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Surface Reconstruction, One Triangle at a Time

DanielFreedmah

Abstract

A new algorithmis presentedor surfacerecorstructionfrom

unoganzed points. Unlike mary existing methals, this al-
gorithm doesnot selecta subcanplex of the Delauray Tri-

anguation of thepoints.Insteadjt usesanincremenal tech-
nique addirg onetriande of the surfaceatatime. As are-
sult, the algoiithm doesnot requirethe surfaces embedéihg

spaceto be R?; the dimensim of the embedling spacemay
vary arbitrarily without substantiallyaffecting the comple-

ity of thealgorithm A wider variety of surfacesmaythere-
fore be recorstructed,includng the classof non-orientalte

surfaces,suchasthe Klein Bottle. The algorithmis of an
expelimentalcharacterwhile it is motivated from geometic

andtopolggical intuition, no prods of homeanorphismare
given Instead,its efficacy is demorstratedfrom the poirt

of view of corred¢ exparimentalrecastructionof surfaces of

varying genus.

1 Introduction

This papertreatsthe prodem of surfacereconstration from
unoganzedpoints. A critical distinctionfrom previous sur
face recmstructionalgoithms is that the currert method
doesnot requre the surfaceto beembededin R3. Rather
the surfacemay be embededin anarbitraryHilbert space.
As aresult,we mayargue thatthe currentalgorithm is more
“topalogically intrinsic;” asit degendsonly onthe manifold
itself, andnot the spacan which the manifoldlives. Practi-
cally speakingthe algoiithm canreconstrat mary surfaces
which cannad be reconstrated usingearlieralgorithms; the
mostinterestingof theseareperhag the non-orientdle sur
facessuchastheKlein Bottle andtherealprojective plane.
The algorithm is able to function in a high-dimensioml
embedling spacebecausat is incrementd At eachitera-
tion, the surfaceis grown by addirg a singletriangle.A ma-
jor issuerelatedto suchanincremental algorithm is thefol-
lowing: how canwe canavoid choasing trianglesthatlead
to surfaceself-intersectias?We dealwith this issueby per
forming all compuationslocally, in a planewhich appro-
imatesnearbytanget spacesf the manifdd. Within this
plane we canguaanteethata new triangde exists,whichcan
be addedwithout leadingto self-intersectios. Notethatthe
emplasisof thispapelis experimentalinsteadf proving the
“correctnesof asurface thealgoritrmsaremotivatedfrom
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Figure 1: Adding the secondcoface. The notationin this
figure will beusedthroughou the paper

thepoint of view of geometic andtopologcal intuition. The
proof, in this case,is in the puddirg, andthe resultsshav
thatthe algotithm works on a variety of surfaces,including
thoseof codmension> 1.

2 Related Work

Thefollowing suney of theliteratureon surfacerecastruc-
tion is not exhaustive, dueto spaceconstraits. Oneof the
earliestpapersin the field wasthat of Boissona{6], which
preseteda metha of “sculpting” DelaunayTriangulations.
The algorithmof Hoppe et al. [15] corstructeda function

whosezeroleve-setwasthesurface.CurlessandLevoy [8]

madeimprovemaentsto this algoiithm by takingadvartageof
thetypeof datathatis producedby laserrange scannes. The
Ball-Pivoting Algorithm of Bernardim etal [5] is veryfastin

practice but requilesrelative uniformity of samplirg.

Thecrustof AmentaandBern[2] providedthefirst algo-
rithm which both allowed for highly nonuniform samplirg
andwhich provided theoretich guaantees. This algoritim
wassimplifiedin [3], aswasthe proof of homeomophism.
Finally, certainguarateesof the “watertightress” of a sur
facearegivenby the power-crustalgorithm[4].

Dey andothes have useda relatednotion, the “co-cone];
in order to develop severd new algorithns. Someof these
extersionsinclude: algorithms with bettercomplexity [13];
algoithmswhich areimplementedusingdatastructuresie-
signedto hande large amounts of data[11]; andalgoithms
which allow for the detectionof undersamplind9]. A more
recen pape [10] usesheco-caeideain orderto determire
thetopolagical dimensionof variows objects,andpresenta
recorstructionschemebasedn the computeddimensian.

