SeeFigure3.

Note that splitters are like two rotators that have been
joinedtogether.
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Figure3: Thesplitter, showing thedoubling of thenumber
of pathclasses

Giventhesegadgets,wearereadyto describethefirst part
of the construction. In front of the initial point B , we con-
structawall thatis highenoughthatany shortestpathfrom B
to N mustgo around thewall to theleft or right. This creates
two shortestpathclasses.Following this wall is a sequence
of ! connectedrotatorsandsplitters,joinedat theircommon
vertex

l
andincreasingin sizeby a factorof 2 eachtime.

Whenwe join the rotators andthe splittersat the vertex
l
,

we leave a gapbetweenvertex f on therotatorandvertex o
on thesplitter. It is possibleto fill this gapwith a very high
wall (or a very low trench), but for now we will leave gaps
unfilled andassumethatno shortestpathcanafford to pass
overa gap.

Theoutput edgeof the last splitter maybe reachedfrom
B via W.X shortestroutes.Eachof theseshortestroutesinter-
sectsthe final output edgeat a different locationalongthe
output edge.

Wenumbertheresultingpathclassesalongthisedgefrom
` to W X[r e andassociatethemwith the W X possibletruth
assignments to thevariablesof theformula U .

The restof the construction lengthens the pathsin those
path classesthat correspondto unsatisfying truth assign-
ments.
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Thepathshuffler is designed to output aperfect shuffleof the
pathclassesinput to it. A perfectshuffle takesthesequence
01234567 andpermutesit to 04152637, for example. Notice
thatthis is thesameasdoing a circularbitwiseright shift of
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eachnumt berin thesequence. Thus, if 01234567is theorder
of pathclasseson theinput edge of a shuffler, 041526374is
theorderon theoutput vertex.

Theimplementationof theshuffler is similar to theimple-
mentationof the splitter. The shuffler canalsobe seenas
beingcomposedof two rotators put together. Assumethat
the pathsare u apart. We will split the group of pathsinto
two parts,sothathalf go to onesideandhalf goto theother.
When the group hasbeensplit, one of the halves will be
raiseda slightamount ( e�v�Wxwyu.v&z ) andtheotherhalf will be
loweredthesameamount. Thepathswill thenberotatedso
thatthey interleavevertically.

In orderto ensurethat pathsdo not crossinto the wrong
group, we put a gapbetweenthe two groups of paths.This
is shown in Figure4 asthegraytriangle.

The shortestpathsleave the rotators through point f or
point

h
in Figure4. They thentravel alongedgef3g or

h g to
point g . Point g is the input vertex to a reversedrotator (not
shown) thatrotatesthegroupof pathsbackto horizontal.
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Figure4: The shuffler viewed from above. The circled re-
gions containrotators, shown projected into the 9?@ plane
above the shuffler at the correctrelative heights. The ver-
tex marked g is theoutput vertex.
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Theliteral filter is a meta-gadget.It consistsof ! pathshuf-
flers and one barrier. We usethe literal filter in order to
stretchout pathsthat have a truth valuethat is oppositethe
truthvalueaskedfor in a clause.For example, if we wantto
express9�� , we stretchall pathsin thosepathclasseswhose

corresponding truth assignment hasa 1 in thethird position.
To do this,we take thepathsthrough threeshufflers. At this
point we have all thepathswith a 1 in their third bit in the
left half of theoutput edgeandall thepathswith a 0 in the
right half. Thenwe puta barrieron thesidewith theonesto
stretchall of them.Finally, we put ! r � shufflers to getthe
pathsbackin theiroriginalpositions.
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A clauseboxconsistsof two cascadedsplitter/ rotatorcom-
binationsthathave theeffect of splitting eachpathinto four
copies. Thesearefollowed by a literal filter for eachliteral
in the clauseput in parallelso that eachof the copiesof a
given pathgoes throughexactlyoneliteral filter. Finally, we
addtwo reversedsplitter/ rotator combinations.

A shortpath � existsthrough this gadget if andonly if �
belongsto apathclassthatcorrespondsto atruthassignment
thatsatisfiesat leastoneliteral in theclause.