Otherappr@achesncludethoseof Adamyetal [1], Gopi
etal [14], BoissonaandCazalq7], andEdelsbruner[12].

3 Incremental Reconstruction

In this section,we describethe incremental algoritm for
surfacereconstrgtion, which maybeappliedto ary surface
without boundarywhich is embedeédin a Hilbert Spaceof
dimersion D. Thealgorithm is givenin pseudoodein Fig-
ure 2; smalleralgoithms, which are calledby the main al-
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ReEconsTRUCT({z;}7 ;)
(e, f1. t1, K) = INITIALIZE({2; }7 ;)
do
b = barycettre(e)
(T, L) = FILTER({z; }7y, t1, b, e, K)
{u;}ier = PROJECT({z;}y, €, t1,b,T)
dmin = 00
forallt, € T
7 = e U {ta}
if [|ze, — b|| < dmin
if INTERSECT(f?%, L, {u;};er) = False
dmin = ||z1, — ]|
f2 — got
K=KU{o:0C f2}
draw (e, f1, t1) from K with #cofacese) = 1
until thereis noe
returnkK

Figure2: Incrementakecorstruction.

gorithm, arespecifiedn Figures3, 4, and5. Thealgaithm
grows the surfaceby addirg onesimplex atatime. At each
iteration, the algorithm choosesa “dangling edge” e from
thecurrentsimplicial complex K: anedgewhich hasonly a
singlecoface, f;. Sincethe surfaceis assumedo be with-
out bowndary every edgemust have exactly two cofaces;
thegoalis thento find a secondcoface f5 for this danding
edge. SeeFigure 1, which shawvs the notationto be used
throughou the paper Whenthe new simplex f, is added,
the danglirg edge will nolonge be danding; however, the
new simplex maybothcreatenew danglirg edgesaswell as
destry otherexisting danglingedges.The algoiithm termi-
nateswhenthereareno moredanding edgesat this point,
we have produceda 2-manibld without boundary

The INITIALIZE routine givenin Figure 2 generateshe
initial triande f; (aswell asotherquantities).Dueto space
constraims, the INITIALIZE algorithmis not detailedhere;
however, onemayimaginea variety of possiblealgorittms.

3.1 Filtering

FILTER({mi}Py, t1, b, e, K)

_ zelfb
P = Taa—ol
61 = (mh - b) - (mh - b7p>p
r=90
fori=1ton

&2 = (@i —b) — (zi — b,p)p
if ande(é1,&) >m—e¢
r=TU{i}
L={oceK:ver{o} CT}
return(l’, L)

Figure3: Filtering of the simplicial comple K.
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Beforethesecondtofacef is addedwe have asimplicial
compex K. Wewouldliketo ensurghatafteraddirg f-, we
still maintaina simplicial comgex; thatis f, canonly inter
sectthe othersimplicesof K is the “natural” waysallowed
for a simplicial comple. The only simplicesin K which
might intersectary poteriial secondcoface f, arethosein
the neighbourtood of the danding edgee. As a result,we
filter both the setof samples({1,...,n} andthe simplicial
compex K, to geta subseof samplesof I anda subcom
plex L which arein the neigtbouthoodof e.

We canna straightbrwardly useadistancecriterionto de-
tectthe neighbouhoodof e, asthe pointsmay be quite non
uniformly sampled. Instead,we usea tangat spacebased
methal. The ideais to appoximatethe tangat spaceof
points nearthe danglirg edgee by the plane P; runming
throughe’s first coface f;. (ConsultFigurel for notation)
Now, considetthevertex i; we maycombire this vertex with
thedanding edgee, to form a secondplaneP,. Theideais
thatwe conside: to lie in theneighourtoodof thedanglirg
edgeif thetwo planesP; and P, arealmostcoincicent,that
is, thereis ananglebetweerthemof nearlyz. Theintuition
behird thisfilter is straightfoward: if theoriginal surfaceM
is smoothandwell-sampledthereshouldbe several points
1 arourd ary danding edgee suchthat the two planesP;
and P, form an angleof greder thanm — e. Thesizeof ¢
reflectsthe fact that we are not infinitely well-sample¢d we
havefounde = 7 /4 to beanexcellentchoicein practice for
thesurfacegestedn this paper

A questionremains: how to compte the anglebetween
the planesP; and P,? This angleis compued asthe angle
betweentwo vectas £; andé&,; & lies in plane P;, andis
perpendicdar to theedgee. SeeFigure3 for precisedetails.

Oncethe pointshave beerfiltered, it is a simplematterto
filter the simplices.If K is theoriginal simplicial comgex,
andT is the filtered setof vertices,thenL = {¢ € K :
vert{c} C T'} is thefiltered subcomfex. In otherwords,
we retainexactly thosesimplicesin which all of thevertices
have passedhe angletest. This begs the question:arethere
ary simpliceswhicharenotin theneigtbourtoodof thedan-
gling edgewhich areretaine® The answeris yes. Sucha
simplex comesaboutif it lies, approximately in thetangat
spaceof the first coface f; of the danding edgee. Note,
however, thatregardlessof thelocationof sucha simplex, it
is distortedvery little in the processof projection to bedis-
cussedn thenext section.As aresult,therearetwo possibil-
ities: (a)thesimplex is in theneighturhad of thedanglirg
edgein whichcaset is is crucialto theincremeral triangu
lation procedire; (b) thesimplex is notin theneighlouriood
of the danglirg edge,andis not distorted,in which caseit
doesnotaffecttheincremenal triangdation procedure.

3.2 Projection

The ultimate goal is to choosea secondcoface f» for the
danding edee e. In orde to do so,we wouldlike to beable
to perform “incrementaltriangdation” in the plane,which
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PROJECT({z;}* ;,€,t1,b,T)
T = orthorormalbasisfor {z.2 — zt,, Te1 — T4, }

forie?T

et g
Ui = Tt L (@i )

return{u; }ier

Figure4: Projection ontotheplane.

will bediscussedn the next section.However, incremeral
trianguationis only possibldf we situatetheneigtbouhood
of e, asemboded in thefilteredsubconplex L, in the plane.
Thus,we prgectall pointsin I' andsimplicesin L, retaining
the sameabstractsimplicial (sub)caonplex, but obtainirg a
new geonetric one.

Let T' be an orthamormd basis for the plane runring
throughthefirst cofacef; of thedangligedge T isaD x 2
matrix. In this, casea straightfaward orthogoral prgection
of a point z ontothis planeis specifiedby it = T7(z — b),
whereb is thebarycetre of the danding edge.This particu-
lar choicemakesthebarycentreb theorigin of theplane;this
is anarbitrary but sensiblechoicegiven the crucialrole of
thedargling edge.Becaus®f thefiltering, all pointslie near
the planeontowhich we areprojecting; thus,the prgection
is closeto anisometry However, whatever local distortion
is introduced may be lessenedf we modify the prgection
slightly. In particular we ensurethat the projection of a
given sampleis the samedistanceaway from the origin of
the prgectedspace(which correspadsto the projection of
b) asthesampleis from b in theembedling space Thus,we
have thatu = %TT(QZ —b). (Notethatwe neednot
worry abou thecaseT' T (z — b) = 0. Thereasoris thatwe
have filteredall pointsfor which sucharelationis possible.)

3.3 Incremental Triangulation

INTERSECT(f2, L, {u;};er)
test= False
for all & € L andwhile test= False
solve thefollowing linearprogram:

maxa’gﬂ = ziefg“—d a;

subjectto: Ziefé"’i QiU = EjEJ Bjuj
Ziefé"” ai=1, 3,0 =1
[67] Z 0, /Bj 2 0

if thereis afeasiblesolutionwith 8* > 0
test=True
returntest

Figure5: Determinirg whetheror notthefacefz”"t intersects

thesubconplex L.