Literal filters

Splitters

Splitters

Figure 5: Theclausebox
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We will now show that eachgadget increasesthe lengthof
theshortestpathtraveling throughit by a specifiedamount.
Wewill alsoshow thatapaththattravelsthrough agadgetin
anon-shortestmannerwill bedetectableat theend.

Lemma 1 For a rotator of width � , there existsa pathfrom
a point in �<i 9��
;79 { k�;<`�;n`F% on theinputedgeto theoutput ver-
tex of lengthlessthanor equal to ��w W&c onlyif thepathexits
through theoutput vertex in therange �"��;]W&c$;ji 9�� rG� ;<9 { w � k"%
where c[���7��<� .

Proof. In orderto find the locally optimalpathacrossa ro-
tator, first we considertheunfolding of therotatorwhenthe
output vertex is at its lowestpossibleelevationand c�� ` .
The shortestpath from the point �"9 � ;n`�;n`F% is clearly the
straight line across to �"9 � ;<��;<`
% . If we refold the rotator,
this point goes to �"��;]W&c$;79¡�¢% . Sincepoints canonly exit via
theoutput vertex, theoutputvertex mustmoveto thatpoint.
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Figure 6: The unfolding has three fixed verticesand the
fourth insidetheshadedstrip.

Now considerthecasewhen c�¥�¦` . Whereastheunfold-
ing of therotatorwasa squarewith edgelength � , it is now
a quadrilateral. In the unfolding (seeFigure 6), the trian-
gle f h g forms a right-angledtrianglewith leg lengths� and£ � # w§c # . Thefourth vertex

l
falls within a strip of width

c above the �©¨ £ � # w¤c # rectangle. We canconstruct an
approximationof thequadrilateralthatis a �ª¨�� squarewith
a W&c stripaddedto thetopto represent theuncertain location
of
l
; theoutput vertex

l
mustbeinsidethis strip.

If we consider apathof length �«w¬W&c acrossthis quadri-
lateralfrom anarbitrary input point, thewidth of theregion
thattheoutput pointcouldpotentiallybein is z £ c��"�¬w§c­% .
Therefore,if cª� �7��n� , this region hasawidth thatis lessthan
W � . Thus,if theinputpoint startsin range i 9 � ;<9 { k , it will exit
in therange i 9 � r�� ;<9 { w � k . ®
Lemma 2 For a shuffler of width W�� , there exists a
path from a point in �<i 9 � ;79 { k�;<`(;<`F% on the input edge to
the output vertex of length less than or equal to W�� w£ � # w¯�"�Sv.WGwyu.v�z
% # w�W&c onlyif theoutput vertex is either
in �d��;nW��|w8��c�;¢i 9?� r �Sv�W r u.v&z r°� ;79 { r �Sv�W r u.v&zAw � k�% or
in �d��;nW��±w²��c�;¢i 9?�Aw²�Sv�W³w�u.v&z r|� ;79 { wª�Sv.W³w²u.v�z´w � k"% ,
dependingwhether9¡�¶µ�9 {¸· e or not.

Proof. Thelocallyoptimalmotionfor apathenteringashuf-
fler is for the pathto travel in a straightline to the rotator
acrossfromit. Onceit is attherotator, Lemma1applies. ®

FromLemma1 andLemma2, we candeducethe maxi-
mumdistancepossiblefor any locally optimal paththatcor-
responds to a truth assignmentthat satisfiesthe formula U .
Thisdistancewill alwaysbelessthantheminimumdistance
of any paththat is eithernot locally optimal or that corre-
sponds to a truth assignment that doesnot satisfy the for-
mula U . We ensurethat no pathcrossesfrom a pathclass

representingonetruth assignmentto a pathclassthatrepre-
sentsanotherby makingtheinitial wall verywide. Sincethe
width of a pathclassonly grows by W � for eachgadget, the
pathclassesarenever closeenough thatchanging from one
to theotheris a locally optimalmotion.Thuswe have

Theorem 3 The optimistic shortestpath problem is NP-
hard. That is, we can find a path that has length µ¹O if
andonly if wecanfinda settingof variablesthatsatisfiesthe
formula U in 4-CNFform.
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