We may now turn the task of deternining the secondco-

A e B C
Figure7: An illustration of the proof thatthereis alwaysa
seconccofacef,; seetext. Therayis thedottedline.

face f, of the danglirg edgee. In particdar, we mustfind
avertex ty in thefiltered setof verticesI; f, is thenthe 2-
simplex whose verticesarethe verticesof e comhned with
t>. Now, we may form the abstractcollection of subsets
L = LU{o: 0 C fy}; furthermoe, we may form the
collectionof subsetsn the planeé by mappirg eachver-
tex i in L to its corresponéhg projectedpoint u;. The key
propertyfor ary f, to satisfyis that G mustbe a geonetric
simplicial complex. In otherwords, fo mustonly intersect
the existing simplicesin the neighlourhad of the danglirg
edgee in the naturd wayswhich leave theentireensemble
simplicial compex.

Ourfirst taskmustbeto determire whethersucha coface
fo alwaysexists. Forturately, this is the case,ascaneasily
bedemamstrated.

Theorem: If L contairs at leastonevertex which doesnot
lie on theline through e, thenthereexists a secondcoface
f2, which,whenaddedo L, leaves L a simplicial comgex.

Proof: Labelthetwo verticesof theedgeA andB, asshovn
in Figure7. Take aray whoseendmintis A, andwhichlies
alongthe edgeAB. Rotatethis ray upwards into the half-
planewhich doesnot containf,, asshavn in Figure7; note
that basedon the filtering procedire, therewill be no ver-
ticeslying in the halfpanecontainng f;. Stoprotatingthe
ray whenit first intersectsa simplex. Notethatit is possi-
ble thatthe ray initially intersectssomevettices, whenthe
angleof rotatian is 0, suchaspoint C in Figure7; however,
we only look for intersectios oncethe angleof rotationis
greate than0. Therearetwo possibilities.(1) Therayinter
sectsa vertex. This vertex may eitherbeisolated,or it may
belorg to anedgeor triande. In ary of thesecasesit is easy
to seethatwe may usethis vertex ast», the third vertex of
thesecondcoface f, of thedanglirg edgee. To seethis, as-
sumeto thecontiary, thatthisvertex will notgive usaproper
f2. Inthiscasewe musthave thatandhersimplex intersects
theinteriorof f,. However, thisis impossibleastheinterior
of f5 lies below theray; andwe know thatthereareno sim-
plicesbelow theray, by constrietion. Thisyieldsthedesired
contiadiction. (2) Theray intersectanedge.Theedgemay
beisolated,or it maybe afaceof atriangle. In eithercase,
we mayusethevertex of theedg whichis closerto thedan-
gling edee e ast,. Theargunentis preciselythe sameasin
the first case. In the casethat the ray intersectamorethan
onesimplex simultaneasly, we may simply take the vertex
whichis closesto thedanding edge ast», andthe previous
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Figure6: Resultson various surfacesseetext for moredetails.

argumentscarrythrough. O

Containedn this proof is in factanalgorithm However,
we do notusethisalgoiithm, asthetriangle f» pickedout by
this algorithmmay not be “geometrically nice” For exam-
ple,it couldbeaverylong, skinny trianglewhich is almost
parallelto the danding edge.Thus,we find all possibletri-
angleswhich are valid, and choase the one which is best.
Therearea variety of criteriawe coud useto designatehe
besttriangle,but we choosea naturalone: the proximity of
third vertex t- to thebarycentreb of thedanglingedge.

Thus,the prablemredu@sto finding analgorithmfor de-
terminirng whethertwo simplices,o (ary simplex in L) and

§’Ot (apotentialseconccoface intersecin a“problematic”
way. This algorithm canbe designedas a linear progam,
shown in Figure5. Here,the varialesarea = {ai}iefgat

andg = {f;};er; thesearethe barycentriccoodinatesof

§’°t ando, respectiely. The threeconstrénts ensurethat
the two simplicesintersect. The objedive function will be
positiveif thetwo simplicesintersectput do notintersectn
acomma face;if they intersectn acomnonfaceit will be
0. As aresult,we simplytestif thelinearprogamhasafea-
sible solutionwith a positive valuefor the objective function
(0* > 0). If thisis the casethenthe simplicesintersectin a

prodematicway, andfg"’t is notavalid seconccoface.

3.4 Complexity

Let F' bethe numbe of facesof the surface E the number
of edgesandn thenumter of samplepoints. Thenthe com-
plexity of thealgorithmcanbeanalyzedlirectlyfrom Figure
2. (a) Themainlooprurs F' times.(b) Themainloopof FiL-
TERis O(n), andthecomputationof Lis O(n+ E+ F). (c)
PrROJECT is O(|T']). (d) The schemeo determinesimplex-
simplex intersectionis O(1), asthe dimensionof thelinear
progamis a constantunrdatedto n, E, or F'. As aresult,
INTERSECT is O(|L|), andtheinnerloop (“for all ¢, € I")
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isO(|T'||L]). (e) Drawing anew danglirg edge from K takes
O(|K|) = O(n + E + F). (f) While notdescribe explic-
itly, theprocedureto find thefirst simplex is O(n). Thus,the
total comgexity is O(F(n + E + F + |T||L])).

We cansimplify this expressionpasedn partonthefact
that K is amanifdd. Thisimpliesthatthereareexactly two
cofaces for eachedge;sinceeachtriangle hasthreeedges,
we musthave thatthe numter of edgess £ = 3F/2. Fur-
thernore, we have thatthe Euler Characteristids given by
x =n—E+F = n—F/2; assumindghatthegenisis acon-
stantindependentof the numter of samplesn, thensois x
(which depend linearly onthegenus)andthus F = O(n).
This allows usto reducethe compleity to O(n? + n|T||L|).
It is possiblethat |T'| = |L| = O(n); this can happenif
thereis a very large flat areaof the manifld. In this case,
the compexity is O(n?). In moretypical caseshowever,
IT| = |L| = O(1); this occurswhenthe neigtbouthoods are
muchmorelocalized.In this casethe comgexity is O(n?).

Thekey is thattheexponentof n is independenf D, the
dimersion of the embedling space. This comesabou be-
causewe do not usea partition of the entirespace(suchas
a Vorona Diagram)to recorstructthe manifold; the incre-
mentalalgorithmworksthe sameway in ary space.

3.5 Results

Resultsof ruming the algoithm on surfacesof varying

gents areshovn in Figure 6. (a) demorstratesrecastruc-
tion of a sphere (b) shavs the highly non-uniform sam-
pling of this sphere.(c) shavs the recastructionof a sur

facewhichis atopolagical spherein this casethesamplirg

nonuniformity arisesfrom thefactthatthe marching cubes
algoithm was usedto extract the surfacefrom an implicit

function repesentation.(Marchng cubes is known to gen-
erate”ugly triangles’) (d) and (e) illustrate correctresults
whenrunning on surfaceswith non-sghericaltopology; (d)

is atorus,while (e) hasgenuss.
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Thusfar, we have seensurfaceswhich are “pedestrian”
by the standard®f surfacerecorstructionalgorithns. De-
spitethereasonaly comgex topdogy of the last exanple,
we would expectary of avarietyof thealgotithmsdiscussed
in Section2 to be ableto handlethesesurfaces.We would
not, however, expect thesealgoithms to work on the sur
facesshawvn in Figures (f), (g), or (h); all of thesesurfaces
areof codimersion > 1. (f) shows the samesurfaceasin
(e), but which hasbeenembeldedin R* throughanisom-
etry. The surfacelooks sheareddueto the factthatit has
beenslicedalong threedimersions; prgection alongthese
dimensims doesnot presere angles,despitethe fact that
the overall transfamationis anisometry (g) and(h) shav
surfaceswhich canrot be embededin R?, asthey arenon-
orientatle. Both are examges of Klein Bottles; (g) showvs
theclassic*figure-8" Klein Bottle, while (h) is a“flat” (zero
Gaussiartunature)Klein Bottle. Bothhave beenembedied
in R3, andareshown alongthreeparticulardimensioss.
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